1
|
Zheng Z, Song Y. Synaptopodin-2: a potential tumor suppressor. Cancer Cell Int 2023; 23:158. [PMID: 37544991 PMCID: PMC10405370 DOI: 10.1186/s12935-023-03013-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Initially identified as an actin-binding protein containing a PSD95-DLG-ZO1 Domain (PZD domain), Synaptopodin 2 (SYNPO2) has long been considered a structural protein ubiquitously expressed in muscular tissues. However, emerging evidence suggests that SYNPO2 performs diverse functions in cancers in addition to its role in microfilament assembly. In most cancers, high SYNPO2 expression is positively correlated with a good prognosis, suggesting its role as a novel tumor suppressor. Abnormal SYNPO2 expression affects autophagy generation, particularly mitophagy induced by low oxidation or viral infection, as well as chaperone-mediated autophagy triggered by microfilament damage. Mechanically, SYNPO2 regulates tumor growth, metastasis, and invasion via activating the PI3K/AKT/mTOR signal and Hippo signaling pathways. Moreover, the subcellular localization, promoter methylation and single nucleotide polymorphism (SNP) of SYNPO2 have been associated with cancer progression and clinical outcomes, highlighting its potential as a prognostic or diagnostic target for this patient population. This review focuses on the role of SYNPO2 in cancer, including its generation, epigenetic modification, subcellular localization, and biological function.
Collapse
Affiliation(s)
- Zequn Zheng
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315048, Zhejiang, People's Republic of China
- Department of Cardiology, Shantou University Medical College, Shantou, 515063, Guangzhou, People's Republic of China
| | - Yongfei Song
- Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo Medical Centre Lihuili Hospital, Ningbo University, No. 378 Dongqing Road, Yinzhou District, Ningbo, 315048, Zhejiang, People's Republic of China.
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou, 310012, Zhejiang, People's Republic of China.
- Medical College, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Fatima S, Wagstaff KM, Lim SM, Polo JM, Young JC, Jans DA. The nuclear transporter importin 13 is critical for cell survival during embryonic stem cell differentiation. Biochem Biophys Res Commun 2020; 534:141-148. [PMID: 33333437 DOI: 10.1016/j.bbrc.2020.11.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
Nuclear transporter Importin (Imp, Ipo) 13 is known to transport various mammalian cargoes into/out of the nucleus, but its role in directing cell-fate is unclear. Here we examine the role of Imp13 in the maintenance of pluripotency and differentiation of embryonic stem cells (ESCs) for the first time, using an embryonic body (EB)-based model. When induced to differentiate, Ipo13-/- ESCs displayed slow proliferation, reduced EB size, and lower expression of the proliferation marker KI67, concomitant with an increase in the number of TUNEL+ nuclei compared to wildtype ESCs. At days 5 and 10 of differentiation, Ipo13-/- EBs also showed enhanced loss of the pluripotency transcript OCT3/4, and barely detectable clusters of OCT3/4 positive cells. Day 5 Ipo13-/- EBs further exhibited reduced levels of the mesodermal markers Brachyury and Mixl1, correlating with reduced numbers of haemoglobinised cells generated. Our findings suggest that Imp13 is critical to ESC survival as well as early post-gastrulation differentiation.
Collapse
Affiliation(s)
- Shadma Fatima
- Nuclear Signalling Lab., Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kylie M Wagstaff
- Nuclear Signalling Lab., Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sue Mei Lim
- Australian Regenerative Medicine Institute, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Julia C Young
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - David A Jans
- Nuclear Signalling Lab., Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
3
|
Zohud BA, Guo P, Zohud BA, Li F, Hao JJ, Shan X, Yu W, Guo W, Qin Y, Cai X. Importin 13 promotes NSCLC progression by mediating RFPL3 nuclear translocation and hTERT expression upregulation. Cell Death Dis 2020; 11:879. [PMID: 33082305 PMCID: PMC7575581 DOI: 10.1038/s41419-020-03101-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 12/13/2022]
Abstract
Our previous studies have reported that RFPL3 protein exerts its unique function as a transcriptional factor of hTERT promoter after being transported into the lung cancer cell nucleus. However, the detailed mechanism by which RFPL3 undergoes nuclear transport has not been reported yet. Here, we identified RFPL3 as a potential import cargo for IPO13, which was found to be overexpressed in NSCLC cells and tissues. IPO13 interacted with RFPL3 in lung cancer cells, and the knockdown of IPO13 led to the cytoplasmic accumulation of RFPL3, the decreased anchoring of RFPL3 at hTERT promoter, and the downregulation of hTERT expression. Moreover, IPO13 silencing suppressed tumor growth in vitro and in vivo. IHC analysis confirmed the positive correlation between the expression levels of IPO13 and hTERT in the tumor tissues from patients with lung cancer. Furthermore, the mechanistic study revealed that IPO13 recognized RFPL3 via a functional nuclear localization signal (NLS), which is located in the B30.2 domain at the C-terminal region of RFPL3. Of note, the presence of EGFR mutations was significantly related to the increased IPO13 expression. The EGFR-TKI Osimertinib downregulated IPO13 expression level in NSCLC cell lines with EGFR mutations, but not in EGFR wild-type ones. In summary, our data suggest that inhibition of IPO13 transport activity itself might be an alternative and potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
| | - Ping Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | | | - Fengzhou Li
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Jiao J Hao
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Xiu Shan
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China
| | - Wendan Yu
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China
| | - Wei Guo
- Institute of Cancer Stem Cell, Dalian Medical University, 116044, Dalian, China.
