1
|
Li N, Zheng G, Fu L, Liu N, Chen T, Lu S. Designed dualsteric modulators: A novel route for drug discovery. Drug Discov Today 2024; 29:104141. [PMID: 39168404 DOI: 10.1016/j.drudis.2024.104141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/01/2024] [Accepted: 08/14/2024] [Indexed: 08/23/2024]
Abstract
Orthosteric and allosteric modulators, which constitute the majority of current drugs, bind to the orthosteric and allosteric sites of target proteins, respectively. However, the clinical efficacy of these agents is frequently compromised by poor selectivity or reduced potency. Dualsteric modulators feature two linked pharmacophores that bind to orthosteric and allosteric sites of the target proteins simultaneously, thereby offering a promising avenue to achieve both potency and specificity. In this review, we summarize recent structures available for dualsteric modulators in complex with their target proteins, elucidating detailed drug-target interactions and dualsteric action patterns. Moreover, we provide a design and optimization strategy for dualsteric modulators based on structure-based drug design approaches.
Collapse
Affiliation(s)
- Nuan Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guodong Zheng
- Department of VIP Clinic, Changhai Hospital, Affiliated to Naval Medical University, Shanghai 200433, China
| | - Lili Fu
- Department of Nephrology, People's Hospital of Pudong New Area, Shanghai University of Medicine & Health Sciences, Shanghai 201299, China
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai 200003, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
2
|
Zhao BH, Ruze A, Zhao L, Li QL, Tang J, Xiefukaiti N, Gai MT, Deng AX, Shan XF, Gao XM. The role and mechanisms of microvascular damage in the ischemic myocardium. Cell Mol Life Sci 2023; 80:341. [PMID: 37898977 PMCID: PMC11073328 DOI: 10.1007/s00018-023-04998-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/31/2023]
Abstract
Following myocardial ischemic injury, the most effective clinical intervention is timely restoration of blood perfusion to ischemic but viable myocardium to reduce irreversible myocardial necrosis, limit infarct size, and prevent cardiac insufficiency. However, reperfusion itself may exacerbate cell death and myocardial injury, a process commonly referred to as ischemia/reperfusion (I/R) injury, which primarily involves cardiomyocytes and cardiac microvascular endothelial cells (CMECs) and is characterized by myocardial stunning, microvascular damage (MVD), reperfusion arrhythmia, and lethal reperfusion injury. MVD caused by I/R has been a neglected problem compared to myocardial injury. Clinically, the incidence of microvascular angina and/or no-reflow due to ineffective coronary perfusion accounts for 5-50% in patients after acute revascularization. MVD limiting drug diffusion into injured myocardium, is strongly associated with the development of heart failure. CMECs account for > 60% of the cardiac cellular components, and their role in myocardial I/R injury cannot be ignored. There are many studies on microvascular obstruction, but few studies on microvascular leakage, which may be mainly due to the lack of corresponding detection methods. In this review, we summarize the clinical manifestations, related mechanisms of MVD during myocardial I/R, laboratory and clinical examination means, as well as the research progress on potential therapies for MVD in recent years. Better understanding the characteristics and risk factors of MVD in patients after hemodynamic reconstruction is of great significance for managing MVD, preventing heart failure and improving patient prognosis.
Collapse
Affiliation(s)
- Bang-Hao Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Amanguli Ruze
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Ling Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Qiu-Lin Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Jing Tang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Nilupaer Xiefukaiti
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Min-Tao Gai
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - An-Xia Deng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xue-Feng Shan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China
| | - Xiao-Ming Gao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asian, Department of Cardiology, the First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute of Xinjiang Medical University, 137 Liyushan South Road, Urumqi, 830054, China.
