1
|
Li Y, Zhang M, Li Y, Shen Y, Wang X, Li X, Wang Y, Yu T, Lv J, Qin Y. Flagellar hook protein FlgE promotes macrophage activation and atherosclerosis by targeting ATP5B. Atherosclerosis 2024; 390:117429. [PMID: 38278062 DOI: 10.1016/j.atherosclerosis.2023.117429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND AND AIMS Pseudomonas aeruginosa (P. aeruginosa) infections are strongly linked to the development of cardiovascular disease and atherosclerosis; however, the underlying mechanisms remain unclear. We previously confirmed that the flagellar hook protein FlgE in P. aeruginosa has immunostimulatory effects. This study investigated the effects and mechanisms of action of FlgE on atherogenesis. METHODS ApoE-/- mice were intravenously challenged with FlgE or FlgEM recombinant proteins for eight weeks. A murine model of chronic lung colonization was established using beads containing either mutable- or wild-type bacteria. Aortic sinus sections were stained to assess atherosclerosis progression. THP-1 macrophages exposed to FlgE or FlgEM were evaluated for their effects on lipid uptake and inflammation in vitro. Western blotting and pull-down assays were used to identify the binding proteins and signaling pathways involved, and specific blocking experiments were performed to confirm these effects. RESULTS FlgE accelerated atherosclerosis progression by triggering lipid deposition and inflammatory responses in high-fat diet (HFD)-fed ApoE-/- mice. In comparison to infection with wild-type PAO1, infection with PAO1/flgEΔBmF resulted in reduced atherosclerosis. Mechanistic analysis indicated that FlgE exacerbated lipoprotein uptake and foam cell formation by upregulating SR-A1 expression. Moreover, FlgE activated NF-κB and MAPK signaling, which subsequently led to inflammatory responses in THP-1-derived macrophages. Pull-down assays revealed that FlgE directly interacted with ATP5B, whereas blocking ATP5B attenuated FlgE-induced responses in macrophages. CONCLUSIONS FlgE induces macrophage lipid uptake and pro-inflammatory responses mediated by ATP5B/NF-kB/AP-1 signaling, which eventually results in atherosclerosis. These findings support the development of therapeutic strategies for P. aeruginosa infection-induced atherosclerosis.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China
| | - Min Zhang
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China
| | - Yanmeng Li
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China
| | - Ying Shen
- National Clinical Research Center for Hematologic Disease, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou Medical College, Suchow University, Suzhou, 215006, China
| | - Xiaoping Wang
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, 266000, China
| | - Yiqiang Wang
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266000, China.
| | - Jie Lv
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China.
| | - Yan Qin
- Department of Laboratory Examination, People's Hospital of Rizhao City, The Affiliated Hospital of Jining Medical College, Rizhao, China.
| |
Collapse
|
2
|
The effect of cranberry consumption on lipid metabolism and inflammation in human apo A-I transgenic mice fed a high-fat and high-cholesterol diet. Br J Nutr 2021; 126:183-190. [PMID: 33059793 DOI: 10.1017/s0007114520004080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lipid metabolism and inflammation contribute to CVD development. This study investigated whether the consumption of cranberries (CR; Vaccinium macrocarpon) can alter HDL metabolism and prevent inflammation in mice expressing human apo A-I transgene (hApoAITg), which have similar HDL profiles to those of humans. Male hApoAITg mice were fed a modified American Institute of Nutrition-93M high-fat/high-cholesterol diet (16 % fat, 0·25 % cholesterol, w/w; n 15) or the high-fat/high-cholesterol diet containing CR (5 % dried CR powder, w/w, n 16) for 8 weeks. There were no significant differences in body weight between the groups. Serum total cholesterol, non-HDL-cholesterol and TAG concentrations were significantly lower in the control than CR group with no significant differences in serum HDL-cholesterol and apoA-I. Mice fed CR showed significantly lower serum lecithin-cholesterol acyltransferase activity than the control. Liver weight and steatosis were not significantly different between the groups, but hepatic expression of genes involved in cholesterol metabolism was significantly lower in the CR group. In the epididymal white adipose tissue (eWAT), the CR group showed higher weights with decreased expression of genes for lipogenesis and fatty acid oxidation. The mRNA abundance of F4/80, a macrophage marker and the numbers of crown-like structures were less in the CR group. In the soleus muscle, the CR group also demonstrated higher expression of genes for fatty acid β-oxidation and mitochondrial biogenesis than those of the control. In conclusion, although CR consumption elicited minor effects on HDL metabolism, it prevented obesity-induced inflammation in eWAT with concomitant alterations in soleus muscle energy metabolism.
