1
|
Sun C, Chen S. Disease-causing mutations in genes encoding transcription factors critical for photoreceptor development. Front Mol Neurosci 2023; 16:1134839. [PMID: 37181651 PMCID: PMC10172487 DOI: 10.3389/fnmol.2023.1134839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
Photoreceptor development of the vertebrate visual system is controlled by a complex transcription regulatory network. OTX2 is expressed in the mitotic retinal progenitor cells (RPCs) and controls photoreceptor genesis. CRX that is activated by OTX2 is expressed in photoreceptor precursors after cell cycle exit. NEUROD1 is also present in photoreceptor precursors that are ready to specify into rod and cone photoreceptor subtypes. NRL is required for the rod fate and regulates downstream rod-specific genes including the orphan nuclear receptor NR2E3 which further activates rod-specific genes and simultaneously represses cone-specific genes. Cone subtype specification is also regulated by the interplay of several transcription factors such as THRB and RXRG. Mutations in these key transcription factors are responsible for ocular defects at birth such as microphthalmia and inherited photoreceptor diseases such as Leber congenital amaurosis (LCA), retinitis pigmentosa (RP) and allied dystrophies. In particular, many mutations are inherited in an autosomal dominant fashion, including the majority of missense mutations in CRX and NRL. In this review, we describe the spectrum of photoreceptor defects that are associated with mutations in the above-mentioned transcription factors, and summarize the current knowledge of molecular mechanisms underlying the pathogenic mutations. At last, we deliberate the outstanding gaps in our understanding of the genotype-phenotype correlations and outline avenues for future research of the treatment strategies.
Collapse
Affiliation(s)
- Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- *Correspondence: Chi Sun,
| | - Shiming Chen
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
2
|
Sanchez Caballero L, Gorgogietas V, Arroyo MN, Igoillo-Esteve M. Molecular mechanisms of β-cell dysfunction and death in monogenic forms of diabetes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:139-256. [PMID: 33832649 DOI: 10.1016/bs.ircmb.2021.02.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Monogenetic forms of diabetes represent 1%-5% of all diabetes cases and are caused by mutations in a single gene. These mutations, that affect genes involved in pancreatic β-cell development, function and survival, or insulin regulation, may be dominant or recessive, inherited or de novo. Most patients with monogenic diabetes are very commonly misdiagnosed as having type 1 or type 2 diabetes. The severity of their symptoms depends on the nature of the mutation, the function of the affected gene and, in some cases, the influence of additional genetic or environmental factors that modulate severity and penetrance. In some patients, diabetes is accompanied by other syndromic features such as deafness, blindness, microcephaly, liver and intestinal defects, among others. The age of diabetes onset may also vary from neonatal until early adulthood manifestations. Since the different mutations result in diverse clinical presentations, patients usually need different treatments that range from just diet and exercise, to the requirement of exogenous insulin or other hypoglycemic drugs, e.g., sulfonylureas or glucagon-like peptide 1 analogs to control their glycemia. As a consequence, awareness and correct diagnosis are crucial for the proper management and treatment of monogenic diabetes patients. In this chapter, we describe mutations causing different monogenic forms of diabetes associated with inadequate pancreas development or impaired β-cell function and survival, and discuss the molecular mechanisms involved in β-cell demise.
Collapse
Affiliation(s)
- Laura Sanchez Caballero
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Vyron Gorgogietas
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Maria Nicol Arroyo
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/
| | - Mariana Igoillo-Esteve
- ULB Center for Diabetes Research (UCDR), Université Libre de Bruxelles, Brussels, Belgium. http://www.ucdr.be/.
| |
Collapse
|
3
|
Aarthy R, Aston-Mourney K, Mikocka-Walus A, Radha V, Amutha A, Anjana RM, Unnikrishnan R, Mohan V. Clinical features, complications and treatment of rarer forms of maturity-onset diabetes of the young (MODY) - A review. J Diabetes Complications 2021; 35:107640. [PMID: 32763092 DOI: 10.1016/j.jdiacomp.2020.107640] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/15/2022]
Abstract
Maturity onset diabetes of the young (MODY) is the most common form of monogenic diabetes and is currently believed to have 14 subtypes. While much is known about the common subtypes of MODY (MODY-1, 2, 3 and 5) little is known about its rare subtypes (MODY4, 6-14). With the advent of next-generation sequencing (NGS) there are several reports of the rarer subtypes of MODY emerging from across the world. Therefore, a greater understanding on these rarer subtypes is needed. A search strategy was created, and common databases were searched, and 51 articles finally selected. INS-(MODY10) and ABCC8-(MODY12) mutations were reported in relatively large numbers compared to the other rare subtypes. The clinical characteristics of the rare MODY subtypes exhibited heterogeneity between families reported with the same mutation. Obesity and diabetic ketoacidosis (DKA) were also reported among rarer MODY subtypes which presents as a challenge as these are not part of the original description of MODY by Tattersal and Fajans. The treatment modalities of the rarer subtypes included oral drugs, predominantly sulfonylureas, insulin but also diet alone. Newer drugs like DPP-4 and SGLT2 inhibitors have also been tried as new modes of treatment. The microvascular and macrovascular complications among the patients with various MODY subtypes are less commonly reported. Recently, there is a view that not all the 14 forms of 'MODY' are true MODY and the very existence of some of these rarer subtypes as MODY has been questioned. This scoping review aims to report on the clinical characteristics, treatment and complications of the rarer MODY subtypes published in the literature.
Collapse
Affiliation(s)
- Ramasamy Aarthy
- School of Medicine, Deakin University, Australia; Madras Diabetes Research Foundation, Chennai, India
| | | | | | | | | | - Ranjit Mohan Anjana
- Dr Mohan's Diabetes Specialities Centre, Madras Diabetes Research Foundation, Chennai, India
| | - Ranjit Unnikrishnan
- Dr Mohan's Diabetes Specialities Centre, Madras Diabetes Research Foundation, Chennai, India
| | - Viswanathan Mohan
- Dr Mohan's Diabetes Specialities Centre, Madras Diabetes Research Foundation, Chennai, India.
