1
|
Uddin MS, Yu WS, Lim LW. Exploring ER stress response in cellular aging and neuroinflammation in Alzheimer's disease. Ageing Res Rev 2021; 70:101417. [PMID: 34339860 DOI: 10.1016/j.arr.2021.101417] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/06/2023]
Abstract
One evident hallmark of Alzheimer's disease (AD) is the irregular accumulation of proteins due to changes in proteostasis involving endoplasmic reticulum (ER) stress. To alleviate ER stress and reinstate proteostasis, cells undergo an integrated signaling cascade called the unfolded protein response (UPR) that reduces the number of misfolded proteins and inhibits abnormal protein accumulation. Aging is associated with changes in the expression of ER chaperones and folding enzymes, leading to the impairment of proteostasis, and accumulation of misfolded proteins. The disrupted initiation of UPR prevents the elimination of unfolded proteins, leading to ER stress. In AD, the accumulation of misfolded proteins caused by sustained cellular stress leads to neurodegeneration and neuronal death. Current research has revealed that ER stress can trigger an inflammatory response through diverse transducers of UPR. Although the involvement of a neuroinflammatory component in AD has been documented for decades, whether it is a contributing factor or part of the neurodegenerative events is so far unknown. Besides, a feedback loop occurs between neuroinflammation and ER stress, which is strongly associated with neurodegenerative processes in AD. In this review, we focus on the current research on ER stress and UPR in cellular aging and neuroinflammatory processes, leading to memory impairment and synapse dysfunction in AD.
Collapse
|
2
|
Schmitz ML, Shaban MS, Albert BV, Gökçen A, Kracht M. The Crosstalk of Endoplasmic Reticulum (ER) Stress Pathways with NF-κB: Complex Mechanisms Relevant for Cancer, Inflammation and Infection. Biomedicines 2018; 6:biomedicines6020058. [PMID: 29772680 PMCID: PMC6027367 DOI: 10.3390/biomedicines6020058] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/08/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Stressful conditions occuring during cancer, inflammation or infection activate adaptive responses that are controlled by the unfolded protein response (UPR) and the nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. These systems can be triggered by chemical compounds but also by cytokines, toll-like receptor ligands, nucleic acids, lipids, bacteria and viruses. Despite representing unique signaling cascades, new data indicate that the UPR and NF-κB pathways converge within the nucleus through ten major transcription factors (TFs), namely activating transcription factor (ATF)4, ATF3, CCAAT/enhancer-binding protein (CEBP) homologous protein (CHOP), X-box-binding protein (XBP)1, ATF6α and the five NF-κB subunits. The combinatorial occupancy of numerous genomic regions (enhancers and promoters) coordinates the transcriptional activation or repression of hundreds of genes that collectively determine the balance between metabolic and inflammatory phenotypes and the extent of apoptosis and autophagy or repair of cell damage and survival. Here, we also discuss results from genetic experiments and chemical activators of endoplasmic reticulum (ER) stress that suggest a link to the cytosolic inhibitor of NF-κB (IκB)α degradation pathway. These data show that the UPR affects this major control point of NF-κB activation through several mechanisms. Taken together, available evidence indicates that the UPR and NF-κB interact at multiple levels. This crosstalk provides ample opportunities to fine-tune cellular stress responses and could also be exploited therapeutically in the future.
Collapse
Affiliation(s)
- M Lienhard Schmitz
- Institute of Biochemistry, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - M Samer Shaban
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - B Vincent Albert
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - Anke Gökçen
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
| | - Michael Kracht
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University Giessen, D-35392 Giessen, Germany.
- Rudolf-Buchheim-Institute of Pharmacology, Universities of Giessen and Marburg Lung Center (UGMLC), Schubertstrasse 81, D-35392 Giessen, Germany.
| |
Collapse
|
3
|
Chitranshi N, Dheer Y, Gupta V, Abbasi M, Mirzaei M, You Y, Chung R, Graham SL, Gupta V. PTPN11 induces endoplasmic stress and apoptosis in SH-SY5Y cells. Neuroscience 2017; 364:175-189. [PMID: 28947394 DOI: 10.1016/j.neuroscience.2017.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/13/2017] [Accepted: 09/14/2017] [Indexed: 12/25/2022]
Abstract
PTPN11 is associated with regulation of growth factor signaling pathways in neuronal cells. Using SH-SY5Y neuroblastoma cells, we showed that adeno-associated virus (AAV)-mediated PTPN11 upregulation was associated with TrkB antagonism, reduced neuritogenesis and enhanced endoplasmic reticulum (ER) stress response leading to apoptotic changes. Genetic knock-down of PTPN11 on the other hand leads to increased TrkB phosphorylation in SH-SY5Y cells. ER stress response induced by PTPN11 upregulation was alleviated pharmacologically by a TrkB agonist. Conversely the enhanced ER stress response induced by TrkB receptor antagonism was ameliorated by PTPN11 suppression, providing evidence of cross-talk of PTPN11 effects with TrkB actions. BDNF treatment of neuronal cells with PTPN11 upregulation also resulted in reduced expression of ER stress protein markers. This study provides evidence of molecular interactions between PTPN11 and the TrkB receptor in SH-SY5Y cells. The results reinforce the role played by PTPN11 in regulating neurotrophin protective signaling in neuronal cells and highlight that PTPN11 dysregulation promotes apoptotic activation. Based on these findings we suggest that blocking PTPN11 could have potential beneficial effects to limit the progression of neuronal loss in neurodegenerative disorders.