- Xinjiang Key Laboratory of Medical Animal Model Research, Urumqi, China.
| |
Collapse
|
3
|
Titus AS, Sung EA, Zablocki D, Sadoshima J. Mitophagy for cardioprotection. Basic Res Cardiol 2023; 118:42. [PMID: 37798455 PMCID: PMC10556134 DOI: 10.1007/s00395-023-01009-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Mitochondrial function is maintained by several strictly coordinated mechanisms, collectively termed mitochondrial quality control mechanisms, including fusion and fission, degradation, and biogenesis. As the primary source of energy in cardiomyocytes, mitochondria are the central organelle for maintaining cardiac function. Since adult cardiomyocytes in humans rarely divide, the number of dysfunctional mitochondria cannot easily be diluted through cell division. Thus, efficient degradation of dysfunctional mitochondria is crucial to maintaining cellular function. Mitophagy, a mitochondria specific form of autophagy, is a major mechanism by which damaged or unnecessary mitochondria are targeted and eliminated. Mitophagy is active in cardiomyocytes at baseline and in response to stress, and plays an essential role in maintaining the quality of mitochondria in cardiomyocytes. Mitophagy is mediated through multiple mechanisms in the heart, and each of these mechanisms can partially compensate for the loss of another mechanism. However, insufficient levels of mitophagy eventually lead to mitochondrial dysfunction and the development of heart failure. In this review, we discuss the molecular mechanisms of mitophagy in the heart and the role of mitophagy in cardiac pathophysiology, with the focus on recent findings in the field.
Collapse
Affiliation(s)
- Allen Sam Titus
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Eun-Ah Sung
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Daniela Zablocki
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA
| | - Junichi Sadoshima
- Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, 185 South Orange Ave, MSB G-609, Newark, NJ, 07103, USA.
| |
Collapse
|
4
|
Fabbian S, Giachin G, Bellanda M, Borgo C, Ruzzene M, Spuri G, Campofelice A, Veneziano L, Bonchio M, Carraro M, Battistutta R. Mechanism of CK2 Inhibition by a Ruthenium-Based Polyoxometalate. Front Mol Biosci 2022; 9:906390. [PMID: 35720133 PMCID: PMC9201508 DOI: 10.3389/fmolb.2022.906390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
CK2 is a Ser/Thr protein kinase involved in many cellular processes such as gene expression, cell cycle progression, cell growth and differentiation, embryogenesis, and apoptosis. Aberrantly high CK2 activity is widely documented in cancer, but the enzyme is also involved in several other pathologies, such as diabetes, inflammation, neurodegeneration, and viral infections, including COVID-19. Over the last years, a large number of small-molecules able to inhibit the CK2 activity have been reported, mostly acting with an ATP-competitive mechanism. Polyoxometalates (POMs), are metal-oxide polyanionic clusters of various structures and dimensions, with unique chemical and physical properties. POMs were identified as nanomolar CK2 inhibitors, but their mechanism of inhibition and CK2 binding site remained elusive. Here, we present the biochemical and biophysical characterizing of the interaction of CK2α with a ruthenium-based polyoxometalate, [Ru4(μ-OH)2(μ-O)4(H2O)4 (γ-SiW10O36)2]10− (Ru4POM), a potent inhibitor of CK2. Using analytical Size-Exclusion Chromatography (SEC), Isothermal Titration Calorimetry (ITC), and SAXS we were able to unravel the mechanism of inhibition of Ru4POM. Ru4POM binds to the positively-charged substrate binding region of the enzyme through electrostatic interactions, triggering the dimerization of the enzyme which consequently is inactivated. Ru4POM is the first non-peptide molecule showing a substrate-competitive mechanism of inhibition for CK2. On the basis of SAXS data, a structural model of the inactivated (CK2α)2(Ru4POM)2 complex is presented.