| |
Collapse
|
4
|
The first E59Q mutation identified in the NEUROD1 gene in a Chinese family with maturity-onset diabetes of the young: an observational study. JOURNAL OF BIO-X RESEARCH 2020. [DOI: 10.1097/jbr.0000000000000065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
5
|
Identification of Ala2Thr mutation in insulin gene from a Chinese MODY10 family. Mol Cell Biochem 2020; 470:77-86. [PMID: 32405973 DOI: 10.1007/s11010-020-03748-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/06/2020] [Indexed: 12/26/2022]
Abstract
More than 80% of maturity-onset diabetes of the young (MODY) in Chinese is genetically unexplained. To investigate whether the insulin gene (INS) mutation is responsible for some Chinese MODY, we screened INS mutations causing MODY10 in MODY pedigrees and explored the potential pathogenic mechanisms. INS mutations were screened in 56 MODY familial probands. Structure-function characterization and clinical profiling of identified INS mutations were conducted. An INS mutation, at the position 2 alanine-to-threonine substitution (A2T), was identified and co-segregated with hyperglycemia in a MODY pedigree. The A2T mutation converted an α-helix into a β-sheet at the N-terminal of the signal peptide (SP) of preproinsulin. The A2T mutation did not affect preproinsulin translocation across endoplasmic reticulum (ER) membrane, but impaired its SP cleavage within the ER. In INS-1 cells transfected with an A2T mutant, glucose-stimulated insulin secretion (GSIS) was significantly decreased, while BiP luciferase activities were significantly increased compared to that of wild type (WT). We identified an INS-A2T mutation cosegregating with diabetes in a Chinese MODY pedigree. This mutation severely impaired SP cleavage and thus blocked the formation of proinsulin, resulting in enhanced ER stress, which may be responsible for decreased insulin secretion and subsequently, the onset of MODY10.
Collapse
|
6
|
Abreu GDM, Tarantino RM, Cabello PH, Zembrzuski VM, da Fonseca ACP, Rodacki M, Zajdenverg L, Campos Junior M. The first case of NEUROD1-MODY reported in Latin America. Mol Genet Genomic Med 2019; 7:e989. [PMID: 31578821 PMCID: PMC6900366 DOI: 10.1002/mgg3.989] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/01/2019] [Accepted: 08/18/2019] [Indexed: 01/06/2023] Open
Abstract
Background MODY‐NEUROD1 is a rare form of monogenic diabetes caused by mutations in Neuronal differentiation 1 (NEUROD1). Until now, only a few cases of MODY‐NEUROD1 have been reported worldwide and the real contribution of mutations in NEUROD1 in monogenic diabetes and its clinical impact remain unclear. Methods Genomic DNA was isolated from peripheral blood lymphocytes of 25 unrelated Brazilians patients with clinical characteristics suggestive of monogenic diabetes and the screening of the entire coding region of NEUROD1 was performed by Sanger sequencing. Results We identified one novel frameshift deletion (p.Phe256Leufs*2) in NEUROD1 segregating in an autosomal dominant inheritance fashion. Almost 20 years after the first report of NEUROD1‐MODY, only a few families in Europe and Asia had shown mutations in NEUROD1 as the cause of monogenic diabetes. Conclusion To our knowledge, we described the first case of NEUROD1‐MODY in a Latin American family.
Collapse
Affiliation(s)
| | - Roberta Magalhães Tarantino
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Ambulatory of Diabetes, State Institute of Diabetes and Endocrinology, Rio de Janeiro, Brazil
| | - Pedro Hernan Cabello
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.,Laboratory of Genetics, School of Health Science, Grande Rio University, Rio de Janeiro, Brazil
| | | | | | - Melanie Rodacki
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lenita Zajdenverg
- Diabetes and Nutrology Section, Internal Medicine Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mário Campos Junior
- Human Genetics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW MODY6 due to mutations in the gene NEUROD1 is very rare, and details on its clinical manifestation and pathogenesis are scarce. In this review, we have summarized all reported cases of MODY6 diagnosed by genetic testing, and examined their clinical features in detail. RECENT FINDINGS MODY6 is a low penetrant MODY, suggesting that development of the disease is affected by genetic modifying factors, environmental factors, and/or the effects of interactions of genetic and environmental factors, as is the case with MODY5. Furthermore, while patients with MODY6 can usually achieve good glycemic control without insulin, when undiagnosed they are prone to become ketotic with chronic hyperglycemia, and microangiopathy can progress. MODY6 may also cause neurological abnormalities such as intellectual disability. MODY6 should be diagnosed early and definitively by genetic testing, so that the correct treatment can be started as soon as possible to prevent chronic hyperglycemia.
Collapse
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu city, Gifu, 501-1194, Japan.
| | - Mayumi Enya
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu city, Gifu, 501-1194, Japan
| |
Collapse
|
8
|
Abstract
In addition to the common types of diabetes mellitus, two major monogenic diabetes forms exist. Maturity-onset diabetes of the young (MODY) represents a heterogenous group of monogenic, autosomal dominant diseases. MODY accounts for 1-2% of all diabetes cases, and it is not just underdiagnosed but often misdiagnosed to type 1 or type 2 diabetes. More than a dozen MODY genes have been identified to date, and their molecular classification is of great importance in the correct treatment decision and in the judgment of the prognosis. The most prevalent subtypes are HNF1A, GCK, and HNF4A. Genetic testing for MODY has changed recently due to the technological advancements, as contrary to the sequential testing performed in the past, nowadays all MODY genes can be tested simultaneously by next-generation sequencing. The other major group of monogenic diabetes is neonatal diabetes mellitus which can be transient or permanent, and often the diabetes is a part of a syndrome. It is a severe monogenic disease appearing in the first 6 months of life. The hyperglycemia usually requires insulin. There are two forms, permanent neonatal diabetes mellitus (PNDM) and transient neonatal diabetes mellitus (TNDM). In TNDM, the diabetes usually reverts within several months but might relapse later in life. The incidence of NDM is 1:100,000-1:400,000 live births, and PNDM accounts for half of the cases. Most commonly, neonatal diabetes is caused by mutations in KCNJ11 and ABCC8 genes encoding the ATP-dependent potassium channel of the β cell. Neonatal diabetes has experienced a quick and successful transition into the clinical practice since the discovery of the molecular background. In case of both genetic diabetes groups, recent guidelines recommend genetic testing.
