1
|
Barboza BR, Macedo-da-Silva J, Silva LAMT, Gomes VDM, Santos DM, Marques-Neto AM, Mule SN, Angeli CB, Borsoi J, Moraes CB, Moutinho-Melo C, Mühlenhoff M, Colli W, Marie SKN, Pereira LDV, Alves MJM, Palmisano G. ST8Sia2 polysialyltransferase protects against infection by Trypanosoma cruzi. PLoS Negl Trop Dis 2024; 18:e0012454. [PMID: 39321148 PMCID: PMC11466412 DOI: 10.1371/journal.pntd.0012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 10/10/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
Glycosylation is one of the most structurally and functionally diverse co- and post-translational modifications in a cell. Addition and removal of glycans, especially to proteins and lipids, characterize this process which has important implications in several biological processes. In mammals, the repeated enzymatic addition of a sialic acid unit to underlying sialic acids (Sia) by polysialyltransferases, including ST8Sia2, leads to the formation of a sugar polymer called polysialic acid (polySia). The functional relevance of polySia has been extensively demonstrated in the nervous system. However, the role of polysialylation in infection is still poorly explored. Previous reports have shown that Trypanosoma cruzi (T. cruzi), a flagellated parasite that causes Chagas disease (CD), changes host sialylation of glycoproteins. To understand the role of host polySia during T. cruzi infection, we used a combination of in silico and experimental tools. We observed that T. cruzi reduces both the expression of the ST8Sia2 and the polysialylation of target substrates. We also found that chemical and genetic inhibition of host ST8Sia2 increased the parasite load in mammalian cells. We found that modulating host polysialylation may induce oxidative stress, creating a microenvironment that favors T. cruzi survival and infection. These findings suggest a novel approach to interfere with parasite infections through modulation of host polysialylation.
Collapse
Affiliation(s)
- Bruno Rafael Barboza
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Vinícius de Morais Gomes
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Deivid Martins Santos
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Antônio Moreira Marques-Neto
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Claudia Blanes Angeli
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Borsoi
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carolina Borsoi Moraes
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Cristiane Moutinho-Melo
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Laboratory of Immunological and Antitumor Analysis, Department of Antibiotics, Bioscience Center, and Keizo Asami Immunopathology Laboratory, Federal University of Pernambuco, Recife, Brazil
| | - Martina Mühlenhoff
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Walter Colli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Suely Kazue Nagashi Marie
- Laboratory of Molecular and Cellular Biology (LIM 15), Department of Neurology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lygia da Veiga Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Julia Manso Alves
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
2
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
3
|
Santos DKDDN, Barros BRDS, Filho IJDC, Júnior NDSB, da Silva PR, Nascimento PHDB, Lima MDCAD, Napoleão TH, de Melo CML. Pectin-like polysaccharide extracted from the leaves of Conocarpus erectus Linnaeus promotes antioxidant, immunomodulatory and prebiotic effects. ACTA ACUST UNITED AC 2021. [DOI: 10.1016/j.bcdf.2021.100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
4
|
Suarez Carneiro MAM, Silva LDS, Diniz RM, Saminez WFDS, Oliveira PVD, Pereira Mendonça JS, Colasso AHM, Soeiro Silva IS, Jandú JJB, Sá JCD, Figueiredo CSSES, Correia MTDS, Nascimento da Silva LC. Immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by Staphylococcus aureus. Int Immunopharmacol 2021; 100:108094. [PMID: 34508942 DOI: 10.1016/j.intimp.2021.108094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
This work evaluated the immunomodulatory and anti-infective effects of Cratylia mollis lectin (Cramoll) in a model of wound infection induced by S. aureus. Swiss mice were divided into 3 groups (n = 12/group): non-inoculated (Control group); inoculated with S. aureus (Sa group); inoculated with S. aureus and treated with Cramoll (Sa + Cramoll group). In each animal, one lesion (64 mm2) was induced on the back and contaminated with S. aureus (~4.0 × 106 CFU/wound). The treatment with Cramoll (5 μg/animal/day) started 1-day post-infection (dpi) and extended for 10 days. Clinical parameters (wound size, inflammatory aspects, etc.) were daily recorded; while cytokines levels, bacterial load and histological aspects were determined in the cutaneous tissue at 4th dpi or 11th dpi. The mice infected with S. aureus exhibited a delay in wound contraction and the highest inflammatory scores. These effects were impaired by the treatment with Cramoll which reduced the release of key inflammatory mediators (TNF-α, NO, VEGF) and the bacterial load at wound tissue. Histological evaluations showed a restauration of skin structures in the animals treated with Cramoll. Taken together, these results provide more insights about the healing and immunomodulatory properties of Cramoll and suggest this lectin as a lead compound for treatment of wound infection.