| | - Yu Qin
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| | - Xin Cai
- The First Affiliated Hospital of Dalian Medical University, 116011, Dalian, China.
| |
Collapse
|
4
|
PKA-site phosphorylation of importin13 regulates its subcellular localization and nuclear transport function. Biochem J 2018; 475:2699-2712. [PMID: 30045875 DOI: 10.1042/bcj20180082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/12/2018] [Accepted: 07/16/2018] [Indexed: 01/25/2023]
Abstract
Importin 13 (IPO13) is a key member of the importin β superfamily, which can transport cargoes both into and out of the nucleus to contribute to a variety of important cellular processes. IPO13 is known to undergo phosphorylation, but the impact of this on function has not been investigated. Here, we show for the first time that IPO13 is phosphorylated by cAMP-dependent protein kinase A specifically at serine 193. Results from fluorescence recovery after photobleaching and fluorescence loss in photobleaching approaches establish that negative charge at serine 193 through phosphorylation or point mutation both reduces IPO13 nuclear import and increases its nuclear export. Importantly, phosphorylation also appears to enhance cargo interaction on the part of IPO13, with significant impact on localization, as shown for the Pax6 homeobox-containing transcription partner. This is the first report that IPO13 can be phosphorylated at Ser193 and that this modification regulates IPO13 subcellular localization and nucleocytoplasmic transport function, with important implications for IPO13's role in development and other processes.
Collapse
|
5
|
Abstract
Background Ebstein anomaly (EA) is a rare congenital defect characterized by apical displacement of the septal tricuspid leaflets and atrialization of the right ventricle. The etiology of EA is unclear; however, recurrence in families and the association of EA with genetic syndromes and copy number variants (CNVs) suggest a genetic component. Objective We performed a population-based study to search for recurrent and novel CNVs in a previously unreported set of EA cases. Methods We genotyped 60 EA cases identified from all live births (2,891,076) from selected California counties (1991–2010) using the Illumina HumanOmni2.5–8 array. We identified 38 candidate CNVs in 28 (46%) cases and prioritized and validated 11 CNVs based on the genes included. Results Five CNVs (41%) overlapped or were close to genes involved in early myocardial development, including NODAL, PDLIM5, SIX1, ASF1A and FGF12. We also replicated a previous association of EA with CNVs at 1p34.1 and AKAP12. Finally, we identified four CNVs overlapping or in close proximity to the transcription factors HES3, TRIM71, CUX1 and EIF4EBP2. Conclusions This study supports the relationship of genetic factors to EA and demonstrates that defects in cardiomyocytes and myocardium differentiation may play a role. Abnormal differentiation of cardiomyocytes and how genetic factors contribute should be examined for their association with EA.
Collapse
|
6
|
Pompas-Veganzones N, Sandonis V, Perez-Lanzac A, Beltran M, Beardo P, Juárez A, Vazquez F, Cozar JM, Alvarez-Ossorio JL, Sanchez-Carbayo M. Myopodin methylation is a prognostic biomarker and predicts antiangiogenic response in advanced kidney cancer. Tumour Biol 2016; 37:14301-14310. [PMID: 27592258 DOI: 10.1007/s13277-016-5267-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/15/2016] [Indexed: 10/21/2022] Open
Abstract
Myopodin is a cytoskeleton protein that shuttles to the nucleus depending on the cellular differentiation and stress. It has shown tumor suppressor functions. Myopodin methylation status was useful for staging bladder and colon tumors and predicting clinical outcome. To our knowledge, myopodin has not been tested in kidney cancer to date. The purpose of this study was to evaluate whether myopodin methylation status could be clinically useful in renal cancer (1) as a prognostic biomarker and 2) as a predictive factor of response to antiangiogenic therapy in patients with metastatic disease. Methylation-specific polymerase chain reactions (MS-PCR) were used to evaluate myopodin methylation in 88 kidney tumors. These belonged to patients with localized disease and no evidence of disease during follow-up (n = 25) (group 1), and 63 patients under antiangiogenic therapy (sunitinib, sorafenib, pazopanib, and temsirolimus), from which group 2 had non-metastatic disease at diagnosis (n = 32), and group 3 showed metastatic disease at diagnosis (n = 31). Univariate and multivariate Cox analyses were utilized to assess outcome and response to antiangiogenic agents taking progression, disease-specific survival, and overall survival as clinical endpoints. Myopodin was methylated in 50 out of the 88 kidney tumors (56.8 %). Among the 88 cases analyzed, 10 of them recurred (11.4 %), 51 progressed (57.9 %), and 40 died of disease (45.4 %). Myopodin methylation status correlated to MSKCC Risk score (p = 0.050) and the presence of distant metastasis (p = 0.039). Taking all patients, an unmethylated myopodin identified patients with shorter progression-free survival, disease-specific survival, and overall survival. Using also in univariate and multivariate models, an unmethylated myopodin predicted response to antiangiogenic therapy (groups 2 and 3) using progression-free survival, disease-specific, and overall survival as clinical endpoints. Myopodin was revealed hypermethylated in kidney cancer. Myopodin methylation status identified which patients showed a more aggressive clinical behavior and predicted antiangiogenic response. These observations support the clinical utility of an unmethylated myopodin as a prognostic and predictive biomarker in kidney cancer.
