1
|
Holmes JB, Lemieux ME, Stelzer JE. Torsional and strain dysfunction precede overt heart failure in a mouse model of dilated cardiomyopathy pathogenesis. Am J Physiol Heart Circ Physiol 2023; 325:H449-H467. [PMID: 37417875 PMCID: PMC10538988 DOI: 10.1152/ajpheart.00130.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/24/2023] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Detailed assessments of whole heart mechanics are crucial for understanding the consequences of sarcomere perturbations that lead to cardiomyopathy in mice. Echocardiography offers an accessible and cost-effective method of obtaining metrics of cardiac function, but the most routine imaging and analysis protocols might not identify subtle mechanical deficiencies. This study aims to use advanced echocardiography imaging and analysis techniques to identify previously unappreciated mechanical deficiencies in a mouse model of dilated cardiomyopathy (DCM) before the onset of overt systolic heart failure (HF). Mice lacking muscle LIM protein expression (MLP-/-) were used to model DCM-linked HF pathogenesis. Left ventricular (LV) function of MLP-/- and wild-type (WT) controls were studied at 3, 6, and 10 wk of age using conventional and four-dimensional (4-D) echocardiography, followed by speckle-tracking analysis to assess torsional and strain mechanics. Mice were also studied with RNA-seq. Although 3-wk-old MLP-/- mice showed normal LV ejection fraction (LVEF), these mice displayed abnormal torsional and strain mechanics alongside reduced β-adrenergic reserve. Transcriptome analysis showed that these defects preceded most molecular markers of HF. However, these markers became upregulated as MLP-/- mice aged and developed overt systolic dysfunction. These findings indicate that subtle deficiencies in LV mechanics, undetected by LVEF and conventional molecular markers, may act as pathogenic stimuli in DCM-linked HF. Using these analyses in future studies will further help connect in vitro measurements of the sarcomere function to whole heart function.NEW & NOTEWORTHY A detailed study of how perturbations to sarcomere proteins impact whole heart mechanics in mouse models is a major yet challenging step in furthering our understanding of cardiovascular pathophysiology. This study uses advanced echocardiographic imaging and analysis techniques to reveal previously unappreciated subclinical whole heart mechanical defects in a mouse model of cardiomyopathy. In doing so, it offers an accessible set of measurements for future studies to use when connecting sarcomere and whole heart function.
Collapse
Affiliation(s)
- Joshua B Holmes
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States
| | | | - Julian E Stelzer
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, Ohio, United States
| |
Collapse
|
2
|
Neumann J, Hofmann B, Kirchhefer U, Dhein S, Gergs U. Function and Role of Histamine H 1 Receptor in the Mammalian Heart. Pharmaceuticals (Basel) 2023; 16:734. [PMID: 37242517 PMCID: PMC10223319 DOI: 10.3390/ph16050734] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Histamine can change the force of cardiac contraction and alter the beating rate in mammals, including humans. However, striking species and regional differences have been observed. Depending on the species and the cardiac region (atrium versus ventricle) studied, the contractile, chronotropic, dromotropic, and bathmotropic effects of histamine vary. Histamine is present and is produced in the mammalian heart. Thus, histamine may exert autocrine or paracrine effects in the mammalian heart. Histamine uses at least four heptahelical receptors: H1, H2, H3 and H4. Depending on the species and region studied, cardiomyocytes express only histamine H1 or only histamine H2 receptors or both. These receptors are not necessarily functional concerning contractility. We have considerable knowledge of the cardiac expression and function of histamine H2 receptors. In contrast, we have a poor understanding of the cardiac role of the histamine H1 receptor. Therefore, we address the structure, signal transduction, and expressional regulation of the histamine H1 receptor with an eye on its cardiac role. We point out signal transduction and the role of the histamine H1 receptor in various animal species. This review aims to identify gaps in our knowledge of cardiac histamine H1 receptors. We highlight where the published research shows disagreements and requires a new approach. Moreover, we show that diseases alter the expression and functional effects of histamine H1 receptors in the heart. We found that antidepressive drugs and neuroleptic drugs might act as antagonists of cardiac histamine H1 receptors, and believe that histamine H1 receptors in the heart might be attractive targets for drug therapy. The authors believe that a better understanding of the role of histamine H1 receptors in the human heart might be clinically relevant for improving drug therapy.