Collapse
Affiliation(s)
| | - Lucas Dos Santos Silva
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, 65075-120 São Luís, MA, Brazil
| | - Roseana Muniz Diniz
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, 65075-120 São Luís, MA, Brazil
| | | | | | | | | | | | - Jannyson José Braz Jandú
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50740-570 Recife, Brazil
| | - Joicy Cortez de Sá
- Laboratório de Patogenicidade Microbiana, Universidade Ceuma, 65075-120 São Luís, MA, Brazil
| | | | - Maria Tereza Dos Santos Correia
- Laboratório de Bioquímica de Proteínas, Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, 50740-570 Recife, Brazil
| | | |
Collapse
|
5
|
de Siqueira Patriota LL, do Nascimento Santos DKD, da Silva Barros BR, de Souza Aguiar LM, Silva YA, Dos Santos ACLA, Gama E Silva M, Barroso Coelho LCB, Paiva PMG, Pontual EV, de Melo CML, Mendes RL, Napoleáo TH. Evaluation of the In Vivo Acute Toxicity and In Vitro Hemolytic and Immunomodulatory Activities of the Moringa oleifera Flower Trypsin Inhibitor (MoFTI). Protein Pept Lett 2021; 28:665-674. [PMID: 33191881 DOI: 10.2174/0929866527999201113105858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/09/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Protease inhibitors have been isolated from plants and present several biological activities, including immunomodulatory action. OBJECTIVE This work aimed to evaluate a Moringa oleifera flower trypsin inhibitor (MoFTI) for acute toxicity in mice, hemolytic activity on mice erythrocytes and immunomodulatory effects on mice splenocytes. METHODS The acute toxicity was evaluated using Swiss female mice that received a single dose of the vehicle control or MoFTI (300 mg/kg, i.p.). Behavioral alterations were observed 15-240 min after administration, and survival, weight gain, and water and food consumption were analyzed daily. Organ weights and hematological parameters were analyzed after 14 days. Hemolytic activity of MoFTI was tested using Swiss female mice erythrocytes. Splenocytes obtained from BALB/c mice were cultured in the absence or presence of MoFTI for the evaluation of cell viability and proliferation. Mitochondrial membrane potential (Δψm) and reactive oxygen species (ROS) levels were also determined. Furthermore, the culture supernatants were analyzed for the presence of cytokines and nitric oxide (NO). RESULTS MoFTI did not cause death or any adverse effects on the mice except for abdominal contortions at 15-30 min after administration. MoFTI did not exhibit a significant hemolytic effect. In addition, MoFTI did not induce apoptosis or necrosis in splenocytes and had no effect on cell proliferation. Increases in cytosolic and mitochondrial ROS release, as well as Δψm reduction, were observed in MoFTI-treated cells. MoFTI was observed to induce TNF-α, IFN-γ, IL-6, IL-10, and NO release. CONCLUSION These results contribute to the ongoing evaluation of the antitumor potential of MoFTI and its effects on other immunological targets.