Collapse
Affiliation(s)
- N Pompas-Veganzones
- Translational Oncology Laboratory, Ikerbasque Research Program, Medicine Department, University of the Basque Country, Vitoria-Gasteiz, Spain
| | - V Sandonis
- Translational Oncology Laboratory, Ikerbasque Research Program, Medicine Department, University of the Basque Country, Vitoria-Gasteiz, Spain
| | | | - M Beltran
- Pathology Department, Hospital Puerta Del Mar, Cadiz, Spain
| | - P Beardo
- Urology Department, Hospital De Jerez, Jerez, Spain
| | - A Juárez
- Urology Department, Hospital De Jerez, Jerez, Spain
| | - F Vazquez
- Urology Department, Hospital Virgen De Las Nieves, Granada, Spain
| | - J M Cozar
- Urology Department, Hospital Virgen De Las Nieves, Granada, Spain
| | | | - Marta Sanchez-Carbayo
- Translational Oncology Laboratory, Ikerbasque Research Program, Medicine Department, University of the Basque Country, Vitoria-Gasteiz, Spain.
| |
Collapse
|
7
|
Shaharuddin B, Ahmad S, Ali S, Meeson A. Limbal side population cells: a future treatment for limbal stem cell deficiency. Regen Med 2013; 8:319-31. [DOI: 10.2217/rme.13.18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Corneal blindness carries a morbidity that affects quality of life and is often associated with an increased economic burden. In this review, we focus on the severe and painful condition of limbal stem cell deficiency, an important cause of corneal blindness. Conventional corneal transplantation usually results in graft failure and is contraindicated in this condition. Ex vivo-expanded limbal epithelial transplantation has been used as a cellular-based therapy to regenerate and reconstruct the ocular surface as a mode of treatment. Enrichment methods for stem cells are a strategy to improve the outcome of limbal stem cell transplantation. Here we discuss the side population assay as a functional assay to enrich for stem cells as an important source of limbal stem cells. The challenges in ex vivo-expanded limbal stem cell transplantation are wide and varied and will be addressed in this review with regard to improving the clinical outcomes of cultivated limbal stem cell transplantation.
Collapse
Affiliation(s)
- Bakiah Shaharuddin
- Advanced Medical & Dental Institute, Universiti Sains Malaysia, 13200 Pulau Pinang, Malaysia
| | - Sajjad Ahmad
- St Paul’s Eye Unit, Royal Liverpool University Hospital, Prescot Street, Liverpool, L7 8XP, UK
- Department of Eye & Vision Sciences, Institute of Ageing & Chronic Disease, University of Liverpool, 4th Floor UCD Building, Daulby Street, Liverpool, L69 3GA, UK
| | - Simi Ali
- Institute of Cellular Medicine, William-Leech Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Annette Meeson
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Newcastle upon Tyne, NE1 3BZ, UK
| |
Collapse
|
8
|
Wang R, Shen J, Huang P, Zhu X. CCCTC-binding factor controls its own nuclear transport via regulating the expression of importin 13. Mol Cells 2013; 35:388-95. [PMID: 23620300 PMCID: PMC3887860 DOI: 10.1007/s10059-013-2283-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 03/07/2013] [Accepted: 03/15/2013] [Indexed: 11/25/2022] Open
Abstract
CCCTC-binding factor (CTCF), a multivalent zinc-finger protein, is involved in different aspects of regulation including promoter activation or repression, gene silencing, chromatin insulation, gene imprinting, X-chromosome inactivation, cell growth or differentiation and tumor genesis. However, the molecular mechanisms of CTCF nuclear import remains unclear. In this study, we showed that the expression of CTCF influenced the intracellular distribution of itself, which might go through transport receptor - import 13 (IPO13). We further confirmed that there is a CTCF target site in ipo13 -774∼-573 bp promoter region and CTCF regulates the expression of IPO13. Besides, GST pull-down and Co-IP experiments demonstrated that CTCF interacts with IPO13. Immunofluorescence staining showed that IPO13 influenced intracellular distribution of CTCF. In all, we conclude that CTCF regulates the expression of IPO13, which, in turn, mediates the nuclear import of CTCF.