Collapse
Affiliation(s)
- Joachim Neumann
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| | - Britt Hofmann
- Herzchirurgie, Medizinische Fakultät, Martin-Luther-Universität Halle-Wittenberg, Ernst-Grube Straße 40, 06097 Halle, Germany
| | - Uwe Kirchhefer
- Institut für Pharmakologie und Toxikologie, Domagkstraße 12, Westfälische Wilhelms-Universität, 48149 Münster, Germany
| | - Stefan Dhein
- Rudolf-Boehm Institut für Pharmakologie und Toxikologie, Härtelstraße 16-18, Universität Leipzig, 04107 Leipzig, Germany
| | - Ulrich Gergs
- Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Magdeburger Straße 4, Martin-Luther-Universität Halle-Wittenberg, 06097 Halle, Germany
| |
Collapse
|
3
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
4
|
Miklós Z, Wafa D, Nádasy GL, Tóth ZE, Besztercei B, Dörnyei G, Laska Z, Benyó Z, Ivanics T, Hunyady L, Szekeres M. Angiotensin II-Induced Cardiac Effects Are Modulated by Endocannabinoid-Mediated CB 1 Receptor Activation. Cells 2021; 10:724. [PMID: 33805075 PMCID: PMC8064086 DOI: 10.3390/cells10040724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/21/2021] [Indexed: 12/02/2022] Open
Abstract
Angiotensin II (Ang II) has various cardiac effects and causes vasoconstriction. Ang II activates the type-1 angiotensin receptor-Gq/11 signaling pathway resulting in the release of 2-arachidonoylglycerol (2-AG). We aimed to investigate whether cardiac Ang II effects are modulated by 2-AG-release and to identify the role of type-1 cannabinoid receptors (CB1R) in these effects. Expression of CB1R in rat cardiac tissue was confirmed by immunohistochemistry. To characterize short-term Ang II effects, increasing concentrations of Ang II (10-9-10-7 M); whereas to assess tachyphylaxis, repeated infusions of Ang II (10-7 M) were administered to isolated Langendorff-perfused rat hearts. Ang II infusions caused a decrease in coronary flow and ventricular inotropy, which was more pronounced during the first administration. CB agonist 2-AG and WIN55,212-2 administration to the perfusate enhanced coronary flow. The flow-reducing effect of Ang II was moderated in the presence of CB1R blocker O2050 and diacylglycerol-lipase inhibitor Orlistat. Our findings indicate that Ang II-induced cardiac effects are modulated by simultaneous CB1R-activation, most likely due to 2-AG-release during Ang II signalling. In this combined effect, the response to 2-AG via cardiac CB1R may counteract the positive inotropic effect of Ang II, which may decrease metabolic demand and augment Ang II-induced coronary vasoconstriction.
Collapse
Affiliation(s)
- Zsuzsanna Miklós
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Dina Wafa
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - György L. Nádasy
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
| | - Zsuzsanna E. Tóth
- Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary;
| | - Balázs Besztercei
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Gabriella Dörnyei
- Department of Morphology and Physiology, Semmelweis University, 1088 Budapest, Hungary;
| | - Zsófia Laska
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - Tamás Ivanics
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (D.W.); (B.B.); (Z.L.); (Z.B.); (T.I.)
| | - László Hunyady
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
- Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1094 Budapest, Hungary
| | - Mária Szekeres
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary; (G.L.N.); (L.H.)