Collapse
Affiliation(s)
| | | | | | | | - Yasmym Araújo Silva
- Laboratorio de Oncologia Experimental, Universidade Federal do Vale do Sao Francisco, Petrolina, Brazil
| | | | - Mariana Gama E Silva
- Laboratorio de Oncologia Experimental, Universidade Federal do Vale do Sao Francisco, Petrolina, Brazil
| | | | | | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | | | - Rosemairy Luciane Mendes
- Laboratorio de Oncologia Experimental, Universidade Federal do Vale do Sao Francisco, Petrolina, Brazil
| | - Thiago Henrique Napoleáo
- Departamento de Bioquimica, Centro de Biociencias, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
6
|
Schinus terebinthifolia leaf lectin (SteLL) is an immunomodulatory agent by altering cytokine release by mice splenocytes. 3 Biotech 2020; 10:144. [PMID: 32181106 DOI: 10.1007/s13205-020-2137-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 02/14/2020] [Indexed: 01/18/2023] Open
Abstract
Schinus terebinthifolia leaf lectin (SteLL) was reported to be an antimicrobial and antitumor agent. In this work, we evaluated the immunomodulatory activity of SteLL on mice splenocytes and also determined its native molecular mass and putative sequence similarities with plant proteins. The effects of SteLL (12.5 μg/mL) on viability, cytosolic Ca2+ concentration ([Ca2+]cyt), cytosolic and mitochondrial levels of reactive oxygen species (ROS), and mitochondrial transmembrane potential (ΔΨm) of mice splenocytes were determined. In addition, the culture supernatants were collected for quantification of interleukins (IL), tumor necrosis factor (TNF), interferon-gamma (IFN-γ) and nitric oxide (NO). SteLL showed a native molecular mass of 12.4 kDa and tandem mass spectrometry (MS/MS) ions search revealed similarities with adenosine triphosphate (ATP) synthase and F1-ATPase from plants (4% and 6% coverage, respectively). SteLL was not toxic to splenocytes, did not alter the [Ca2+]cyt and ROS levels, and slightly reduced ΔΨm. The presence of SteLL stimulated the cells to release pro-inflammatory cytokines (IL-17A, TNF-α, IFN-γ and IL-2) and also of IL-4, an anti-inflammatory cytokine that can prevent exacerbated inflammation. SteLL induced decrease in the secretion of NO. In conclusion, SteLL has biotechnological potential as an immunomodulator agent for use in studies employing cultures of immune cells. In addition, the anti-infectious and antitumor properties of the leaves may involve the immunomodulation property of SteLL.
Collapse
|
7
|
de Souza Feitosa Lima IM, Zagmignan A, Santos DM, Maia HS, Dos Santos Silva L, da Silva Cutrim B, Vieira SL, Bezerra Filho CM, de Sousa EM, Napoleão TH, Krogfelt KA, Løbner-Olesen A, Paiva PMG, Nascimento da Silva LC. Schinus terebinthifolia leaf lectin (SteLL) has anti-infective action and modulates the response of Staphylococcus aureus-infected macrophages. Sci Rep 2019; 9:18159. [PMID: 31796807 PMCID: PMC6890730 DOI: 10.1038/s41598-019-54616-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is recognized as an important pathogen causing a wide spectrum of diseases. Here we examined the antimicrobial effects of the lectin isolated from leaves of Schinus terebinthifolia Raddi (SteLL) against S. aureus using in vitro assays and an infection model based on Galleria mellonella larvae. The actions of SteLL on mice macrophages and S. aureus-infected macrophages were also evaluated. SteLL at 16 µg/mL (8 × MIC) increased cell mass and DNA content of S. aureus in relation to untreated bacteria, suggesting that SteLL impairs cell division. Unlike ciprofloxacin, SteLL did not induce the expression of recA, crucial for DNA repair through SOS response. The antimicrobial action of SteLL was partially inhibited by 50 mM N-acetylglucosamine. SteLL reduced staphyloxathin production and increased ciprofloxacin activity towards S. aureus. This lectin also improved the survival of G. mellonella larvae infected with S. aureus. Furthermore, SteLL induced the release of cytokines (IL-6, IL-10, IL-17A, and TNF-α), nitric oxide and superoxide anion by macrophagens. The lectin improved the bactericidal action of macrophages towards S. aureus; while the expression of IL-17A and IFN-γ was downregulated in infected macrophages. These evidences suggest SteLL as important lead molecule in the development of anti-infective agents against S. aureus.