Collapse
Affiliation(s)
- Simone Fabbian
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, Padova, Italy
- CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neurosciences, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| | - Giacomo Spuri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ambra Campofelice
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Laura Veneziano
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute on Membrane Technology (ITM)-CNR, University of Padova, Padova, Italy
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute on Membrane Technology (ITM)-CNR, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| | - Roberto Battistutta
- Department of Chemical Sciences, University of Padova, Padova, Italy
- CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| |
Collapse
|
5
|
Liu C, Han Y, Gu X, Li M, Du Y, Feng N, Li J, Zhang S, Maslov LN, Wang G, Pei J, Fu F, Ding M. Paeonol promotes Opa1-mediated mitochondrial fusion via activating the CK2α-Stat3 pathway in diabetic cardiomyopathy. Redox Biol 2021; 46:102098. [PMID: 34418601 PMCID: PMC8385203 DOI: 10.1016/j.redox.2021.102098] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/02/2022] Open
Abstract
Diabetes disrupts mitochondrial function and often results in diabetic cardiomyopathy (DCM). Paeonol is a bioactive compound that has been reported to have pharmacological potential for cardiac and mitochondrial protection. This study aims to explore the effects of paeonol on mitochondrial disorderes in DCM and the underlying mechanisms. We showed that paeonol promoted Opa1-mediated mitochondrial fusion, inhibited mitochondrial oxidative stress, and preserved mitochondrial respiratory capacity and cardiac performance in DCM in vivo and in vitro. Knockdown of Opa1 blunted the above protective effects of paeonol in both diabetic hearts and high glucose-treated cardiomyocytes. Mechanistically, inhibitor screening, siRNA knockdown and chromatin immunoprecipitation experiments showed that paeonol-promoted Opa1-mediated mitochondrial fusion required the activation of Stat3, which directly bound to the promoter of Opa1 to upregulate its transcriptional expression. Moreover, pharmmapper screening and molecular docking studies revealed that CK2α served as a direct target of paeonol that interacted with Jak2 and induced the phosphorylation and activation of Jak2-Stat3. Knockdown of CK2α blunted the promoting effect of paeonol on Jak2-Stat3 phosphorylation and Opa1-mediated mitochondrial fusion. Collectively, we have demonstrated for the first time that paeonol is a novel mitochondrial fusion promoter in protecting against hyperglycemia-induced mitochondrial oxidative injury and DCM at least partially via an Opa1-mediated mechanism, a process in which paeonol interacts with CK2α and restores its kinase activity that subsequently increasing Jak2-Stat3 phosphorylation and enhancing the transcriptional level of Opa1. These findings suggest that paeonol or the promotion of mitochondrial fusion might be a promising strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Chaoyang Liu
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China; Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xiaoming Gu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Man Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yanyan Du
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; School of Life Science, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Na Feng
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Juan Li
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Shumiao Zhang
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Leonid N Maslov
- Cardiology Research Institute, Tomsk National Research Medical Center of the Russian Academy of Science, Tomsk, 634000, Russia
| | - Guoen Wang
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China
| | - Jianming Pei
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Feng Fu
- Department of Physiology and Pathophysiology, National Key Discipline of Cell Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Mingge Ding
- Department of Geriatrics Cardiology, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, China.
| |
Collapse
|
6
|
Atkinson EL, Iegre J, Brear PD, Zhabina EA, Hyvönen M, Spring DR. Downfalls of Chemical Probes Acting at the Kinase ATP-Site: CK2 as a Case Study. Molecules 2021; 26:1977. [PMID: 33807474 PMCID: PMC8037657 DOI: 10.3390/molecules26071977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Protein kinases are a large class of enzymes with numerous biological roles and many have been implicated in a vast array of diseases, including cancer and the novel coronavirus infection COVID-19. Thus, the development of chemical probes to selectively target each kinase is of great interest. Inhibition of protein kinases with ATP-competitive inhibitors has historically been the most widely used method. However, due to the highly conserved structures of ATP-sites, the identification of truly selective chemical probes is challenging. In this review, we use the Ser/Thr kinase CK2 as an example to highlight the historical challenges in effective and selective chemical probe development, alongside recent advances in the field and alternative strategies aiming to overcome these problems. The methods utilised for CK2 can be applied to an array of protein kinases to aid in the discovery of chemical probes to further understand each kinase's biology, with wide-reaching implications for drug development.