- Department of Morphology and Physiology, Semmelweis University, 1088 Budapest, Hungary;
- Laboratory of Molecular Physiology, Semmelweis University and Hungarian Academy of Sciences, 1094 Budapest, Hungary
| |
Collapse
|
5
|
Wafa D, Koch N, Kovács J, Kerék M, Proia RL, Tigyi GJ, Benyó Z, Miklós Z. Opposing Roles of S1P 3 Receptors in Myocardial Function. Cells 2020; 9:cells9081770. [PMID: 32722120 PMCID: PMC7466142 DOI: 10.3390/cells9081770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 01/09/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a lysophospholipid mediator with diverse biological function mediated by S1P1–5 receptors. Whereas S1P was shown to protect the heart against ischemia/reperfusion (I/R) injury, other studies highlighted its vasoconstrictor effects. We aimed to separate the beneficial and potentially deleterious cardiac effects of S1P during I/R and identify the signaling pathways involved. Wild type (WT), S1P2-KO and S1P3-KO Langendorff-perfused murine hearts were exposed to intravascular S1P, I/R, or both. S1P induced a 45% decrease of coronary flow (CF) in WT-hearts. The presence of S1P-chaperon albumin did not modify this effect. CF reduction diminished in S1P3-KO but not in S1P2-KO hearts, indicating that in our model S1P3 mediates coronary vasoconstriction. In I/R experiments, S1P3 deficiency had no influence on postischemic CF but diminished functional recovery and increased infarct size, indicating a cardioprotective effect of S1P3. Preischemic S1P exposure resulted in a substantial reduction of postischemic CF and cardiac performance and increased the infarcted area. Although S1P3 deficiency increased postischemic CF, this failed to improve cardiac performance. These results indicate a dual role of S1P3 involving a direct protective action on the myocardium and a cardiosuppressive effect due to coronary vasoconstriction. In acute coronary syndrome when S1P may be released abundantly, intravascular and myocardial S1P production might have competing influences on myocardial function via activation of S1P3 receptors.
Collapse
Affiliation(s)
- Dina Wafa
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Correspondence: (D.W.); (Z.M.)
| | - Nóra Koch
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Janka Kovács
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Margit Kerék
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Richard L. Proia
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institues of Health, Bethesda, MD 20892, USA;
| | - Gábor J. Tigyi
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zoltán Benyó
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
| | - Zsuzsanna Miklós
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (N.K.); (J.K.); (M.K.); (G.J.T.); (Z.B.)
- Correspondence: (D.W.); (Z.M.)
| |
Collapse
|
6
|
Zhai C, Djimsa BA, Prenni JE, Woerner DR, Belk KE, Nair MN. Tandem mass tag labeling to characterize muscle-specific proteome changes in beef during early postmortem period. J Proteomics 2020; 222:103794. [DOI: 10.1016/j.jprot.2020.103794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
7
|
Ehsan M, Jiang H, L Thomson K, Gehmlich K. When signalling goes wrong: pathogenic variants in structural and signalling proteins causing cardiomyopathies. J Muscle Res Cell Motil 2017; 38:303-316. [PMID: 29119312 PMCID: PMC5742121 DOI: 10.1007/s10974-017-9487-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/28/2017] [Indexed: 12/20/2022]
Abstract
Cardiomyopathies are a diverse group of cardiac disorders with distinct phenotypes, depending on the proteins and pathways affected. A substantial proportion of cardiomyopathies are inherited and those will be the focus of this review article. With the wide application of high-throughput sequencing in the practice of clinical genetics, the roles of novel genes in cardiomyopathies are recognised. Here, we focus on a subgroup of cardiomyopathy genes [TTN, FHL1, CSRP3, FLNC and PLN, coding for Titin, Four and a Half LIM domain 1, Muscle LIM Protein, Filamin C and Phospholamban, respectively], which, despite their diverse biological functions, all have important signalling functions in the heart, suggesting that disturbances in signalling networks can contribute to cardiomyopathies.