Collapse
Affiliation(s)
| | - Adrielle Zagmignan
- Programas de Pós-Graduação, Universidade Ceuma, São Luís, Maranhão, Brazil
| | | | | | | | | | | | | | | | | | - Karen Angeliki Krogfelt
- Department of Viral and Microbial Diagnostics, Statens Serum Institut, Copenhagen, Denmark
- Department of Science and Environment, Roskilde University, 4000, Roskilde, Denmark
| | - Anders Løbner-Olesen
- Department of Biology, Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
8
|
Calliandra surinamensis lectin (CasuL) does not impair the functionality of mice splenocytes, promoting cell signaling and cytokine production. Biomed Pharmacother 2018; 107:650-655. [DOI: 10.1016/j.biopha.2018.08.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
|
9
|
Typhonium giganteum Lectin Exerts A Pro-Inflammatory Effect on RAW 264.7 via ROS and The NF-κB Signaling Pathway. Toxins (Basel) 2017; 9:toxins9090275. [PMID: 28880234 PMCID: PMC5618208 DOI: 10.3390/toxins9090275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/04/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Typhonii rhizoma, a widely used herb in traditional Chinese medicine, has acute irritating toxicity related to Typhonium giganteum lectin (TGL). TGL exhibits acute inflammatory effects, but the underlying molecular mechanisms are largely unknown. This paper is designed to assess the pro-inflammatory response of TGL on RAW 264.7 cells. RAW 264.7 treated with 6.25, 12.5, 25, and 50 µg/mL TGL showed elevated levels of inflammatory factors (TNF-α, IL-1β) and of p-IκB and p-p65, all dose-dependent, indicating that TGL had a substantial inflammatory effect and mobilized the nuclear factor-κB (NF-κB) pathway. All four TGL treatments also induced the up-regulation of reactive oxygen species (ROS) and cytosolic free Ca2+ and down-regulation of mitochondrial membrane potential (MMP). The production of cytokines and p-IκB, p-p65 were reduced by N-acetylcysteine (NAC), an ROS scavenger, which somewhat abrogated ROS production. The results showed the TGL-activated inflammatory signaling pathway NF-κB to be associated with the overproduction of ROS. Moreover, 50 μg/mL treatment with TGL led to cell apoptosis after 1 h and increased necrosis over time. These results provided potential molecular mechanisms for the observed inflammatory response to TGL including up-regulation of ROS and cytosolic free Ca2+, down-regulation of MMP, the mobilization of the NF-κB pathway, and the subsequent overproduction of pro-inflammatory factors resulting in apoptosis. Long-term stimulation with TGL resulted in strong toxic effects related to inflammation that induced necrosis in macrophages.