Collapse
Affiliation(s)
- Rong Wang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing,
China
| | - Jingjing Shen
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing,
China
| | - Peitang Huang
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing,
China
| | - Xudong Zhu
- Laboratory of Protein Engineering, Beijing Institute of Biotechnology, Beijing,
China
| |
Collapse
|
9
|
Expression and subcellular distribution of imp13 are regulated in brain development. In Vitro Cell Dev Biol Anim 2013; 49:346-53. [PMID: 23605716 PMCID: PMC3651826 DOI: 10.1007/s11626-013-9599-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/11/2013] [Indexed: 01/12/2023]
Abstract
Imp13, a member of importin-β superfamily, is found to be one of two bidirectional transport receptors in many nuclear transport activities in mammals. Several cargoes of imp13 have been identified; most of these are essential factors involved in cell cycle and development. The expression and localization of imp13 may influence its cargoes in playing their roles in appropriate time and space. To gain insight into the role of imp13 in brain development, we generated an anti-imp13 polyclonal antibody and investigated the expressions of imp13 in mouse embryonic brains during development, including E13.5, E15.5, E17.5, P0, and adult, at both transcriptional and translational levels. In addition, we performed immunohistochemical analysis and revealed that imp13 tends to be localized in the cytoplasm at the early stages and relocates into the nucleus at the late stages in neuronal cells of mouse brains. These findings suggested that the expression and localization of imp13 in brain tissues are regulated developmentally, which extends our knowledge of the dynamic presence of imp13. These observations also imply that imp13 contributes to the neural cell-specific cargo trafficking and potentially to other functions during brain development.
Collapse
|
10
|
Structural basis for the nuclear export activity of Importin13. EMBO J 2013; 32:899-913. [PMID: 23435562 DOI: 10.1038/emboj.2013.29] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 01/28/2013] [Indexed: 02/05/2023] Open
Abstract
Importin13 (Imp13) is a bidirectional karyopherin that can mediate both import and export of cargoes. Imp13 recognizes several import cargoes, which include the exon junction complex components Mago-Y14 and the E2 SUMO-conjugating enzyme Ubc9, and one known export cargo, the translation initiation factor 1A (eIF1A). To understand how Imp13 can perform double duty, we determined the 3.6-Å crystal structure of Imp13 in complex with RanGTP and with eIF1A. eIF1A binds at the inner surface of the Imp13 C-terminal arch adjacent and concomitantly to RanGTP illustrating how eIF1A can be exported by Imp13. Moreover, the 3.0-Å structure of Imp13 in its unbound state reveals the existence of an open conformation in the cytoplasm that explains export cargo release and completes the export branch of the Imp13 pathway. Finally, we demonstrate that Imp13 is able to bind and export eIF1A in vivo and that its function is essential.
Collapse
|
11
|
Zeng B, Hu J, Yuan R, Hu L, Zhong L, Kang K. Increased expression of importin13 in endometriosis and endometrial carcinoma. Med Sci Monit 2012; 18:CR361-7. [PMID: 22648251 PMCID: PMC3560734 DOI: 10.12659/msm.882879] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Background Importin13 (IPO13) is a novel potential marker of corneal epithelial progenitor cells. We investigated the expression and localization of IPO13 in endometrial, endometriotic and endometrial carcinoma tissue. Material/Methods IPO13 expression in endometrial, endometriotic and endometrial carcinoma tissue was examined by immunohistochemistry, qPCR and Western blot. Results Immunohistochemistry studies showed that IPO13 protein was expressed mainly in cytoplasm of glandular epithelial cell and stromal cells. The rate of importin13-positive cells in proliferative phase endometrium was higher (by about 6-fold) than that in secretory endometrium (P<0.05) and the rate of importin13-positive cells in endometriosis and endometrial carcinoma was higher than that in normal secretory phase endometrial tissues (by about 4- and 9-fold, respectively). Immunofluorescence microscopy revealed co-localization of IPO13 with CD34, CD45, c-kit, telomerase, CD90 and CD146. QPCR revealed significantly increased IPO13 mRNA in endometriosis and endometrial carcinoma versus secretory phase endometrium (by about 2- and 10-fold, respectively). Western blot analysis showed that IPO13 protein is enhanced in endometriosis and endometrial carcinoma versus secretory phase endometrium (p<0.05). Conclusions These results demonstrate an increased expression of IPO13 in endometriosis and endometrial carcinoma, which could be involved in the pathogenesis of endometriosis and endometrial carcinoma; IPO13 can serve as an endometrial progenitor/stem cell marker.