Collapse
Affiliation(s)
- Zsolt Gaál
- 4th Department of Medicine, Jósa András Teaching Hospital, Nyíregyháza, Hungary
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
9
|
Liu L, Liu Y, Ge X, Liu X, Chen C, Wang Y, Li M, Yin J, Zhang J, Chen Y, Zhang R, Jiang Y, Zhao W, Yang D, Zheng T, Lu M, Zhuang L, Jiang M. Insights into pathogenesis of five novel GCK mutations identified in Chinese MODY patients. Metabolism 2018; 89:8-17. [PMID: 30257192 DOI: 10.1016/j.metabol.2018.09.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/29/2018] [Accepted: 09/19/2018] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Heterozygous inactivating mutations in GCK are associated with defects in pancreatic insulin secretion and/or hepatic glycogen synthesis leading to mild chronic hyperglycaemia of maturity onset diabetes of young type 2 (MODY2). However, the effect of naturally occurring GCK mutations on the pathogenesis for MODY2 hyperglycaemia remains largely unclear, especially in the Asian population. The aim of this study is to explore the potential pathogenicity of novel GCK mutations related to MODY2. METHODS Genetic screening for GCK mutations from 96 classical MODY families was performed, and structure-function characterization and clinical profile of identified GCK mutations were conducted. RESULTS Five novel (F195S, I211T, V222D, E236G and K458R) and five known (T49N, I159V, R186X, A188T and M381T) mutations were identified and co-segregated with hyperglycaemia in their pedigrees. R186X generates non-functional truncated form and V222D and E236G fully inactivate glucokinase due to severe structure disruptions. The other seven GCK mutations exhibited marked reductions in catalytic efficiency and thermo-stability; notably, the interaction with GKRP was significantly enhanced in I211T, I159V, T49N and K458R, reduced in F195S and M381T, and completely lost with A188T. 31% (17/55) of MODY2 patients showed signs of insulin resistance. Conventional hypoglycaemia treatment did not improve the HbA1C in MODY2 patients when insulin resistance is not present. CONCLUSIONS Five novel GCK mutations have been identified in Chinese MODY. The defects in enzymatic activity and protein stability, together with alteration of GKRP binding on GCK mutants may synergistically contribute to the development of MODY2 hyperglycaemia. No treatment should be prescribed to MODY2 patients when insulin resistance is not present.
Collapse
Affiliation(s)
- Limei Liu
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China.
| | - Yanjun Liu
- Department of Internal Medicine, Charles R. Drew University, USA; David Geffen School of Medicine at University of California, USA
| | - Xiaoxu Ge
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Xipeng Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai 200240, China
| | - Chen Chen
- Department of Molecular Cell and Biology, University of California at Berkeley, USA
| | - Yanzhong Wang
- School of Population Health and Environmental Science, King's College London, UK
| | - Ming Li
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Jun Yin
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Juan Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yating Chen
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Yanyan Jiang
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Weijing Zhao
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Di Yang
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, USA
| | - Taishan Zheng
- Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiaotong University Affiliated Sixth People's Hospital, 600 Yishan Road, Shanghai 200233, China
| | - Ming Lu
- Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, 164 Lanxi Road, Shanghai 200000, China
| | - Langen Zhuang
- Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China
| | - Meisheng Jiang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
10
|
Wu Z, Jin T, Weng J. A thorough analysis of diabetes research in China from 1995 to 2015: current scenario and future scope. SCIENCE CHINA-LIFE SCIENCES 2018; 62:46-62. [DOI: 10.1007/s11427-018-9377-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 07/26/2018] [Indexed: 12/16/2022]
|
11
|
Demirbilek H, Hatipoglu N, Gul U, Tatli ZU, Ellard S, Flanagan SE, De Franco E, Kurtoglu S. Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in NEUROD1. Pediatr Diabetes 2018. [PMID: 29521454 DOI: 10.1111/pedi.12669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor, neuronal differentiation 1 (NEUROD1) (also known as BETA2) is involved in the development of neural elements and endocrine pancreas. Less than 10 reports of adult-onset non-insulin-dependent diabetes mellitus (NIDDM) due to heterozygous NEUROD1 mutations and 2 cases with permanent neonatal diabetes mellitus (PNDM) and neurological abnormalities due to homozygous NEUROD1 mutations have been published. A 13 year-old female was referred to endocrine department due to hyperglycemia. She was on insulin therapy following a diagnosis of neonatal diabetes mellitus (NDM) at the age of 9-weeks but missed regular follow-up. Parents are second cousin. There was a significant family history of adult onset NIDDM including patient's father. Auxological measurements were within normal ranges. On laboratory examination blood glucose was 33.2 mmol/L with undetectable c-peptide and glycosylated hemoglobin level of 8.9% (73.8 mmol/mol). She had developed difficulty in walking at the age of 4 years which had worsened over time. On further evaluation, a diagnosis of visual impairment, mental retardation, ataxic gait, retinitis pigmentosa and sensory-neural deafness were considered. Cranial magnetic resonance imaging revealed cerebellar hypoplasia. Molecular genetic analysis using targeted next generation sequencing detected a novel homozygous missense mutation, p.Ile150Asn(c.449T>A), in NEUROD1. Both parents and 2 unaffected siblings were heterozygous for the mutation. We report the third case of PNDM with neurological abnormalities caused by homozygous NEUROD1 mutation, the first caused by a missense mutation. Heterozygous carriers of the p.Ile150Asn mutation were either unaffected or diagnosed with diabetes in adulthood. It is currently unclear whether the NEUROD1 heterozygous mutation has contributed to diabetes development in these individuals.
Collapse
Affiliation(s)
- Huseyin Demirbilek
- Department of Paediatric Endocrinology, Hacettepe University Medical Faculty, Ankara, Turkey
| | - Nihal Hatipoglu
- Department of Paediatric Endocrinology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Ulku Gul
- Department of Paediatric Endocrinology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Zeynep U Tatli
- Department of Paediatric Endocrinology, Erciyes University Medical Faculty, Kayseri, Turkey
| | - Sian Ellard
- Department of Molecular Genetics, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Department of Molecular Genetics, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Elisa De Franco
- Department of Molecular Genetics, Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Selim Kurtoglu
- Department of Paediatric Endocrinology, Erciyes University Medical Faculty, Kayseri, Turkey
| |
Collapse
|
12
|
Yan J, Jiang F, Zhang R, Xu T, Zhou Z, Ren W, Peng D, Liu Y, Hu C, Jia W. Whole-exome sequencing identifies a novel INS mutation causative of maturity-onset diabetes of the young 10. J Mol Cell Biol 2018; 9:376-383. [PMID: 28992123 DOI: 10.1093/jmcb/mjx039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/18/2017] [Indexed: 12/28/2022] Open
Abstract
Monogenic diabetes is often misdiagnosed with type 2 diabetes due to overlapping characteristics. This study aimed to discover novel causative mutations of monogenic diabetes in patients with clinically diagnosed type 2 diabetes and to explore potential molecular mechanisms. Whole-exome sequencing was performed on 31 individuals clinically diagnosed with type 2 diabetes. One novel heterozygous mutation (p.Ala2Thr) in INS was identified. It was further genotyped in an additional case-control population (6523 cases and 4635 controls), and this variant was observed in 0.09% of cases. Intracellular trafficking of insulin proteins was assessed in INS1-E and HEK293T cells. p.Ala2Thr preproinsulin-GFP was markedly retained in the endoplasmic reticulum (ER) in INS1-E cells. Activation of the PERK-eIF2α-ATF4, IRE1α-XBP1, and ATF6 pathways as well as upregulated ER chaperones were detected in INS1-E cells transfected with the p.Ala2Thr mutant. In conclusion, we identified a causative mutation in INS responsible for maturity-onset diabetes of the young 10 (MODY10) in a Chinese population and demonstrated that this mutation affected β cell function by inducing ER stress.