Collapse
Affiliation(s)
- Nitin Chitranshi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia.
| | - Yogita Dheer
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Veer Gupta
- School of Medical Sciences, Edith Cowan University, Perth, Australia
| | - Mojdeh Abbasi
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Mehdi Mirzaei
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Department of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia; Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW 2109, Australia
| | - Yuyi You
- Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Roger Chung
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| | - Stuart L Graham
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia; Save Sight Institute, Sydney University, Sydney, NSW 2000, Australia
| | - Vivek Gupta
- Faculty of Medicine and Health Sciences, Macquarie University, F10A, 2 Technology Place, North Ryde, NSW 2109, Australia
| |
Collapse
|
4
|
Shi X, Lan X, Chen X, Zhao C, Li X, Liu S, Huang H, Liu N, Zang D, Liao Y, Zhang P, Wang X, Liu J. Gambogic acid induces apoptosis in diffuse large B-cell lymphoma cells via inducing proteasome inhibition. Sci Rep 2015; 5:9694. [PMID: 25853502 PMCID: PMC4894437 DOI: 10.1038/srep09694] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/02/2015] [Indexed: 12/24/2022] Open
Abstract
Resistance to chemotherapy is a great challenge to improving the survival of patients with diffuse large B-cell lymphoma (DLBCL), especially those with activated B-cell-like DLBCL (ABC-DLBCL). Therefore it is urgent to search for novel agents for the treatment of DLBCL. Gambogic acid (GA), a small molecule derived from Chinese herb gamboges, has been approved for Phase II clinical trial for cancer therapy by Chinese FDA. In the present study, we investigated the effect of GA on cell survival and apoptosis in DLBCL cells including both GCB- and ABC-DLBCL cells. We found that GA induced growth inhibition and apoptosis of both GCB- and ABC-DLBCL cells in vitro and in vivo, which is associated with proteasome malfunction. These findings provide significant pre-clinical evidence for potential usage of GA in DLBCL therapy particularly in ABC-DLBCL treatment.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Disease Models, Animal
- Enzyme Activation/drug effects
- Gene Expression Regulation, Neoplastic
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Mice
- Mice, Nude
- NF-kappa B/metabolism
- Proteasome Endopeptidase Complex/metabolism
- Proteasome Inhibitors/pharmacology
- Signal Transduction/drug effects
- Xanthones/pharmacology
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xianping Shi
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Xiaoying Lan
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Xin Chen
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Chong Zhao
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Xiaofen Li
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Shouting Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Hongbiao Huang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Ningning Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
- Guangzhou Research Institute of Cardiovascular Disease, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong 510260, People's Republic of China
| | - Dan Zang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Yuning Liao
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Peiquan Zhang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| | - Xuejun Wang
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, South Dakota 57069, USA
| | - Jinbao Liu
- State Key Lab of Respiratory Disease, Protein Modification and Degradation Lab, Departments of Pathophysiology and Biochemistry, Guangzhou Medical University, Guangdong 510182, China
| |
Collapse
|
5
|
Liu CM, Ma JQ, Liu SS, Zheng GH, Feng ZJ, Sun JM. Proanthocyanidins improves lead-induced cognitive impairments by blocking endoplasmic reticulum stress and nuclear factor-κB-mediated inflammatory pathways in rats. Food Chem Toxicol 2014; 72:295-302. [PMID: 25088297 DOI: 10.1016/j.fct.2014.07.033] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 11/28/2022]
Abstract
Proanthocyanidins (PCs), a class of naturally occurring flavonoids, had been reported to possess a variety of biological activities, including anti-oxidant, anti-tumor and anti-inflammatory. In this study, we examined the protective effect of PCs against lead-induced inflammatory response in the rat brain and explored the potential mechanism of its action. The results showed that PCs administration significantly improved behavioral performance of lead-exposed rats. One of the potential mechanisms was that PCs decreased reactive oxygen species production and increased the total antioxidant capacity in the brains of lead-exposed rats. Furthermore, the results also showed that PCs significantly decreased the levels of tumor necrosis factor-α, interleukin 1β and cyclooxygenase-2 in the brains of lead-exposed rats. Moreover, PCs significantly decreased the levels of beta amyloid and phosphorylated tau in the brains of lead-treated rats, which in turn inhibited endoplasmic reticulum (ER) stress. PCs also decreased the phosphorylation of protein kinase RNA-like ER kinase, eukaryotic translation initiation factor-2, inositol-requiring protein-1, c-Jun N-terminal kinase, p38 and inhibited nuclear factor-κB nuclear translocation in the brains of lead-exposed rats. In conclusion, these results suggested that PCs could improve cognitive impairments by inhibiting brain oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Chan-Min Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tangshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China.