Collapse
Affiliation(s)
- Eleanor L. Atkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Jessica Iegre
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| | - Paul D. Brear
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Elizabeth A. Zhabina
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK; (P.D.B.); (E.A.Z.); (M.H.)
| | - David R. Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; (E.L.A.); (J.I.)
| |
Collapse
|
7
|
Dalle Vedove A, Zonta F, Zanforlin E, Demitri N, Ribaudo G, Cazzanelli G, Ongaro A, Sarno S, Zagotto G, Battistutta R, Ruzzene M, Lolli G. A novel class of selective CK2 inhibitors targeting its open hinge conformation. Eur J Med Chem 2020; 195:112267. [PMID: 32283296 DOI: 10.1016/j.ejmech.2020.112267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/02/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Protein kinase CK2 sustains cancer growth, especially in hematological malignancies. Its inhibitor SRPIN803, based on a 6-methylene-5-imino-1,3,4-thiadiazolopyrimidin-7-one scaffold, showed notable specificity. Our synthesis of the initially proposed SRPIN803 resulted in its constitutional isomer SRPIN803-revised, where the 2-cyano-2-propenamide group does not cyclise and fuse to the thiadiazole ring. Its crystallographic structure in complex with CK2α identifies the structural determinants of the reported specificity. SRPIN803-revised explores the CK2 open hinge conformation, extremely rare among kinases, also interacting with side chains from this region. Its optimization lead to the more potent compound 4, which inhibits endocellular CK2, significantly affects viability of tumour cells and shows remarkable selectivity on a panel of 320 kinases.
Collapse
Affiliation(s)
- Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Francesca Zonta
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Enrico Zanforlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padua, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149, Basovizza-Trieste, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giulia Cazzanelli
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padua, Italy.
| | - Roberto Battistutta
- Department of Chemical Sciences and CNR Institute of Biomolecular Chemistry, University of Padua, Via F. Marzolo 1, 35131, Padua, Italy.
| | - Maria Ruzzene
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy.
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
8
|
Battistutta R, Lolli G. Inhibitory Properties of ATP-Competitive Coumestrol and Boldine Are Correlated to Different Modulations of CK2 Flexibility. JOURNAL OF NATURAL PRODUCTS 2019; 82:1014-1018. [PMID: 30840451 DOI: 10.1021/acs.jnatprod.8b00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Casein kinase 2 (CK2) is an anti-apoptotic cancer-sustaining protein kinase. Its crystallographic structures with the natural compounds coumestrol, a phytoestrogen, and boldine, an alkaloid, are reported. Coumestrol shows different inhibitory activity against the isolated catalytic α-subunit and the α2β2 holoenzyme and is able to discriminate between two conformations of the hinge/αD region, whose intrinsic flexibility is a relevant selectivity determinant among kinases. Boldine explores a small cavity at the bottom of the ATP-binding pocket through a local deviation from planarity, a unique case among CK2 inhibitors. The two compounds have different impacts on protein flexibility, which correlate with their different properties.