Collapse
Affiliation(s)
- Jing Yan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Feng Jiang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Rong Zhang
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tongfu Xu
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Zhou Zhou
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Ren
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Danfeng Peng
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yong Liu
- The Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Shanghai, China
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Institute for Metabolic Disease, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai, China
| | - Weiping Jia
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Diseases, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Horikawa Y. Maturity-onset diabetes of the young as a model for elucidating the multifactorial origin of type 2 diabetes mellitus. J Diabetes Investig 2018; 9:704-712. [PMID: 29406598 PMCID: PMC6031504 DOI: 10.1111/jdi.12812] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 01/30/2018] [Accepted: 01/30/2018] [Indexed: 12/19/2022] Open
Abstract
Maturity‐onset diabetes of the young (MODY) is a form of diabetes classically characterized as having autosomal dominant inheritance, onset before the age of 25 years in at least one family member and partly preserved pancreatic β‐cell function. The 14 responsible genes are reported to be MODY type 1~14, of which MODY 2 and 3 might be the most common forms. Although MODY is currently classified as diabetes of a single gene defect, it has become clear that mutations in rare MODYs, such as MODY 5 and MODY 6, have small mutagenic effects and low penetrance. In addition, as there are differences in the clinical phenotypes caused by the same mutation even in the same family, other phenotypic modifying factors are thought to exist; MODY could well have characteristics of type 2 diabetes mellitus, which is of multifactorial origin. Here, we outline the effects of genetic and environmental factors on the known phenotypes of MODY, focusing mainly on the examples of MODY 5 and 6, which have low penetrance, as suggestive models for elucidating the multifactorial origin of type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Graduate School of Medicine, Gifu University, Gifu, Japan
| |
Collapse
|
14
|
Horikawa Y, Enya M, Mabe H, Fukushima K, Takubo N, Ohashi M, Ikeda F, Hashimoto KI, Watada H, Takeda J. NEUROD1-deficient diabetes (MODY6): Identification of the first cases in Japanese and the clinical features. Pediatr Diabetes 2018; 19:236-242. [PMID: 28664602 DOI: 10.1111/pedi.12553] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/26/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022] Open
Abstract
AIMS Only a few families with neuronal differentiation 1 (NEUROD1)-deficient diabetes, currently designated as maturity-onset diabetes of the young 6 (MODY6), have been reported, but mostly in Caucasian, and no mutation has been identified by family-based screening in Japanese. Accordingly, the phenotypic details of the disease remain to be elucidated. METHODS We examined a total of 275 subjects having diabetes suspected to be MODY who were negative for mutations in MODY1-5 referred from 155 medical institutions throughout Japan. So as not to miss low penetrant cases, we examined non-obese Japanese patients with early-onset diabetes regardless of the presence of family history by direct sequencing of all exons and flanking regions of NEUROD1 . Large genomic rearrangements also were examined. RESULTS Four patients with 3 frameshift mutations and 1 missense mutation, all of which were heterozygous and 3 of which were novel, were identified. Diabetic ketosis was found occasionally in these patients even under conditions of chronic hyperglycemia, for unknown reasons. Although the capacity of early-phase insulin secretion was low in these patients, the insulin secretory capacity was relatively preserved compared to that in hepatocyte nuclear factor (HNF)1A- and HNF1B-MODY. One of the patients and 2 of their diabetic mothers were found to have some mental or neuronal abnormality. CONCLUSIONS This is the first report of NEUROD1 mutations in Japanese, who have a genetic background of intrinsically lower capacity of insulin secretion. NEUROD1-deficient diabetes appears to be low penetrant, and may occur in concert with other genetic factors.
Collapse
Affiliation(s)
- Yukio Horikawa
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Mayumi Enya
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Hiroyo Mabe
- Department of Child Development, Kumamoto University Hospital, Kumamoto, Japan
| | - Kei Fukushima
- Department of Pediatrics, Juntendo University Hospital, Tokyo, Japan
| | - Noriyuki Takubo
- Department of Pediatrics, Juntendo University Hospital, Tokyo, Japan
| | - Masaaki Ohashi
- Department of Diabetes and Endocrinology, Saku Central Hospital, Nagano, Japan
| | - Fuki Ikeda
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Ken-Ichi Hashimoto
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Jun Takeda
- Department of Diabetes and Endocrinology, Gifu University Graduate School of Medicine, Gifu, Japan.,Division of Clinical Genetics, Gifu University Hospital, Gifu, Japan
| |
Collapse
|
15
|
Doddabelavangala Mruthyunjaya M, Chapla A, Hesarghatta Shyamasunder A, Varghese D, Varshney M, Paul J, Inbakumari M, Christina F, Varghese RT, Kuruvilla KA, V. Paul T, Jose R, Regi A, Lionel J, Jeyaseelan L, Mathew J, Thomas N. Comprehensive Maturity Onset Diabetes of the Young (MODY) Gene Screening in Pregnant Women with Diabetes in India. PLoS One 2017; 12:e0168656. [PMID: 28095440 PMCID: PMC5240948 DOI: 10.1371/journal.pone.0168656] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 12/05/2016] [Indexed: 02/03/2023] Open
Abstract
Pregnant women with diabetes may have underlying beta cell dysfunction due to mutations/rare variants in genes associated with Maturity Onset Diabetes of the Young (MODY). MODY gene screening would reveal those women genetically predisposed and previously unrecognized with a monogenic form of diabetes for further clinical management, family screening and genetic counselling. However, there are minimal data available on MODY gene variants in pregnant women with diabetes from India. In this study, utilizing the Next generation sequencing (NGS) based protocol fifty subjects were screened for variants in a panel of thirteen MODY genes. Of these subjects 18% (9/50) were positive for definite or likely pathogenic or uncertain MODY variants. The majority of these variants was identified in subjects with autosomal dominant family history, of whom five were in women with pre-GDM and four with overt-GDM. The identified variants included one patient with HNF1A Ser3Cys, two PDX1 Glu224Lys, His94Gln, two NEUROD1 Glu59Gln, Phe318Ser, one INS Gly44Arg, one GCK, one ABCC8 Arg620Cys and one BLK Val418Met variants. In addition, three of the seven offspring screened were positive for the identified variant. These identified variants were further confirmed by Sanger sequencing. In conclusion, these findings in pregnant women with diabetes, imply that a proportion of GDM patients with autosomal dominant family history may have MODY. Further NGS based comprehensive studies with larger samples are required to confirm these finding.