Collapse
|
10
|
de Oliveira Figueirôa E, Aranda-Souza MÂ, Varejão N, Rossato FA, Costa RAP, Figueira TR, da Silva LCN, Castilho RF, Vercesi AE, dos Santos Correia MT. pCramoll and rCramoll lectins induce cell death in human prostate adenocarcinoma (PC-3) cells by impairment of mitochondrial homeostasis. Toxicol In Vitro 2017; 43:40-46. [DOI: 10.1016/j.tiv.2017.05.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 05/16/2017] [Accepted: 05/23/2017] [Indexed: 10/19/2022]
|
11
|
Albuquerque PB, Soares PA, Aragão-Neto AC, Albuquerque GS, Silva LC, Lima-Ribeiro MH, Silva Neto JC, Coelho LC, Correia MT, Teixeira JA, Carneiro-da-Cunha MG. Healing activity evaluation of the galactomannan film obtained from Cassia grandis seeds with immobilized Cratylia mollis seed lectin. Int J Biol Macromol 2017; 102:749-757. [DOI: 10.1016/j.ijbiomac.2017.04.064] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/11/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
|
12
|
Coelho LCBB, Silva PMDS, Lima VLDM, Pontual EV, Paiva PMG, Napoleão TH, Correia MTDS. Lectins, Interconnecting Proteins with Biotechnological/Pharmacological and Therapeutic Applications. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:1594074. [PMID: 28367220 PMCID: PMC5359455 DOI: 10.1155/2017/1594074] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/21/2017] [Accepted: 02/06/2017] [Indexed: 11/18/2022]
Abstract
Lectins are proteins extensively used in biomedical applications with property to recognize carbohydrates through carbohydrate-binding sites, which identify glycans attached to cell surfaces, glycoconjugates, or free sugars, detecting abnormal cells and biomarkers related to diseases. These lectin abilities promoted interesting results in experimental treatments of immunological diseases, wounds, and cancer. Lectins obtained from virus, microorganisms, algae, animals, and plants were reported as modulators and tool markers in vivo and in vitro; these molecules also play a role in the induction of mitosis and immune responses, contributing for resolution of infections and inflammations. Lectins revealed healing effect through induction of reepithelialization and cicatrization of wounds. Some lectins have been efficient agents against virus, fungi, bacteria, and helminths at low concentrations. Lectin-mediated bioadhesion has been an interesting characteristic for development of drug delivery systems. Lectin histochemistry and lectin-based biosensors are useful to detect transformed tissues and biomarkers related to disease occurrence; antitumor lectins reported are promising for cancer therapy. Here, we address lectins from distinct sources with some biological effect and biotechnological potential in the diagnosis and therapeutic of diseases, highlighting many advances in this growing field.
Collapse
Affiliation(s)
| | - Priscila Marcelino dos Santos Silva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Vera Lúcia de Menezes Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Emmanuel Viana Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Rua Dom Manuel de Medeiros, s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
| | - Patrícia Maria Guedes Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Thiago Henrique Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego 1235, Cidade Universitária, 50.670-901 Recife, PE, Brazil
| |
Collapse
|
13
|
Chandran T, Sharma A, Vijayan M. Structural studies on a non-toxic homologue of type II RIPs from bitter gourd: Molecular basis of non-toxicity, conformational selection and glycan structure. J Biosci 2016; 40:929-41. [PMID: 26648038 DOI: 10.1007/s12038-015-9573-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The structures of nine independent crystals of bitter gourd seed lectin (BGSL), a non-toxic homologue of type II RIPs, and its sugar complexes have been determined. The four-chain, two-fold symmetric, protein is made up of two identical two-chain modules, each consisting of a catalytic chain and a lectin chain, connected by a disulphide bridge. The lectin chain is made up of two domains. Each domain carries a carbohydrate binding site in type II RIPs of known structure. BGSL has a sugar binding site only on one domain, thus impairing its interaction at the cell surface. The adenine binding site in the catalytic chain is defective. Thus, defects in sugar binding as well as adenine binding appear to contribute to the non-toxicity of the lectin. The plasticity of the molecule is mainly caused by the presence of two possible well defined conformations of a surface loop in the lectin chain. One of them is chosen in the sugar complexes, in a case of conformational selection, as the chosen conformation facilitates an additional interaction with the sugar, involving an arginyl residue in the loop. The N-glycosylation of the lectin involves a plant-specific glycan while that in toxic type II RIPs of known structure involves a glycan which is animal as well as plant specific.