Collapse
Affiliation(s)
- Roberto Battistutta
- Department of Chemical Sciences , University of Padua and Institute of Biomolecular Chemistry, National Research Council (CNR) , 35131 Padua , Italy
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology - CIBIO , University of Trento , Via Sommarive 9 , 38123 Povo (TN) , Italy
| |
Collapse
|
9
|
Iegre J, Brear P, De Fusco C, Yoshida M, Mitchell SL, Rossmann M, Carro L, Sore HF, Hyvönen M, Spring DR. Second-generation CK2α inhibitors targeting the αD pocket. Chem Sci 2018; 9:3041-3049. [PMID: 29732088 PMCID: PMC5916021 DOI: 10.1039/c7sc05122k] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/17/2018] [Indexed: 11/21/2022] Open
Abstract
CK2 is a critical cell cycle regulator that also promotes various anti-apoptotic mechanisms. Development of ATP-non-competitive inhibitors of CK2 is a very attractive strategy considering that the ATP binding site is highly conserved among other kinases. We have previously utilised a pocket outside the active site to develop a novel CK2 inhibitor, CAM4066. Whilst CAM4066 bound to this new pocket it was also interacting with the ATP site: herein, we describe an example of a CK2α inhibitor that binds completely outside the active site. This second generation αD-site binding inhibitor, compound CAM4712 (IC50 = 7 μM, GI50 = 10.0 ± 3.6 μM), has numerous advantages over the previously reported CAM4066, including a reduction in the number of rotatable bonds, the absence of amide groups susceptible to the action of proteases and improved cellular permeability. Unlike with CAM4066, there was no need to facilitate cellular uptake by making a prodrug. Moreover, CAM4712 displayed no drop off between its ability to inhibit the kinase in vitro (IC50) and the ability to inhibit cell proliferation (GI50).
Collapse
Affiliation(s)
- Jessica Iegre
- Department of Chemistry , University of Cambridge , CB2 1EW , Cambridge , UK .
| | - Paul Brear
- Department of Biochemistry , University of Cambridge , CB2 1GA , Cambridge , UK .
| | - Claudia De Fusco
- Department of Chemistry , University of Cambridge , CB2 1EW , Cambridge , UK .
- Structure Biophysics & FBLG , Discovery Sciences , IMED Biotech Unit , AstraZeneca , Cambridge , UK
| | - Masao Yoshida
- Department of Chemistry , University of Cambridge , CB2 1EW , Cambridge , UK .
- R&D Division , Daiichi Sankyo Co., Ltd. , 1-2-58, Hiromachi, Shinagawa-ku , Tokyo 140-8710 , Japan
| | - Sophie L Mitchell
- Department of Chemistry , University of Cambridge , CB2 1EW , Cambridge , UK .
| | - Maxim Rossmann
- Department of Biochemistry , University of Cambridge , CB2 1GA , Cambridge , UK .
| | - Laura Carro
- Department of Chemistry , University of Cambridge , CB2 1EW , Cambridge , UK .
| | - Hannah F Sore
- Department of Chemistry , University of Cambridge , CB2 1EW , Cambridge , UK .
| | - Marko Hyvönen
- Department of Biochemistry , University of Cambridge , CB2 1GA , Cambridge , UK .
| | - David R Spring
- Department of Chemistry , University of Cambridge , CB2 1EW , Cambridge , UK .
| |
Collapse
|
10
|
Zhou H, Zhu P, Wang J, Zhu H, Ren J, Chen Y. Pathogenesis of cardiac ischemia reperfusion injury is associated with CK2α-disturbed mitochondrial homeostasis via suppression of FUNDC1-related mitophagy. Cell Death Differ 2018. [PMID: 29540794 PMCID: PMC5988750 DOI: 10.1038/s41418-018-0086-7] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Disturbed mitochondrial homeostasis contributes to the pathogenesis of cardiac ischemia reperfusion (IR) injury, although the underlying mechanism remains elusive. Here, we demonstrated that casein kinase 2α (CK2α) was upregulated following acute cardiac IR injury. Increased CK2α was shown to be instrumental to mitochondrial damage, cardiomyocyte death, infarction area expansion and cardiac dysfunction, whereas cardiac-specific CK2α knockout (CK2αCKO) mice were protected against IR injury and mitochondrial damage. Functional assay indicated that CK2α enhanced the phosphorylation (inactivation) of FUN14 domain containing 1 (FUNDC1) via post-transcriptional modification at Ser13, thus effectively inhibiting mitophagy. Defective mitophagy failed to remove damaged mitochondria induced by IR injury, resulting in mitochondrial genome collapse, electron transport chain complex (ETC) inhibition, mitochondrial biogenesis arrest, cardiolipin oxidation, oxidative stress, mPTP opening, mitochondrial debris accumulation and eventually mitochondrial apoptosis. In contrast, loss of CK2α reversed the FUNDC1-mediated mitophagy, providing a survival advantage to myocardial tissue following IR stress. Interestingly, mice deficient in both CK2α and FUNDC1 failed to show protection against IR injury and mitochondrial damage through a mechanism possible attributed to lack of mitophagy. Taken together, our results confirmed that CK2α serves as a negative regulator of mitochondrial homeostasis via suppression of FUNDC1-required mitophagy, favoring the development of cardiac IR injury.