Collapse
Affiliation(s)
| | - Aaron Chapla
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | | | - Deny Varghese
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Manika Varshney
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Johan Paul
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Mercy Inbakumari
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Flory Christina
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Ron Thomas Varghese
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | | | - Thomas V. Paul
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| | - Ruby Jose
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India
| | - Annie Regi
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India
| | - Jessie Lionel
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India
| | - L. Jeyaseelan
- Department of Biostatistics, Christian Medical College, Vellore, India
| | - Jiji Mathew
- Department of Obstetrics and Gynaecology, Christian Medical College, Vellore, India
| | - Nihal Thomas
- Department of Endocrinology, Diabetes & Metabolism, Christian Medical College, Vellore, India
| |
Collapse
|
16
|
Yang Y, Chan L. Monogenic Diabetes: What It Teaches Us on the Common Forms of Type 1 and Type 2 Diabetes. Endocr Rev 2016; 37:190-222. [PMID: 27035557 PMCID: PMC4890265 DOI: 10.1210/er.2015-1116] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
To date, more than 30 genes have been linked to monogenic diabetes. Candidate gene and genome-wide association studies have identified > 50 susceptibility loci for common type 1 diabetes (T1D) and approximately 100 susceptibility loci for type 2 diabetes (T2D). About 1-5% of all cases of diabetes result from single-gene mutations and are called monogenic diabetes. Here, we review the pathophysiological basis of the role of monogenic diabetes genes that have also been found to be associated with common T1D and/or T2D. Variants of approximately one-third of monogenic diabetes genes are associated with T2D, but not T1D. Two of the T2D-associated monogenic diabetes genes-potassium inward-rectifying channel, subfamily J, member 11 (KCNJ11), which controls glucose-stimulated insulin secretion in the β-cell; and peroxisome proliferator-activated receptor γ (PPARG), which impacts multiple tissue targets in relation to inflammation and insulin sensitivity-have been developed as major antidiabetic drug targets. Another monogenic diabetes gene, the preproinsulin gene (INS), is unique in that INS mutations can cause hyperinsulinemia, hyperproinsulinemia, neonatal diabetes mellitus, one type of maturity-onset diabetes of the young (MODY10), and autoantibody-negative T1D. Dominant heterozygous INS mutations are the second most common cause of permanent neonatal diabetes. Moreover, INS gene variants are strongly associated with common T1D (type 1a), but inconsistently with T2D. Variants of the monogenic diabetes gene Gli-similar 3 (GLIS3) are associated with both T1D and T2D. GLIS3 is a key transcription factor in insulin production and β-cell differentiation during embryonic development, which perturbation forms the basis of monogenic diabetes as well as its association with T1D. GLIS3 is also required for compensatory β-cell proliferation in adults; impairment of this function predisposes to T2D. Thus, monogenic forms of diabetes are invaluable "human models" that have contributed to our understanding of the pathophysiological basis of common T1D and T2D.
Collapse
Affiliation(s)
- Yisheng Yang
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Lawrence Chan
- Division of Endocrinology (Y.Y.), Department of Medicine, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio 44109; and Diabetes and Endocrinology Research Center (L.C.), Division of Diabetes, Endocrinology and Metabolism, Departments of Medicine, Molecular and Cellular Biology, Biochemistry and Molecular Biology, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
17
|
Szopa M, Ludwig-Galezowska AH, Radkowski P, Skupien J, Machlowska J, Klupa T, Wolkow P, Borowiec M, Mlynarski W, Malecki MT. A family with the Arg103Pro mutation in the NEUROD1 gene detected by next-generation sequencing – Clinical characteristics of mutation carriers. Eur J Med Genet 2016; 59:75-9. [DOI: 10.1016/j.ejmg.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 11/25/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022]
|
18
|
Wang F, Li H, Xu M, Li H, Zhao L, Yang L, Zaneveld JE, Wang K, Li Y, Sui R, Chen R. A homozygous missense mutation in NEUROD1 is associated with nonsyndromic autosomal recessive retinitis pigmentosa. Invest Ophthalmol Vis Sci 2014; 56:150-5. [PMID: 25477324 DOI: 10.1167/iovs.14-15382] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mutations in the same gene can lead to different clinical phenotypes. In this study, we aim to identify novel genotype-phenotype correlations and novel disease genes by analyzing an unsolved autosomal recessive retinitis pigmentosa (ARRP) Han Chinese family. METHODS Whole exome sequencing was performed for one proband from the consanguineous ARRP family. Stringent variants filtering and prioritizations were applied to identify the causative mutation. RESULTS A homozygous missense variant, c.724G>A; p.V242I, in NEUROD1 was identified as the most likely cause of disease. This allele perfectly segregates in the family and affects an amino acid, which is highly conserved among mammals. A previous study showed that a homozygous null allele in NEUROD1 causes severe syndromic disease with neonatal diabetes, systematic neurological abnormalities, and early-onset retinal dystrophy. Consistent with these results, our patients who are homozygous for a less severe missense allele presented only late-onset retinal degeneration without any syndromic symptoms. CONCLUSIONS We identified a potential novel genotype-phenotype correlation between NEUROD1 and nonsyndromic ARRP. Our study supports the idea that NEUROD1 is important for maintenance of the retina function and partial loss-of-function mutation in NEUROD1 is likely a rare cause of nonsyndromic ARRP.