Collapse
|
14
|
Albuquerque PB, Silva CS, Soares PA, Barros W, Correia MT, Coelho LC, Teixeira JA, Carneiro-da-Cunha MG. Investigating a galactomannan gel obtained from Cassia grandis seeds as immobilizing matrix for Cramoll lectin. Int J Biol Macromol 2016; 86:454-61. [DOI: 10.1016/j.ijbiomac.2016.01.107] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/27/2016] [Accepted: 01/28/2016] [Indexed: 10/22/2022]
|
15
|
Lectin from Crataeva tapia Bark Improves Tissue Damages and Plasma Hyperglycemia in Alloxan-Induced Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:869305. [PMID: 24324521 PMCID: PMC3845403 DOI: 10.1155/2013/869305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/08/2013] [Indexed: 11/17/2022]
Abstract
Crataeva tapia is a plant popularly used for diabetes treatment, in Brazil. Progressive decline in renal and hepatic functions has been described in patients with diabetes mellitus, and mortality rate is increased in patients with chronic liver and renal disease. This study aimed to evaluate whether Crataeva tapia bark lectin (CrataBL) improves hyperglycemia and renal and hepatic damage in diabetic mice. CrataBL was purified by ion exchange chromatography on CM-cellulose, and intraperitoneal administration of CrataBL to alloxan-induced diabetic mice at dose of 10 mg/Kg/day and 20 mg/Kg/day for 10 days significantly reduced serum glucose levels by 14.9% and 55.9%, respectively. Serum urea, creatinine, aspartate aminotransferase, and alanine aminotransferase were also significantly reduced after treatment with both doses of CrataBL. Furthermore, histological analysis of liver, kidney, and pancreas revealed an improvement in the tissue morphology upon treatment with CrataBL. The results suggest that CrataBL has a beneficial hypoglycemic activity and improves the renal and hepatic complications of diabetes. Therefore, this lectin may be a promising agent for the treatment of diabetes, and this might be the basis for its use in the folk medicine as an alternative treatment to manage diabetes-related complications such as hyperglycemia and tissue damage.
Collapse
|
16
|
de Oliveira PSS, Rêgo MJBDM, da Silva RR, Cavalcanti MB, Galdino SL, Correia MTDS, Coelho LCBB, Pitta MGDR. Cratylia mollis 1, 4 lectin: a new biotechnological tool in IL-6, IL-17A, IL-22, and IL-23 induction and generation of immunological memory. BIOMED RESEARCH INTERNATIONAL 2013; 2013:263968. [PMID: 23586026 PMCID: PMC3613062 DOI: 10.1155/2013/263968] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/30/2013] [Accepted: 02/10/2013] [Indexed: 11/17/2022]
Abstract
Cratylia mollis lectin has already established cytokine induction in Th1 and Th2 pathways. Thereby, this study aimed to evaluate Cramoll 1, 4 in IL-6, IL-17A, IL-22, and IL-23 induction as well as analyze immunologic memory mechanism by reinducing lymphocyte stimulation. Initially we performed a screening in cultured splenocytes where Cramoll 1, 4 stimulated IL-6 production 5x more than ConA (P < 0.05). The same behavior was observed with IL-22 where the increase was greater than 4x. Nevertheless, IL-17A induction was similar for both lectins. In PBMCs, the same splenocytes course was observed for IL-6 and IL-17A. Concerning the stimulation of IL-22 and IL-23 Cramoll 1, 4 was more efficient than ConA in cytokines stimulation mainly in IL-23 (P < 0.01). Analyzing reinduced lymphocyte stimulation, IL-17A production was higher (P < 0.001) when the first stimulus was realized with Cramoll 1, 4 at 1 μ g/mL and the second at 5 μ g/mL. IL-22 shows significant differences (P < 0.01) at the same condition. Nevertheless, IL-23 revels the best response when the first stimuli was realized with Cramoll1, 4 at 100 ng/mL and the second with 5 μ g/mL. We conclude that the Cramoll 1, 4 is able to induce IL-6, IL-17A, IL-22, and IL-23 cytokines in vitro better than Concavalin A, besides immunologic memory generation, being a potential biotechnological tool in Th17 pathway studies.