Collapse
Affiliation(s)
- Biao Zeng
- Department of Obstetrics and Gynecology, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | |
Collapse
|
12
|
Esteban S, Moya P, Fernandez-Suarez A, Vidaurreta M, González-Peramato P, Sánchez-Carbayo M. Diagnostic and prognostic utility of methylation and protein expression patterns of myopodin in colon cancer. Tumour Biol 2012; 33:337-46. [PMID: 22252522 DOI: 10.1007/s13277-012-0320-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/04/2012] [Indexed: 10/14/2022] Open
Abstract
Myopodin is an actin-binding protein believed to play a tumor suppressor role in several solid neoplasias. We evaluated the potential differential myopodin methylation and expression and their clinical relevance in colon cancer. The epigenetic silencing of myopodin by hypermethylation was tested in colon cancer cells (n = 5) before and after azacitidine treatment. Myopodin methylation status was evaluated by methylation-specific PCR in colon cancer cells and colorectal tissues (n = 210) grouped in a training set (n = 62) and two independent validation series (n = 100 and n = 48) collected at independent clinical settings. Myopodin expression patterns were analyzed by immunohistochemistry on tissue arrays. Myopodin hypermethylation correlated with gene and protein expression loss, being increased in vitro by azacitidine. Myopodin was frequently methylated in colon cancer cells (four out of five). Methylation rates were 90.3%, 70.0%, and 47.8% in the training and validation sets, respectively. Myopodin methylation rendered a diagnostic accuracy of 83.9% (p < 0.0005). Cytoplasmic myopodin expression was significantly higher in non-neoplastic biopsies compared to colon tumors (p < 0.0005). Loss of myopodin expression correlated with increasing tumor stage (p = 0.011), methylation (p = 0.005), and poor overall survival (p = 0.003). In the first validation set (n = 100), myopodin methylation predicted disease-free (p = 0.046) and overall survival (p = 0.031). In the second validation cohort, myopodin methylation and protein expression patterns predicted disease-specific (p = 0.012 and p = 0.001, respectively) and overall survival (p = 0.009 and p = 0.043, respectively). Thus, myopodin was revealed to be epigenetically modified in colon cancer. The diagnostic and prognostic clinical utility of myopodin methylation and expression patterns suggest considering their assessment for the clinical management of colon cancer patients.
Collapse
Affiliation(s)
- Sergio Esteban
- Tumor Markers Group, 308A, Molecular Pathology Program, Spanish National Cancer Center, Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
13
|
Chook YM, Süel KE. Nuclear import by karyopherin-βs: recognition and inhibition. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:1593-606. [PMID: 21029754 DOI: 10.1016/j.bbamcr.2010.10.014] [Citation(s) in RCA: 311] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 10/06/2010] [Accepted: 10/19/2010] [Indexed: 01/24/2023]
Abstract
Proteins in the karyopherin-β family mediate the majority of macromolecular transport between the nucleus and the cytoplasm. Eleven of the 19 known human karyopherin-βs and 10 of the 14S. cerevisiae karyopherin-βs mediate nuclear import through recognition of nuclear localization signals or NLSs in their cargos. This receptor-mediated process is essential to cellular viability as proteins are translated in the cytoplasm but many have functional roles in the nucleus. Many known karyopherin-β-cargo interactions were discovered through studies of the individual cargos rather than the karyopherins, and this information is thus widely scattered in the literature. We consolidate information about cargos that are directly recognized by import-karyopherin-βs and review common characteristics or lack thereof among cargos of different import pathways. Knowledge of karyopherin-β-cargo interactions is also critical for the development of nuclear import inhibitors and the understanding of their mechanisms of inhibition. This article is part of a Special Issue entitled: Regulation of Signaling and Cellular Fate through Modulation of Nuclear Protein Import.
Collapse
Affiliation(s)
- Yuh Min Chook
- Department of Pharmacology, University of Texas Southerwestern Medical Center, Dallas, TX 75206, USA.
| | | |
Collapse
|
14
|
Alvarez-Múgica M, Cebrian V, Fernández-Gómez JM, Fresno F, Escaf S, Sánchez-Carbayo M. Myopodin methylation is associated with clinical outcome in patients with T1G3 bladder cancer. J Urol 2010; 184:1507-13. [PMID: 20723929 DOI: 10.1016/j.juro.2010.05.085] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Indexed: 10/19/2022]
Abstract
PURPOSE Bacillus Calmette-Guerin is standard treatment to decrease tumor recurrence and delay progression of high risk, nonmuscle invasive bladder tumors. However, it is not yet clear which T1G3 cases are more prone to more aggressive clinical behavior or susceptible to respond to bacillus Calmette-Guerin. We evaluated the role of myopodin methylation as a clinical outcome prognosticator and predictive biomarker for the bacillus Calmette-Guerin response in patients with T1G3 bladder tumors. MATERIALS AND METHODS We analyzed the methylation status of myopodin in tumor specimens from 170 patients with T1G3 bladder cancer, including a subset of 108 who underwent bacillus Calmette-Guerin treatment. Myopodin methylation was assessed by methylation specific polymerase chain reactions. Recurrence, progression to muscle invasive tumors and disease specific overall survival were analyzed using competing risks regression analysis. RESULTS Of the 170 cases analyzed 72 recurred (42.4%) and 36 progressed (21.2%). A total of 24 patients (14.1%) died of the disease. Univariate and multivariate survival analysis revealed that myopodin methylation was significantly associated with an increased recurrence rate (p = 0.004), progression (p = 0.002) and shorter disease specific overall survival (p = 0.020). In a subset treated with bacillus Calmette-Guerin myopodin methylation was also related to an increased recurrence rate (p = 0.011), progression (p = 0.030) and shorter disease specific overall survival (p = 0.028). CONCLUSIONS Epigenetic analysis revealed that myopodin methylation was associated with tumor aggressiveness and clinical outcome in patients with T1G3 disease. Myopodin methylation distinguished patients responding to bacillus Calmette-Guerin from those who may require a more aggressive therapeutic approach.