Collapse
Affiliation(s)
- Feng Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Huajin Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Mingchu Xu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Li Zhao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Structural and Computational Biology and Molecular Biophysics Graduate Program, Houston, Texas, United States
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Jacques E Zaneveld
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Keqing Wang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yumei Li
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing, China
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, United States Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States Structural and Computational Biology and Molecular Biophysics Graduate Program, Houston, Texas, United States
| |
Collapse
|
19
|
Abstract
Monogenic diabetes represents a heterogeneous group of disorders resulting from defects in single genes. Defects are categorized primarily into two groups: disruption of β-cell function or a reduction in the number of β-cells. A complex network of transcription factors control pancreas formation, and a dysfunction of regulators high in the hierarchy leads to pancreatic agenesis. Dysfunction among factors further downstream might cause organ hypoplasia, absence of islets of Langerhans or a reduction in the number of β-cells. Many transcription factors have pleiotropic effects, explaining the association of diabetes with other congenital malformations, including cerebellar agenesis and pituitary agenesis. Monogenic diabetes variants are classified conventionally according to age of onset, with neonatal diabetes occurring before the age of 6 months and maturity onset diabetes of the young (MODY) manifesting before the age of 25 years. Recently, certain familial genetic defects were shown to manifest as neonatal diabetes, MODY or even adult onset diabetes. Patients with neonatal diabetes require a thorough genetic work-up in any case, and because extensive phenotypic overlap exists between monogenic, type 2, and type 1 diabetes, genetic analysis will also help improve diagnosis in these cases. Next generation sequencing will facilitate rapid screening, leading to the discovery of digenic and oligogenic diabetes variants, and helping to improve our understanding of the genetics underlying other types of diabetes. An accurate diagnosis remains important, because it might lead to a change in the treatment of affected subjects and influence long-term complications.
Collapse
Affiliation(s)
- Valerie M Schwitzgebel
- Pediatric Endocrine and Diabetes UnitDepartment of Child and Adolescent HealthChildren's University HospitalGenevaSwitzerland
| |
Collapse
|
20
|
Liu L, Nagashima K, Yasuda T, Liu Y, Hu HR, He G, Feng B, Zhao M, Zhuang L, Zheng T, Friedman TC, Xiang K. Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia 2013; 56:2609-18. [PMID: 24018988 PMCID: PMC5333983 DOI: 10.1007/s00125-013-3031-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2013] [Accepted: 08/02/2013] [Indexed: 12/25/2022]
Abstract
AIMS/HYPOTHESIS More than 90% of Chinese familial early-onset type 2 diabetes mellitus is genetically unexplained. To investigate the molecular aetiology, we identified and characterised whether mutations in the KCNJ11 gene are responsible for these families. METHODS KCNJ11 mutations were screened for 96 familial early-onset type 2 diabetic probands and their families. Functional significance of the identified mutations was confirmed by physiological analysis, molecular modelling and population survey. RESULTS Three novel KCNJ11 mutations, R27H, R192H and S116F117del, were identified in three families with early-onset type 2 diabetes mellitus. Mutated KCNJ11 with R27H or R192H markedly reduced ATP sensitivity (E23K>R27H>C42R>R192H>R201H), but no ATP-sensitive potassium channel currents were detected in the loss-of-function S116F117del channel in vitro. Molecular modelling indicated that R192H had a larger effect on the channel ATP-binding pocket than R27H, which may qualitatively explain why the ATP sensitivity of the R192H mutation is seven times less than R27H. The shape of the S116F117del channel may be compressed, which may explain why the mutated channel had no currents. Discontinuation of insulin and implementation of sulfonylureas for R27H or R192H carriers and continuation/switch to insulin therapy for S116F117del carriers resulted in good glycaemic control. CONCLUSIONS/INTERPRETATION Our results suggest that genetic diagnosis for the KCNJ11 mutations in familial early-onset type 2 diabetes mellitus may help in understanding the molecular aetiology and in providing more personalised treatment for these specific forms of diabetes in Chinese and other Asian patients.
Collapse
Affiliation(s)
- Limei Liu
- Department of Endocrinology & Metabolism, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai Diabetes Institute, 600 Yishan Road, Shanghai, 200233, China,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
McDonald TJ, Ellard S. Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem 2013; 50:403-15. [PMID: 23878349 DOI: 10.1177/0004563213483458] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maturity-onset diabetes of the young (MODY) is a monogenic disorder that results in a familial, young-onset non-insulin dependent form of diabetes, typically presenting in lean young adults before 25 years. Approximately 1% of diabetes has a monogenic cause but this is frequently misdiagnosed as Type 1 or Type 2 diabetes. A correct genetic diagnosis is important as it often leads to improved treatment for those affected with diabetes and enables predictive genetic testing for their asymptomatic relatives. An early diagnosis together with appropriate treatment is essential for reducing the risk of diabetic complications in later life. Mutations in the GCK and HNF1A/4 A genes account for up to 80% of all MODY cases. Mutations in the GCK gene cause a mild, asymptomatic and non-progressive fasting hyperglycaemia from birth usually requiring no treatment. In contrast, mutations in the genes encoding the transcription factors HNF1A and HNF4A cause a progressive insulin secretory defect and hyperglycaemia that can lead to vascular complications. The diabetes in these patients is usually well controlled with sulphonylurea tablets although insulin treatment may be required in later life. In this review, we outline the key clinical and laboratory characteristics of the common and rarer causes of MODY with the aim of raising awareness of this condition amongst health-care scientists.
Collapse
Affiliation(s)
- Tim J McDonald
- Department of Clinical Biochemistry, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | | |
Collapse
|
22
|
Shalabi A, Fischer C, Korf HW, von Gall C. Melatonin-receptor-1-deficiency affects neurogenic differentiation factor immunoreaction in pancreatic islets and enteroendocrine cells of mice. Cell Tissue Res 2013; 353:483-91. [PMID: 23700151 DOI: 10.1007/s00441-013-1647-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
Neurogenic differentiation factor (NeuroD) is a transcription factor involved in the differentiation of neurons and in the control of energy balance and metabolism. It plays a key role in type 1 and type 2 diabetes. Melatonin is an important rhythmic endocrine signal within the circadian system of mammals and modulates insulin secretion and glucose metabolism. In the mouse pars tuberalis, NeuroD mRNA levels show day/night variation, which is independent of the molecular clock gene mPER1 but depends on the functional melatonin receptor 1 (MT1). So far, little is known about the effect of melatonin on NeuroD synthesis in the gastrointestinal tract. Thus, NeuroD protein levels and cellular localization were analyzed by immunohistochemistry in pancreatic islets and duodenal enteroendocrine cells of MT1- and mPER1-deficienct mice. In addition, the localization of NeuroD-positive cells was analyzed by double-immunofluorescence and confocal laser microscopy. In duodenal enteroendocrine cells and pancreatic islets of WT and PER1-deficient mice, NeuroD immunoreaction showed a peak during the early subjective night. In contrast, this peak was absent in MT1-deficent mice. These data suggest that melatonin, by acting on MT1 receptors, affects NeuroD expression in the gastrointestinal tract and thus might contribute to circadian regulation in metabolic functions.