Collapse
Affiliation(s)
- Priscilla Stela Santana de Oliveira
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rêgo 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rêgo 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Rafael Ramos da Silva
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rêgo 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Mariana Brayner Cavalcanti
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rêgo 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Suely Lins Galdino
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rêgo 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Maria Tereza dos Santos Correia
- Laboratório de Glicoproteínas, Centro de Ciências Biológicas, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rêgo 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Luana Cassandra Breitenbach Barroso Coelho
- Laboratório de Glicoproteínas, Centro de Ciências Biológicas, Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rêgo 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas (LINAT), Universidade Federal de Pernambuco (UFPE), Avenida Prof. Moraes Rêgo 1235, Cidade Universitária, 50670-901 Recife, PE, Brazil
| |
Collapse
|
17
|
Singh RS, Walia AK. Microbial lectins and their prospective mitogenic potential. Crit Rev Microbiol 2012; 40:329-47. [DOI: 10.3109/1040841x.2012.733680] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
18
|
Huang LH, Yan QJ, Kopparapu NK, Jiang ZQ, Sun Y. Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif 2011; 45:15-21. [PMID: 22172162 DOI: 10.1111/j.1365-2184.2011.00800.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Recently, plant lectins have attracted great interest due to their various biological activities such as anti-cancer, anti-fungal and anti-viral activities. We have reported earlier concerning anti-proliferation of human cancer cell lines by a galactose-binding lectin (AML), from a Chinese herb, ASTRAGALUS MEMBRANACEUS: In the present study, detailed investigations into the mechanism of such anti-proliferation properties have been carried out. MATERIALS AND METHODS Mechanism of apoptosis initiation in K562 cells by AML was investigated by morphology, flow cytometry and western blot analysis. RESULTS AML induced apoptosis in a caspase-dependent manner in the chronic myeloid leukemia cell line, K562. Furthermore, we observed that cytotoxicity and apoptosis of K562 cells induced by AML were completely abolished in presence of lactose or galactose. CONCLUSIONS Our results suggest that AML could act as a potential anti-cancer drug.
Collapse
Affiliation(s)
- L H Huang
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
19
|
Huang LH, Yan QJ, Kopparapu NK, Jiang ZQ, Sun Y. Astragalus membranaceus lectin (AML) induces caspase-dependent apoptosis in human leukemia cells. Cell Prolif 2011. [DOI: 10.1111/j.1365-2184.2011.00800.x pmid: 22172162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
20
|
Immunostimulatory activity of ConBr: a focus on splenocyte proliferation and proliferative cytokine secretion. Cell Tissue Res 2011; 346:237-44. [DOI: 10.1007/s00441-011-1239-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 09/01/2011] [Indexed: 10/16/2022]
|
21
|
Varejão N, Correia MTS, Foguel D. Characterization of the Unfolding Process of the Tetrameric and Dimeric Forms of Cratylia mollis Seed Lectin (CRAMOLL 1): Effects of Natural Fragmentation on Protein Stability. Biochemistry 2011; 50:7330-40. [DOI: 10.1021/bi200320x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Nathalia Varejão
- Instituto
de Bioquímica Médica, Programa de Biologia Estrutural,
Centro Nacional de Ressonância Magnética Nuclear de
Macromoléculas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio
de Janeiro, RJ, Brazil
| | - Maria Tereza S. Correia
- Departamento de Bioquímica, Laboratório de Glicoproteínas, Universidade Federal de Pernambuco, 50670-420, Recife,
Pernambuco, PE, Brazil
| | - Debora Foguel
- Instituto
de Bioquímica Médica, Programa de Biologia Estrutural,
Centro Nacional de Ressonância Magnética Nuclear de
Macromoléculas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, 21941-902, Rio
de Janeiro, RJ, Brazil
| |
Collapse
|