Collapse
|
15
|
Jensen DD, Sundstrom K, Flynn FW. Expression of the nuclear transport protein importin ß-1 and its association with the neurokinin 3 receptor in the rat hypothalamus following acute hyperosmotic challenge. Neuroscience 2010; 170:1020-7. [PMID: 20709160 DOI: 10.1016/j.neuroscience.2010.08.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 08/04/2010] [Accepted: 08/06/2010] [Indexed: 11/30/2022]
Abstract
The tachykinin NK3 receptor (NK3R) is a G-protein coupled receptor that is activated, internalized, and trafficked to the nuclei of magnocellular neurons in the paraventricular nucleus of the hypothalamus (PVN) in response to acute hyperosmolarity. The lack of information on the nuclear import pathway raises concerns about the physiological role of nuclear NK3R. NK3R contains a nuclear localizing sequence (NLS) and this raises the possibility that importins are involved in transport of NK3R through the nuclear pore complex. The following experiments utilized: (1) co-immunoprecipitation to determine if NK3R is associated with importin ß-1 following activation in response to acute hyperosmolarity in vivo, and (2) immuno-neutralization of importin ß-1 in vitro to determine if nuclear transport of NK3R was blocked. Rats were given an i.v. injection of hypertonic saline (2 M) and 10 min after the infusion, the PVN was removed and homogenized. Importin ß-1 co-immunoprecipitated with the NK3R following treatment with 2 M NaCl, but not following isotonic saline treatment. Immuno-neutralization of importin ß-1 decreased the transport of NK3R into the nuclei in a time dependent fashion. The results indicate that in response to acute hyperosmotic challenge, NK3R associates with importin ß-1 which enables the nuclear transport of NK3R. This is the first in vivo study linking importin ß-1 and the nuclear transport of a G protein coupled receptor, the NK3R, in brain.
Collapse
Affiliation(s)
- D D Jensen
- Neuroscience Program and Department of Zoology & Physiology, University of Wyoming, 1000 E University Avenue, Laramie, WY 82071, USA
| | | | | |
Collapse
|
16
|
Kanno Y, Miyazaki Y, Inouye Y. The nuclear import of the constitutive androstane receptor by importin/Ran-GTP systems. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1803:968-74. [DOI: 10.1016/j.bbamcr.2010.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 04/26/2010] [Accepted: 05/07/2010] [Indexed: 01/15/2023]
|
17
|
Beqqali A, Monshouwer-Kloots J, Monteiro R, Welling M, Bakkers J, Ehler E, Verkleij A, Mummery C, Passier R. CHAP is a newly identified Z-disc protein essential for heart and skeletal muscle function. J Cell Sci 2010; 123:1141-50. [PMID: 20215401 DOI: 10.1242/jcs.063859] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In recent years, the perception of Z-disc function has changed from a passive anchor for myofilaments that allows transmission of force, to a dynamic multicomplex structure, capable of sensing and transducing extracellular signals. Here, we describe a new Z-disc protein, which we named CHAP (cytoskeletal heart-enriched actin-associated protein), expressed in differentiating heart and skeletal muscle in vitro and in vivo. Interestingly, in addition to its sarcomeric localization, CHAP was also able to translocate to the nucleus. CHAP was associated with filamentous actin in the cytoplasm and the nucleus when expressed ectopically in vitro, but in rat neonatal cardiomyocytes, CHAP disrupted the subcellular localization of alpha-actinin, another Z-disc protein. More importantly, knockdown of CHAP in zebrafish resulted in aberrant cardiac and skeletal muscle development and function. These findings suggest that CHAP is a critical component of the sarcomere with an important role in muscle development.
Collapse
Affiliation(s)
- Abdelaziz Beqqali
- Hubrecht Institute, Developmental Biology and Stem Cell Research, 3584 CT, Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wang H, Tao T, Tang J, Mao YH, Li W, Peng J, Tan G, Zhou YP, Zhong JX, Tseng SCG, Kawakita T, Zhao YX, Liu ZG. Importin 13 serves as a potential marker for corneal epithelial progenitor cells. Stem Cells 2010; 27:2516-26. [PMID: 19593795 DOI: 10.1002/stem.174] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Importin13 (IPO13), the newest member of importin-beta family discovered recently, is a unique nucleus-cytoplasm bidirectional transport receptor protein. In this study, IPO13 expression in human corneal tissue, limbal epithelial primary explant and clonal culture was evaluated by immunostaining and reverse-transcription polymerase chain reasgon. IPO13 function was evaluated in the corneal epithelial culture treated with IPO13 inhibitor, or fetal bovine serum (FBS)-containing Dulbecco's modified Eagle's medium (DMEM) medium by colony-forming efficiency, clone growth capacity, MTT, immunostaining, and Western blotting assay. IPO13 protein was expressed mainly in nuclei of limbal epithelial basal cells, but not in the other cell layers of limbus and full thickness of corneal epithelia. IPO13 was expressed in the majority of epithelial cells in early-stage clones and in the margin of late-stage clones. IPO13 was positively expressed in mouse TKE2 progenitor cells cultured in keratinocyte serum-free defined medium, while it became negative in FBS-containing DMEM, which promoted TKE2 cell differentiation. In the presence of IPO13 inhibitor, IPO13 expression and the proliferative capacity decreased in human limbal epithelial clones and mouse TKE2 cells, which were accompanied with the cell differentiation. In conclusion, our findings demonstrate for the first time that IPO13 is uniquely expressed by human limbal basal epithelial cells, and plays an important role in maintaining the phenotype, high proliferative potential, and less differentiation of corneal epithelial progenitor cells, suggesting that IPO13 could serve as a novel potential marker for corneal epithelial progenitor cells.