Collapse
|
3
|
Manandhar B, Cochran BJ, Rye KA. Role of High-Density Lipoproteins in Cholesterol Homeostasis and Glycemic Control. J Am Heart Assoc 2019; 9:e013531. [PMID: 31888429 PMCID: PMC6988162 DOI: 10.1161/jaha.119.013531] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bikash Manandhar
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Blake J Cochran
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| | - Kerry-Anne Rye
- Lipid Research Group School of Medical Sciences Faculty of Medicine University of New South Wales Sydney New South Wales Australia
| |
Collapse
|
4
|
Taurino F, Gnoni A. Systematic review of plasma-membrane ecto-ATP synthase: A new player in health and disease. Exp Mol Pathol 2018; 104:59-70. [DOI: 10.1016/j.yexmp.2017.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/15/2017] [Accepted: 12/31/2017] [Indexed: 02/07/2023]
|
5
|
Wang S, Peng DQ, Yi Y. The unsolved mystery of apoA-I recycling in adipocyte. Lipids Health Dis 2016; 15:35. [PMID: 26911989 PMCID: PMC4765186 DOI: 10.1186/s12944-016-0203-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/11/2016] [Indexed: 01/24/2023] Open
Abstract
As the major storage site for triglycerides and free cholesterol, adipose tissue plays a central role in energy metabolism. ApoA-I is the main constituent of HDL and plays an important role in removal of excess cholesterol from peripheral tissues. Recently, multiple studies have shown beneficial effects of apoA-I on adipose metabolism and function. ApoA-I was reported to improve insulin sensitivity and exert anti-inflammatory, anti-obesity effect in animal studies. Interestingly, Uptake and resecretion of apoA-I by adipocytes has been detected. However, the significance of apoA-I recycling by adipocytes is still not clear. This article reviewed methods used to study cellular recycling of apoA-I and summarized the current knowledge on the mechanisms involved in apoA-I uptake by adipocytes. Since the main function of apoA-I is to mediate reverse cholesterol transport from peripheral tissues, the role of apoA-I internalization and re-secretion by adipocytes in intracellular cholesterol transport under physiological and pathological conditions were discussed. In addition, findings on the correlation between apoA-I recycling and obesity were discussed. Finally, it was proposed that during intracellular transport, apoA-I-protein complex may acquire cargoes other than lipids and deliver regulatory information when they were resecreted into the plasma. Although apoA-I recycling by adipocytes is still an unsolved mystery, it's likely that it is more than a redundant pathway especially under pathological conditions.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dao-quan Peng
- Department of Cardiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
| | - Yuhong Yi
- The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Ecto-F1-ATPase/P2Y pathways in metabolic and vascular functions of high density lipoproteins. Atherosclerosis 2015; 238:89-100. [DOI: 10.1016/j.atherosclerosis.2014.11.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/12/2014] [Accepted: 11/13/2014] [Indexed: 12/15/2022]
|
7
|
Abstract
Numerous epidemiologic studies revealed that high-density lipoprotein (HDL) is an important risk factor for coronary heart disease. There are several well-documented HDL functions such as reversed cholesterol transport, inhibition of inflammation, or inhibition of platelet activation that may account for the atheroprotective effects of this lipoprotein. Mechanistically, these functions are carried out by a direct interaction of HDL particle or its components with receptors localized on the cell surface followed by generation of intracellular signals. Several HDL-associated receptor ligands such as apolipoprotein A-I (apoA-I) or sphingosine-1-phosphate (S1P) have been identified in addition to HDL holoparticles, which interact with surface receptors such as ATP-binding cassette transporter A1 (ABCA1); S1P receptor types 1, 2, and 3 (S1P1, S1P2, and S1P3); or scavenger receptor type I (SR-BI) and activate intracellular signaling cascades encompassing kinases, phospholipases, trimeric and small G-proteins, and cytoskeletal proteins such as actin or junctional protein such as connexin43. In addition, depletion of plasma cell cholesterol mediated by ABCA1, ATP-binding cassette transporter G1 (ABCG1), or SR-BI was demonstrated to indirectly inhibit signaling over proinflammatory or proliferation-stimulating receptors such as Toll-like or growth factor receptors. The present review summarizes the current knowledge regarding the HDL-induced signal transduction and its relevance to athero- and cardioprotective effects as well as other physiological effects exerted by HDL.