Collapse
Affiliation(s)
- Andree Shalabi
- Dr. Senckenbergische Anatomie, Institut für Anatomie II, Johann-Wolfgang-Goethe-Universität, Theodor-Stern-Kai 7, 60590, Frankfurt/M, Germany
| | | | | | | |
Collapse
|
23
|
Tennant BR, Islam R, Kramer MM, Merkulova Y, Kiang RL, Whiting CJ, Hoffman BG. The transcription factor Myt3 acts as a pro-survival factor in β-cells. PLoS One 2012; 7:e51501. [PMID: 23236509 PMCID: PMC3517555 DOI: 10.1371/journal.pone.0051501] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/01/2012] [Indexed: 01/01/2023] Open
Abstract
Aims/Hypothesis We previously identified the transcription factor Myt3 as specifically expressed in pancreatic islets. Here, we sought to determine the expression and regulation of Myt3 in islets and to determine its significance in regulating islet function and survival. Methods Myt3 expression was determined in embryonic pancreas and adult islets by qPCR and immunohistochemistry. ChIP-seq, ChIP-qPCR and luciferase assays were used to evaluate regulation of Myt3 expression. Suppression of Myt3 was used to evaluate gene expression, insulin secretion and apoptosis in islets. Results We show that Myt3 is the most abundant MYT family member in adult islets and that it is expressed in all the major endocrine cell types in the pancreas after E18.5. We demonstrate that Myt3 expression is directly regulated by Foxa2, Pdx1, and Neurod1, which are critical to normal β-cell development and function, and that Ngn3 induces Myt3 expression through alterations in the Myt3 promoter chromatin state. Further, we show that Myt3 expression is sensitive to both glucose and cytokine exposure. Of specific interest, suppressing Myt3 expression reduces insulin content and increases β-cell apoptosis, at least in part, due to reduced Pdx1, Mafa, Il-6, Bcl-xl, c-Iap2 and Igfr1 levels, while over-expression of Myt3 protects islets from cytokine induced apoptosis. Conclusion/Interpretation We have identified Myt3 as a novel transcriptional regulator with a critical role in β-cell survival. These data are an important step in clarifying the regulatory networks responsible for β-cell survival, and point to Myt3 as a potential therapeutic target for improving functional β-cell mass.
Collapse
Affiliation(s)
- Bryan R. Tennant
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Ratib Islam
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Marabeth M. Kramer
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Yulia Merkulova
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Roger L. Kiang
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Cheryl J. Whiting
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
| | - Brad G. Hoffman
- Child and Family Research Institute, British Columbia Children’s Hospital and Sunny Hill Health Centre, Vancouver, British Columbia, Canada
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail: E-mail:
| |
Collapse
|
24
|
Gardner DSL, Tai ES. Clinical features and treatment of maturity onset diabetes of the young (MODY). Diabetes Metab Syndr Obes 2012; 5:101-8. [PMID: 22654519 PMCID: PMC3363133 DOI: 10.2147/dmso.s23353] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Maturity onset diabetes of the young (MODY) is a heterogeneous group of disorders that result in β-cell dysfunction. It is rare, accounting for just 1%-2% of all diabetes. It is often misdiagnosed as type 1 or type 2 diabetes, as it is often difficult to distinguish MODY from these two forms. However, diagnosis allows appropriate individualized care, depending on the genetic etiology, and allows prognostication in family members. In this review, we discuss features of the common causes of MODY, as well as the treatment and diagnosis of MODY.
Collapse
Affiliation(s)
- Daphne SL Gardner
- Department of Endocrinology, Singapore General Hospital, Singapore
- Correspondence: Daphne SL Gardner, Department of Endocrinology, Singapore General Hospital, Block 6, Level 6, Outram Road, Singapore 169608, Tel +65 6321 4523, Email
| | - E Shyong Tai
- Department of Endocrinology, National University Hospital, Singapore
| |
Collapse
|
25
|
Gottlieb A, Magger O, Berman I, Ruppin E, Sharan R. PRINCIPLE: a tool for associating genes with diseases via network propagation. Bioinformatics 2011; 27:3325-6. [PMID: 22016407 DOI: 10.1093/bioinformatics/btr584] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
SUMMARY PRINCIPLE is a Java application implemented as a Cytoscape plug-in, based on a previously published algorithm, PRINCE. Given a query disease, it prioritizes disease-related genes based on their closeness in a protein-protein interaction network to genes causing phenotypically similar disorders to the query disease. AVAILABILITY Implemented in Java, PRINCIPLE runs over Cytoscape 2.7 or newer versions. Binaries, default input files and documentation are freely available at http://www.cs.tau.ac.il/~bnet/software/PrincePlugin/. CONTACT roded@tau.ac.il; assafgot@tau.ac.il.