Collapse
Affiliation(s)
- Hua Wang
- Eye Institute and Affiliated Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lin W, Ye W, Cai L, Meng X, Ke G, Huang C, Peng Z, Yu Y, Golden JA, Tartakoff AM, Tao T. The roles of multiple importins for nuclear import of murine aristaless-related homeobox protein. J Biol Chem 2009; 284:20428-39. [PMID: 19494118 DOI: 10.1074/jbc.m109.004242] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear import of proteins with nuclear localization signals (NLSs) is mediated by shuttling carriers, the importins. Some cargoes display more than a single NLS, and among these are homeodomain proteins such as Arx, which is critical for development of multiple tissues. Arx has two functional NLSs. The present studies show that several pathways can import Arx via its NLS2, which is within its DNA binding homeodomain. Using an in vitro nuclear import assay, we show that import of Arx via NLS2 can be mediated by importin beta1, importin 9, or importin 13, with binding being strongest to importin beta1. All binding is sensitive to RanGTP. Experiments based on precise domain deletions indicate that NLS2 binds impbeta1, imp9, and imp13 and includes both an importin binding subdomain and a regulatory subdomain with arginine residues being important for function. Moreover, Arx can be co-precipitated with these importins when NLS2 is present. Although nuclear import of Arx can be mediated by these three importin betas, importin beta1 seems to play the major role judging from in vivo small interfering RNA ablations and the in vitro import assay. This is the first evidence to show the role of importin beta1 in nuclear import of paired-type homeodomain proteins. We propose a novel and possibly quite general mechanism for nuclear import of paired-type homeodomain proteins which is critical for development.
Collapse
Affiliation(s)
- Wenbo Lin
- School of Life Sciences, Xiamen University, Xiamen, Fujian 361005, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Giagtzoglou N, Lin YQ, Haueter C, Bellen HJ. Importin 13 regulates neurotransmitter release at the Drosophila neuromuscular junction. J Neurosci 2009; 29:5628-5639. [PMID: 19403829 PMCID: PMC4011492 DOI: 10.1523/jneurosci.0794-09.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 11/21/2022] Open
Abstract
In an unbiased genetic screen designed to isolate mutations that affect synaptic transmission, we have isolated homozygous lethal mutations in Drosophila importin 13 (imp13). Imp13 is expressed in and around nuclei of both neurons and muscles. At the larval neuromuscular junction (NMJ), imp13 affects muscle growth and formation of the subsynaptic reticulum without influencing any presynaptic structural features. In the absence of imp13, the probability of release of neurotransmitter and quantal content is increased, yet the abundance of the postsynaptic receptors and the amplitude of miniature excitatory junctional potentials are not affected. Interestingly, imp13 is required in the muscles to control presynaptic release. Thus, imp13 is a novel factor that affects neurotransmitter release at the fly NMJ. Its role in the context of synaptic homeostasis is discussed.
Collapse
Affiliation(s)
| | | | | | - Hugo J. Bellen
- Howard Hughes Medical Institute
- Department of Molecular and Human Genetics
- Department of Neuroscience, and
- Program in Developmental Biology, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
21
|
Kahle J, Piaia E, Neimanis S, Meisterernst M, Doenecke D. Regulation of nuclear import and export of negative cofactor 2. J Biol Chem 2009; 284:9382-93. [PMID: 19204005 PMCID: PMC2666590 DOI: 10.1074/jbc.m805694200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 01/20/2009] [Indexed: 12/21/2022] Open
Abstract
The negative cofactor 2 (NC2) is a protein complex composed of two subunits, NC2alpha and NC2beta, and plays a key role in transcription regulation. Here we investigate whether each subunit contains a nuclear localization signal (NLS) that permits individual crossing of the nuclear membrane or whether nuclear import of NC2alpha and NC2beta depends on heterodimerization. Our results from in vitro binding studies and transfection experiments in cultured cells show that each subunit contains a classical NLS (cNLS) that is recognized by the importin alpha/beta heterodimer. Regardless of the individual cNLSs the two NC2 subunits are translocated as a preassembled complex as co-transfection experiments with wild-type and cNLS-deficient NC2 subunits demonstrate. Ran-dependent binding of the nuclear export receptor Crm1/exportin 1 confirmed the presence of a leucine-rich nuclear export signal (NES) in NC2beta. In contrast, NC2alpha does not exhibit a NES. Our results from interspecies heterokaryon assays suggest that heterodimerization with NC2alpha masks the NES in NC2beta, which prevents nuclear export of the NC2 complex. A mutation in either one of the two cNLSs decreases the extent of importin alpha/beta-mediated nuclear import of the NC2 complex. In addition, the NC2 complex can enter the nucleus via a second pathway, facilitated by importin 13. Because importin 13 binds exclusively to the NC2 complex but not to the individual subunits this alternative import pathway depends on sequence elements distributed among the two subunits.