Collapse
|
8
|
Röhrl C, Stangl H. HDL endocytosis and resecretion. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1626-33. [PMID: 23939397 PMCID: PMC3795453 DOI: 10.1016/j.bbalip.2013.07.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/22/2013] [Accepted: 07/26/2013] [Indexed: 12/23/2022]
Abstract
HDL removes excess cholesterol from peripheral tissues and delivers it to the liver and steroidogenic tissues via selective lipid uptake without catabolism of the HDL particle itself. In addition, endocytosis of HDL holo-particles has been debated for nearly 40years. However, neither the connection between HDL endocytosis and selective lipid uptake, nor the physiological relevance of HDL uptake has been delineated clearly. This review will focus on HDL endocytosis and resecretion and its relation to cholesterol transfer. We will discuss the role of HDL endocytosis in maintaining cholesterol homeostasis in tissues and cell types involved in atherosclerosis, focusing on liver, macrophages and endothelium. We will critically summarize the current knowledge on the receptors mediating HDL endocytosis including SR-BI, F1-ATPase and CD36 and on intracellular HDL transport routes. Dependent on the tissue, HDL is either resecreted (retro-endocytosis) or degraded after endocytosis. Finally, findings on HDL transcytosis across the endothelial barrier will be summarized. We suggest that HDL endocytosis and resecretion is a rather redundant pathway under physiologic conditions. In case of disturbed lipid metabolism, however, HDL retro-endocytosis represents an alternative pathway that enables tissues to maintain cellular cholesterol homeostasis.
Collapse
Affiliation(s)
- Clemens Röhrl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Department of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Dalla-Riva J, Stenkula KG, Petrlova J, Lagerstedt JO. Discoidal HDL and apoA-I-derived peptides improve glucose uptake in skeletal muscle. J Lipid Res 2013; 54:1275-82. [PMID: 23471027 PMCID: PMC3653404 DOI: 10.1194/jlr.m032904] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lipid-free apoA-I and mature spherical HDL have been shown to induce glucose uptake in skeletal muscle. To exploit apoA-I and HDL states for diabetes therapy, further understanding of interaction between muscle and apoA-I is required. This study has examined whether nascent discoidal HDL, in which apoA-I attains a different conformation from mature HDL and lipid-free states, could induce muscle glucose uptake and whether a specific domain of apoA-I can mediate this effect. Using L6 myotubes stimulated with synthetic reconstituted discoidal HDL (rHDL), we show a glucose uptake effect comparable to insulin. Increased plasma membrane GLUT4 levels in ex vivo rHDL-stimulated myofibers from HA-GLUT4-GFP transgenic mice support this observation. rHDL increased phosphorylation of AMP kinase (AMPK) and acetyl-coA carboxylase (ACC) but not Akt. A survey of domain-specific peptides of apoA-I showed that the lipid-free C-terminal 190-243 fragment increases plasma membrane GLUT4, promotes glucose uptake, and activates AMPK signaling but not Akt. This may be explained by changes in α-helical content of 190-243 fragment versus full-length lipid-free apoA-I as assessed by circular dichroism spectroscopy. Discoidal HDL and the 190-243 peptide of apoA-I are potent agonists of glucose uptake in skeletal muscle, and the C-terminal α-helical content of apoA-I may be an important determinant of this effect.
Collapse
Affiliation(s)
- Jonathan Dalla-Riva
- Department of Experimental Medical Science, Lund University, S-221 84 Lund, Sweden
| | | | | | | |
Collapse
|
10
|
Xun Z, Lee DY, Lim J, Canaria CA, Barnebey A, Yanonne SM, McMurray CT. Retinoic acid-induced differentiation increases the rate of oxygen consumption and enhances the spare respiratory capacity of mitochondria in SH-SY5Y cells. Mech Ageing Dev 2012; 133:176-85. [PMID: 22336883 DOI: 10.1016/j.mad.2012.01.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 12/22/2011] [Accepted: 01/29/2012] [Indexed: 01/15/2023]
Abstract
Retinoic acid (RA) is used in differentiation therapy to treat a variety of cancers including neuroblastoma. The contributing factors for its therapeutic efficacy are poorly understood. However, mitochondria (MT) have been implicated as key effectors in RA-mediated differentiation process. Here we utilize the SH-SY5Y human neuroblastoma cell line as a model to examine how RA influences MT during the differentiation process. We find that RA confers an approximately sixfold increase in the oxygen consumption rate while the rate of glycolysis modestly increases. RA treatment does not increase the number of MT or cause measurable changes in the composition of the electron transport chain. Rather, RA treatment significantly increases the mitochondrial spare respiratory capacity. We propose a competition model for the therapeutic effects of RA. Specifically, the high metabolic rate in differentiated cells limits the availability of metabolic nutrients for use by the undifferentiated cells and suppresses their growth. Thus, RA treatment provides a selective advantage for the differentiated state.