Collapse
Affiliation(s)
- Mehroz Ehsan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - He Jiang
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Kate L Thomson
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, UK.
| |
Collapse
|
8
|
Bang ML. Animal Models of Congenital Cardiomyopathies Associated With Mutations in Z-Line Proteins. J Cell Physiol 2016; 232:38-52. [PMID: 27171814 DOI: 10.1002/jcp.25424] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/10/2016] [Indexed: 01/15/2023]
Abstract
The cardiac Z-line at the boundary between sarcomeres is a multiprotein complex connecting the contractile apparatus with the cytoskeleton and the extracellular matrix. The Z-line is important for efficient force generation and transmission as well as the maintenance of structural stability and integrity. Furthermore, it is a nodal point for intracellular signaling, in particular mechanosensing and mechanotransduction. Mutations in various genes encoding Z-line proteins have been associated with different cardiomyopathies, including dilated cardiomyopathy, hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, restrictive cardiomyopathy, and left ventricular noncompaction, and mutations even within the same gene can cause widely different pathologies. Animal models have contributed to a great advancement in the understanding of the physiological function of Z-line proteins and the pathways leading from mutations in Z-line proteins to cardiomyopathy, although genotype-phenotype prediction remains a great challenge. This review presents an overview of the currently available animal models for Z-line and Z-line associated proteins involved in human cardiomyopathies with special emphasis on knock-in and transgenic mouse models recapitulating the clinical phenotypes of human cardiomyopathy patients carrying mutations in Z-line proteins. Pros and cons of mouse models will be discussed and a future outlook will be given. J. Cell. Physiol. 232: 38-52, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research, UOS Milan, National Research Council and Humanitas Clinical and Research Center, Rozzano, Milan, Italy.
| |
Collapse
|
9
|
Vafiadaki E, Arvanitis DA, Sanoudou D. Muscle LIM Protein: Master regulator of cardiac and skeletal muscle functions. Gene 2015; 566:1-7. [PMID: 25936993 PMCID: PMC6660132 DOI: 10.1016/j.gene.2015.04.077] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 04/21/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022]
Abstract
Muscle LIM Protein (MLP) has emerged as a key regulator of striated muscle physiology and pathophysiology. Mutations in cysteine and glycine-rich protein 3 (CSRP3), the gene encoding MLP, are causative of human cardiomyopathies, whereas altered expression patterns are observed in human failing heart and skeletal myopathies. In vitro and in vivo evidences reveal a complex and diverse functional role of MLP in striated muscle, which is determined by its multiple interacting partners and subcellular distribution. Experimental evidence suggests that MLP is implicated in both myogenic differentiation and myocyte cytoarchitecture, although the full spectrum of its intracellular roles still unfolds.
Collapse
Affiliation(s)
- Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Demetrios A Arvanitis
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, Greece; 4th Department of Internal Medicine, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
10
|
Miklós Z, Kemecsei P, Bíró T, Marincsák R, Tóth BI, Buijs J, Benis É, Drozgyik A, Ivanics T. Early cardiac dysfunction is rescued by upregulation of SERCA2a pump activity in a rat model of metabolic syndrome. Acta Physiol (Oxf) 2012; 205:381-93. [PMID: 22289164 DOI: 10.1111/j.1748-1716.2012.02420.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 10/26/2011] [Accepted: 01/23/2012] [Indexed: 12/22/2022]
Abstract
AIM Various components of metabolic syndrome associate with cardiac intracellular calcium (Cai 2+) mishandling, a precipitating factor in the development of heart failure. We aimed to provide a thorough description of early stage Cai 2+-cycling alterations in the fructose-fed rat, an experimental model of the disorder, where insulin resistance, hypertension and dyslipidaemia act cooperatively on the heart. METHOD Rats were fed with fructose-rich chow. After 6 weeks, echocardiography was performed, which was followed by measurements of myocardial Cai 2+ transients recorded by Indo-1 surface fluorometry in isolated perfused hearts. Sarcoplasmic reticulum (SR) Ca(2+) -ATPase (SERCA2a) activity was assessed by administration of its inhibitor cyclopiazonic acid (CPA). Mathematical model analysis of Cai 2+ transients was used to estimate kinetic properties of SR Ca(2+) transporters. Protein levels of key Ca(2+) handling proteins were also measured. RESULTS Echocardiography showed signs of cardiac hypertrophy, but in vivo and ex vivo haemodynamic performance of fructose-fed rat hearts were unaltered. However, a decline in Ca(2+) sequestration capacity (-dCai 2+/dt and decay time of Cai 2+ transients) was observed. Model estimation showed decreased affinity for Ca(2+) (higher K(m) ) and elevated V(max) for SERCA2a. Diseased hearts were more vulnerable to CPA application. Fructose feeding caused elevation in SERCA2a and phosphorylated phospholamban (PLB) expression, while total PLB level remained unchanged. CONCLUSION In early stage, metabolic syndrome primarily disturbs SERCA2a function in the heart, but consequential haemodynamic dysfunction is prevented by upregulation of SERCA2a protein level and phosphorylation pathways regulating PLB. However, this compensated state is very vulnerable to a further decline in SERCA2a function.