Collapse
Affiliation(s)
- Assaf Gottlieb
- The Balavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel.
| | | | | | | | | |
Collapse
|
26
|
Rubio-Cabezas O, Minton JA, Kantor I, Williams D, Ellard S, Hattersley AT. Homozygous mutations in NEUROD1 are responsible for a novel syndrome of permanent neonatal diabetes and neurological abnormalities. Diabetes 2010; 59:2326-31. [PMID: 20573748 PMCID: PMC2927956 DOI: 10.2337/db10-0011] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE NEUROD1 is expressed in both developing and mature beta-cells. Studies in mice suggest that this basic helix-loop-helix transcription factor is critical in the development of endocrine cell lineage. Heterozygous mutations have previously been identified as a rare cause of maturity-onset diabetes of the young (MODY). We aimed to explore the potential contribution of NEUROD1 mutations in patients with permanent neonatal diabetes. RESEARCH DESIGN AND METHODS We sequenced the NEUROD1 gene in 44 unrelated patients with permanent neonatal diabetes of unknown genetic etiology. RESULTS Two homozygous mutations in NEUROD1 (c.427_ 428del and c.364dupG) were identified in two patients. Both mutations introduced a frameshift that would be predicted to generate a truncated protein completely lacking the activating domain. Both patients had permanent diabetes diagnosed in the first 2 months of life with no evidence of exocrine pancreatic dysfunction and a morphologically normal pancreas on abdominal imaging. In addition to diabetes, they had learning difficulties, severe cerebellar hypoplasia, profound sensorineural deafness, and visual impairment due to severe myopia and retinal dystrophy. CONCLUSIONS We describe a novel clinical syndrome that results from homozygous loss of function mutations in NEUROD1. It is characterized by permanent neonatal diabetes and a consistent pattern of neurological abnormalities including cerebellar hypoplasia, learning difficulties, sensorineural deafness, and visual impairment. This syndrome highlights the critical role of NEUROD1 in both the development of the endocrine pancreas and the central nervous system in humans.
Collapse
Affiliation(s)
- Oscar Rubio-Cabezas
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Jayne A.L. Minton
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
| | - Iren Kantor
- Department of Pediatrics, Jósa András Hospital, Nyíregyháza, Hungary
| | - Denise Williams
- West Midlands Regional Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, U.K
| | - Sian Ellard
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
| | - Andrew T. Hattersley
- Institute of Biomedical and Clinical Science, Peninsula Medical School, University of Exeter, Exeter, U.K
- Corresponding author: Andrew T. Hattersley,
| |
Collapse
|
27
|
Gonsorcíková L, Průhová S, Cinek O, Ek J, Pelikánová T, Jørgensen T, Eiberg H, Pedersen O, Hansen T, Lebl J. Autosomal inheritance of diabetes in two families characterized by obesity and a novel H241Q mutation in NEUROD1. Pediatr Diabetes 2008; 9:367-72. [PMID: 18331410 DOI: 10.1111/j.1399-5448.2008.00379.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The aim of the study was to search for mutations in the NEUROD1 and IPF-1 genes in patients with clinical characteristics of maturity-onset diabetes of the young (MODY) but with no mutations in the HNF-4A (MODY1), GCK (MODY2) and TCF1 (MODY3) genes. METHODS We studied 30 unrelated Czech probands with a clinical diagnosis of MODY (median age at testing, 18 yr; median age at the recognition of hyperglycaemia, 16 yr). The promoter, exons and exon/intron boundaries of the NEUROD1 and IPF-1 genes were examined by polymerase chain reaction-denaturing high performance liquid chromatography and direct sequencing. RESULTS While no mutations were found in the IPF-1 gene, a novel H241Q substitution of NEUROD1 gene was identified in two unrelated families. In the first proband, the H241Q mutation led to early diagnosed (20 yr) hyperglycaemia followed by development of diabetic microvascular complications by the age of 32 yr. The second proband suffered from slowly progressing hyperglycaemia detected at the age of 30 yr. Affected members of both families were obese. The overall prevalence of the variant among the general population was 4 of 13 568 chromosomes. CONCLUSIONS We report a novel disease-associated variant in NEUROD1 identified among a set of MODYX families. The variant seems to precipitate type-2-like diabetes in excessively obese individuals.
Collapse
Affiliation(s)
- Lucie Gonsorcíková
- Department of Paediatrics, Second Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Vaxillaire M, Froguel P. Monogenic diabetes in the young, pharmacogenetics and relevance to multifactorial forms of type 2 diabetes. Endocr Rev 2008; 29:254-64. [PMID: 18436708 DOI: 10.1210/er.2007-0024] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Most valuable breakthroughs in the genetics of type 2 diabetes for the past two decades have arisen from candidate gene studies and familial linkage analysis of maturity-onset diabetes of the young (MODY), an autosomal dominant form of diabetes typically occurring before 25 years of age caused by primary insulin secretion defects. Despite its low prevalence, MODY is not a single entity but presents genetic, metabolic and clinical heterogeneity. MODY can result from mutations in at least six different genes encoding the glucose sensor enzyme glucokinase and transcription factors that participate in a regulatory network essential for adult beta-cell function. Additional genes have been described in other discrete phenotypes or syndromic forms of diabetes. Whereas common variants in the MODY genes contribute very modestly to type 2 diabetes susceptibility in adults, major findings emerging from the advent of genome-wide association studies will deliver an increasing number of genes and new pathways for the pathological events of the disease.
Collapse
Affiliation(s)
- Martine Vaxillaire
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8090, Institute of Biology and Pasteur Institute, Lille, France
| | | |
Collapse
|
29
|
Murphy R, Ellard S, Hattersley AT. Clinical implications of a molecular genetic classification of monogenic beta-cell diabetes. ACTA ACUST UNITED AC 2008; 4:200-13. [PMID: 18301398 DOI: 10.1038/ncpendmet0778] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2007] [Accepted: 12/14/2007] [Indexed: 02/06/2023]
Abstract
Monogenic diabetes resulting from mutations that primarily reduce beta-cell function accounts for 1-2% of diabetes cases, although it is often misdiagnosed as either type 1 or type 2 diabetes. Knowledge of the genetic etiology of diabetes enables more-appropriate treatment, better prediction of disease progression, screening of family members and genetic counseling. We propose that the old clinical classifications of maturity-onset diabetes of the young and neonatal diabetes are obsolete and that specific genetic etiologies should be sought in four broad clinical situations because of their specific treatment implications. Firstly, diabetes diagnosed before 6 months of age frequently results from mutation of genes that encode Kir6.2 (ATP-sensitive inward rectifier potassium channel) or sulfonylurea receptor 1 subunits of an ATP-sensitive potassium channel, and improved glycemic control can be achieved by treatment with high-dose sulfonylureas rather than insulin. Secondly, patients with stable, mild fasting hyperglycemia detected particularly when they are young could have a glucokinase mutation and might not require specific treatment. Thirdly, individuals with familial, young-onset diabetes that does not fit with either type 1 or type 2 diabetes might have mutations in the transcription factors HNF-1alpha (hepatocyte nuclear factor 1-alpha) or HNF-4alpha, and can be treated with low-dose sulfonylureas. Finally, extrapancreatic features, such as renal disease (caused by mutations in HNF-1beta) or deafness (caused by a mitochondrial m.3243A>G mutation), usually require early treatment with insulin.
Collapse
|