Collapse
Affiliation(s)
- Joerg Kahle
- Institute of Biochemistry and Molecular Cell Biology, Department of Molecular Biology, Georg-August-University, Humboldtalle 23, 37073 Göttingen, Germany
| | | | | | | | | |
Collapse
|
22
|
Walker P, Doenecke D, Kahle J. Importin 13 mediates nuclear import of histone fold-containing chromatin accessibility complex heterodimers. J Biol Chem 2009; 284:11652-62. [PMID: 19218565 DOI: 10.1074/jbc.m806820200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The histone fold is a structural element that facilitates heterodimerization, and histone fold heterodimers play crucial roles in gene regulation. Here, we investigated the nuclear import of two human histone fold pairs, which belong to the H2A/H2B family: CHRAC-15/CHRAC-17 and p12/CHRAC-17. Our results from in vitro nuclear import assays with permeabilized cells and in vivo cotransfection experiments reveal that importin 13 facilitates nuclear import of both histone fold heterodimers. Using glutathione S-transferase pulldown experiments, we provide evidence that heterodimers are required for efficient binding of importin 13 because the monomers alone do not significantly interact. Mutational analysis shows that stepwise substitution of basic amino acid residues conserved among the histone fold subunits leads to a progressive loss of importin 13 binding and nuclear accumulation of CHRAC-15/CHRAC-17 and p12/CHRAC-17. The distribution of basic amino acid residues among the histone fold subunits essential for nuclear uptake suggests that heterodimerization of the histone fold motif-containing proteins forms an importin 13-specific binding platform.
Collapse
Affiliation(s)
- Patrick Walker
- Institut für Biochemie und Molekulare Zellbiologie, Abteilung Molekularbiologie, Universität Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | |
Collapse
|
23
|
Cebrian V, Alvarez M, Aleman A, Palou J, Bellmunt J, Gonzalez-Peramato P, Cordón-Cardo C, García J, Piulats JM, Sánchez-Carbayo M. Discovery of myopodin methylation in bladder cancer. J Pathol 2008; 216:111-9. [PMID: 18636402 DOI: 10.1002/path.2390] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Myopodin is an actin-binding protein that shuttles between the nucleus and the cytoplasm. After identifying an enriched CpG island encompassing the transcription site of myopodin, we aimed at evaluating the potential relevance of myopodin methylation in bladder cancer. The epigenetic silencing of myopodin by hypermethylation was tested in bladder cancer cells (n=12) before and after azacytidine treatment. Myopodin hypermethylation was associated with gene expression, being increased in vitro by this demethylating agent. The methylation status of myopodin promoter was then evaluated by methylation-specific polymerase chain reaction (MS-PCR) analyses. Myopodin was revealed to be frequently methylated in a large series of 466 bladder tumours (68.7%). Myopodin methylation was significantly associated with tumour stage (p<0.0005) and tumour grade (p=0.037). Myopodin expression patterns were analysed by immunohistochemistry on tissue arrays containing bladder tumours for which myopodin methylation was assessed (n=177). The presence of low nuclear myopodin expression alone (p = 0.031) or combined with myopodin methylation (p=0.008) was associated with poor survival. Moreover, myopodin methylation in 164 urinary specimens distinguished patients with bladder cancer from controls with a sensitivity of 65.0%, a specificity of 79.8%, and a global accuracy of 75.3%. Thus, myopodin was identified to be epigenetically modified in bladder cancer. The association of myopodin methylation and nuclear expression patterns with cancer progression and clinical outcome, together with its ability to detect bladder cancer patients using urinary specimens, suggests the utility of incorporating myopodin methylation assessment in the clinical management of patients affected by uroepithelial neoplasias.
Collapse
Affiliation(s)
- V Cebrian
- Tumor Markers Group, Molecular Pathology Program, Spanish National Cancer Center, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Okada N, Ishigami Y, Suzuki T, Kaneko A, Yasui K, Fukutomi R, Isemura M. Importins and exportins in cellular differentiation. J Cell Mol Med 2008; 12:1863-71. [PMID: 18657223 PMCID: PMC4506156 DOI: 10.1111/j.1582-4934.2008.00437.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The importin/exportin transport system provides the machinery involved in nucleocytoplasmic transport. Alterations of the levels of importins and exportins may play crucial roles in development, differentiation and transformation. Employing human leukaemia HL-60 cells, we and others have revealed the differentiation-associated changes in the protein and gene expression of these factors. The recent finding that a switch to the importin-α subtype triggers neural differentiation of embryonic stem cells underscores the importance of nucleocytoplasmic transport factors in cellular events. This review focuses on current research into the roles of importins and exportins in cell differentiation.
Collapse
Affiliation(s)
- Norihisa Okada
- Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|