Collapse
Affiliation(s)
- Zhiyin Xun
- Lawrence Berkeley National Laboratory, Life Sciences Division, 1 Cyclotron Rd., Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Cavelier C, Ohnsorg PM, Rohrer L, von Eckardstein A. The β-Chain of Cell Surface F
0
F
1
ATPase Modulates ApoA-I and HDL Transcytosis Through Aortic Endothelial Cells. Arterioscler Thromb Vasc Biol 2012; 32:131-9. [DOI: 10.1161/atvbaha.111.238063] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Objective—
Both HDLs and their major protein constituent apolipoprotein A-I (apoA-I) are transported through aortic endothelial cells. The knock-down of the ATP-binding cassette transporters A1 (ABCA1), G1 (ABCG1), and of the scavenger receptor-BI (SR-BI) diminishes but does not completely block the transport of apoA-I or HDL, so that other receptors appear to be involved. The ectopic β-chain of F
0
F
1
ATPase has been previously characterized as an apoA-I receptor, triggering HDL internalization in hepatocytes.
Methods and Results—
The ectopic presence of the β-chain of F
0
F
1
ATPase on the surface of endothelial cells was confirmed by cell surface biotinylation. RNA-interference and the F
0
F
1
ATPase inhibitory peptide IF
1
reduced cell binding of apoA-I but not HDL, as well as association and transendothelial transport of both apoA-I and HDL. Furthermore, apoA-I stimulated F
0
F
1
ATPase catalyzed ATP hydrolysis. The generated ADP as well as apoA-I stimulated the binding, cell association, and internalization of HDL. Both in the presence and absence of ADP inhibition of the purinergic receptor P2Y
12
but not P2Y
1
decreased the cell association of apoA-I and HDL. Coinhibition of β-ATPase and ABCA1 had no additive effects on the cell association and transport of apoA-I. Reduced cell association of HDL by β-ATPase inhibition was not further decreased by additional knock-down of ABCG1 or SR-BI.
Conclusion—
Binding of apoA-I to ectopic F
0
F
1
ATPase triggers the generation of ADP, which via activation of the purinergic receptor P2Y
12
stimulates the uptake and transport of HDL and initially lipid-free apoA-I by endothelial cells.
Collapse
Affiliation(s)
- Clara Cavelier
- From the Institute of Clinical Chemistry (C.C., P.M.O., L.R., A.v.E.), University and University Hospital Zurich, Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology of Complex Diseases (P.M.O.), Competence Center for Systems Physiology and Metabolic Diseases (P.M.O., A.v.E.), Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (L.R., A.v.E.), University of Zurich, Zurich, Switzerland
| | - Pascale M. Ohnsorg
- From the Institute of Clinical Chemistry (C.C., P.M.O., L.R., A.v.E.), University and University Hospital Zurich, Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology of Complex Diseases (P.M.O.), Competence Center for Systems Physiology and Metabolic Diseases (P.M.O., A.v.E.), Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (L.R., A.v.E.), University of Zurich, Zurich, Switzerland
| | - Lucia Rohrer
- From the Institute of Clinical Chemistry (C.C., P.M.O., L.R., A.v.E.), University and University Hospital Zurich, Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology of Complex Diseases (P.M.O.), Competence Center for Systems Physiology and Metabolic Diseases (P.M.O., A.v.E.), Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (L.R., A.v.E.), University of Zurich, Zurich, Switzerland
| | - Arnold von Eckardstein
- From the Institute of Clinical Chemistry (C.C., P.M.O., L.R., A.v.E.), University and University Hospital Zurich, Zurich, Switzerland; Life Science Zurich PhD Program on Systems Biology of Complex Diseases (P.M.O.), Competence Center for Systems Physiology and Metabolic Diseases (P.M.O., A.v.E.), Swiss Federal Institute of Technology Zurich and University of Zurich, Zurich, Switzerland; Zurich Center for Integrative Human Physiology (L.R., A.v.E.), University of Zurich, Zurich, Switzerland
| |
Collapse
|