Collapse
Affiliation(s)
- Z. Miklós
- Institute of Human Physiology and Clinical Experimental Research; Semmelweis University; Budapest; Hungary
| | - P. Kemecsei
- Institute of Human Physiology and Clinical Experimental Research; Semmelweis University; Budapest; Hungary
| | - T. Bíró
- Department of Physiology; DE-MTA “Lendulet” Cellular Physiology Research Group; Debrecen; Hungary
| | - R. Marincsák
- Department of Physiology; DE-MTA “Lendulet” Cellular Physiology Research Group; Debrecen; Hungary
| | - B. I. Tóth
- Department of Physiology; DE-MTA “Lendulet” Cellular Physiology Research Group; Debrecen; Hungary
| | - J. Buijs
- MIRA Institute of Biomedical Technology and Technical Medicine (Control Engineering Group); University of Twente; Twente; the Netherlands
| | - É. Benis
- Institute of Human Physiology and Clinical Experimental Research; Semmelweis University; Budapest; Hungary
| | - A. Drozgyik
- Institute of Human Physiology and Clinical Experimental Research; Semmelweis University; Budapest; Hungary
| | - T. Ivanics
- Institute of Human Physiology and Clinical Experimental Research; Semmelweis University; Budapest; Hungary
| |
Collapse
|
11
|
Unsöld B, Schotola H, Jacobshagen C, Seidler T, Sossalla S, Emons J, Klede S, Knöll R, Guan K, El-Armouche A, Linke WA, Kögler H, Hasenfuss G. Age-dependent changes in contractile function and passive elastic properties of myocardium from mice lacking muscle LIM protein (MLP). Eur J Heart Fail 2012; 14:430-7. [PMID: 22371524 DOI: 10.1093/eurjhf/hfs020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS Muscle LIM protein (MLP) null mice are often used as a model for human dilated cardiomyopathy. So far, little is known about the time course and pathomechanisms leading to the development of the adult phenotype. METHODS AND RESULTS We systematically analysed the contractile phenotype, myofilament calcium (Ca(2)(+)) responsiveness, passive myocardial mechanics, histology, and mRNA expression in mice aged 4 and 12 weeks. In 4-week-old animals, there was no significant difference in the force-frequency relationship (FFR) and catecholamine response of intact isolated papillary muscles between wild-type (WT) and MLP null myocardium. In 12-week-old animals, WT myocardium exhibited a significantly positive FFR, while that of MLP null mice was significantly negative, and the inotropic response to catecholamines was significantly reduced in MLP null mice. This time course of decline in contractile function was confirmed in vivo by echocardiography. Whereas at 4 weeks of age MLP null mice and WT littermates showed similar levels of SERCA2a (sarcoplasmic reticulum Ca(2+) ATPase) expression, the expression was significantly lower in 12-week-old MLP null mice compared with littermate controls. Myofilament Ca(2)(+) responsiveness was not affected by the lack of MLP, irrespective of age. Whereas in 4-week-old animals MLP null myocardium showed a trend to an increased compliance compared with the WT, myocardium of 12-week-old MLP null mice was significantly less compliant than WT myocardium. Parallel to the decrease in compliance there was an increase in fibrosis in the MLP null animals. CONCLUSION Our data suggest that MLP deficiency does not primarily influence myocardial contractility. A lack of MLP leads to an age-dependent impairment of excitation-contraction coupling with resulting contractile dysfunction and secondary fibrosis.
Collapse
Affiliation(s)
- Bernhard Unsöld
- Department of Cardiology and Pneumology, Georg-August University of Göttingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|