| | - Jie-Qiong Ma
- School of Chemistry and Pharmaceutical Engineering, Sichuan University of Science and Engineering, Xuyuan Road, 643000 Zigong City, Sichuan Province, PR China
| | - Si-Si Liu
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tangshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| | - Gui-Hong Zheng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tangshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| | - Zhao-Jun Feng
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tangshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| | - Jian-Mei Sun
- School of Life Science, Jiangsu Normal University, No. 101, Shanghai Road, Tangshan New Area, 221116 Xuzhou City, Jiangsu Province, PR China
| |
Collapse
|
6
|
Tam AB, Mercado EL, Hoffmann A, Niwa M. ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One 2012; 7:e45078. [PMID: 23110043 PMCID: PMC3482226 DOI: 10.1371/journal.pone.0045078] [Citation(s) in RCA: 268] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 08/16/2012] [Indexed: 12/18/2022] Open
Abstract
NF-κB, a transcription factor, becomes activated during the Unfolded Protein Response (UPR), an endoplasmic reticulum (ER) stress response pathway. NF-κB is normally held inactive by its inhibitor, IκBα. Multiple cellular pathways activate IKK (IκBα Kinase) which phosphorylate IκBα leading to its degradation and NF-κB activation. Here, we find that IKK is required for maximum activation of NF-κB in response to ER stress. However, unlike canonical NFκB activation, IKK activity does not increase during ER stress, but rather the level of basal IKK activity is critical for determining the extent of NF-κB activation. Furthermore, a key UPR initiator, IRE1, acts to maintain IKK basal activity through IRE1's kinase, but not RNase, activity. Inputs from IRE1 and IKK, in combination with translation repression by PERK, another UPR initiator, lead to maximal NF-κB activation during the UPR. These interdependencies have a significant impact in cancer cells with elevated IKK/NF-κB activity such as renal cell carcinoma cells (786-0). Inhibition of IKK by an IKK inhibitor, which significantly decreases NF-κB activity, is overridden by UPR induction, arguing for the importance of considering UPR activation in cancer treatment.
Collapse
Affiliation(s)
- Arvin B. Tam
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
| | - Ellen L. Mercado
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Alexander Hoffmann
- Department of Chemistry & Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Maho Niwa
- Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Wu S, Tong L. Differential signaling circuits in regulation of ultraviolet C light-induced early- and late-phase activation of NF-κB. Photochem Photobiol 2011; 86:995-9. [PMID: 20553411 DOI: 10.1111/j.1751-1097.2010.00767.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Ultraviolet C light (UVC) induces nuclear factor-kappa B (NF-κB) activation via a complex network. In the early phase (4-12 h) of irradiation, NF-κB activation is accompanied with IκBα reduction via a translation inhibition pathway. In the late phase of UVC-induced NF-κB activation (16-24 h), the IκBα depletion is a combined result of regulation at both transcriptional and translational levels. However, the NF-κB activation appears to be independent of the level of IκBα. In this review, we will discuss the multiple signaling circuits that regulate NF-κB activation during the early and late phases of UVC irradiation.
Collapse
Affiliation(s)
- Shiyong Wu
- Department of Chemistry and Biochemistry, Edison Biotechnology Institute and Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.
| | | |
Collapse
|
8
|
Salminen A, Kauppinen A, Suuronen T, Kaarniranta K, Ojala J. ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. J Neuroinflammation 2009; 6:41. [PMID: 20035627 PMCID: PMC2806266 DOI: 10.1186/1742-2094-6-41] [Citation(s) in RCA: 247] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/26/2009] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) is involved in several crucial cellular functions, e.g. protein folding and quality control, maintenance of Ca2+ balance, and cholesterol synthesis. Many genetic and environmental insults can disturb the function of ER and induce ER stress. ER contains three branches of stress sensors, i.e. IRE1, PERK and ATF6 transducers, which recognize the misfolding of proteins in ER and activate a complex signaling network to generate the unfolded protein response (UPR). Alzheimer's disease (AD) is a progressive neurodegenerative disorder involving misfolding and aggregation of proteins in conjunction with prolonged cellular stress, e.g. in redox regulation and Ca2+ homeostasis. Emerging evidence indicates that the UPR is activated in neurons but not in glial cells in AD brains. Neurons display pPERK, peIF2α and pIRE1α immunostaining along with abundant diffuse staining of phosphorylated tau protein. Recent studies have demonstrated that ER stress can also induce an inflammatory response via different UPR transducers. The most potent pathways are IRE1-TRAF2, PERK-eIF2α, PERK-GSK-3, ATF6-CREBH, as well as inflammatory caspase-induced signaling pathways. We will describe the mechanisms which could link the ER stress of neurons to the activation of the inflammatory response and the evolution of pathological changes in AD.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Kuopio, PO Box 1627, FIN-70211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|