Collapse
Affiliation(s)
- Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China. .,Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| | - Pingjun Zhu
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China
| | - Hong Zhu
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming College of Health Sciences, Laramie, WY, 82071, USA.
| | - Yundai Chen
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, China.
| |
Collapse
|
11
|
Srivastava A, Hirota T, Irle S, Tama F. Conformational dynamics of human protein kinase CK2α and its effect on function and inhibition. Proteins 2017; 86:344-353. [PMID: 29243286 DOI: 10.1002/prot.25444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/03/2017] [Accepted: 12/13/2017] [Indexed: 01/31/2023]
Abstract
Protein kinase, casein kinase II (CK2), is ubiquitously expressed and highly conserved protein kinase that shows constitutive activity. It phosphorylates a diverse set of proteins and plays crucial role in several cellular processes. The catalytic subunit of this enzyme (CK2α) shows remarkable flexibility as evidenced in numerous crystal structures determined till now. Here, using analysis of multiple crystal structures and long timescale molecular dynamics simulations, we explore the conformational flexibility of CK2α. The enzyme shows considerably higher flexibility in the solution as compared to that observed in crystal structure ensemble. Multiple conformations of hinge region, located near the active site, were observed during the dynamics. We further observed that among these multiple conformations, the most populated conformational state was inadequately represented in the crystal structure ensemble. The catalytic spine, was found to be less dismantled in this state as compared to the "open" hinge/αD state crystal structures. The comparison of dynamics in unbound (Apo) state and inhibitor (CX4945) bound state exhibits inhibitor induced suppression in the overall dynamics of the enzyme. This is especially true for functionally important glycine-rich loop above the active site. Together, this work gives novel insights into the dynamics of CK2α in solution and relates it to the function. This work also explains the effect of inhibitor on the dynamics of CK2α and paves way for development of better inhibitors.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Tsuyoshi Hirota
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,PRESTO, JST, Nagoya, Japan
| | - Stephan Irle
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| | - Florence Tama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan.,Department of Physics, Graduate School of Science, Nagoya University, Nagoya, Japan.,Computational Structural Biology Research Unit, RIKEN Advanced Institute of Computational Science, Kobe, Japan
| |
Collapse
|
12
|
Hochscherf J, Lindenblatt D, Witulski B, Birus R, Aichele D, Marminon C, Bouaziz Z, Le Borgne M, Jose J, Niefind K. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α'. Pharmaceuticals (Basel) 2017; 10:ph10040098. [PMID: 29236079 PMCID: PMC5748653 DOI: 10.3390/ph10040098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Benedict Witulski
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Christelle Marminon
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Zouhair Bouaziz
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Marc Le Borgne
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|
13
|
Characterization of the oligomeric states of the CK2 α2β2 holoenzyme in solution. Biochem J 2017; 474:2405-2416. [DOI: 10.1042/bcj20170189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/29/2017] [Accepted: 06/01/2017] [Indexed: 01/16/2023]
Abstract
The regulatory mechanism of protein kinase CK2 has still to be fully clarified. The prevailing hypothesis is that CK2 is controlled by a self-polymerisation mechanism leading to inactive supramolecular assemblies that, when needed, can be disassembled into the α2β2 monomer, the active form of the holoenzyme. In vitro, monomeric α2β2 seems present only at high ionic strengths, typically 0.35–0.50 M NaCl, while at lower salt concentrations oligomers are formed. In the present study, size-exclusion chromatography (SEC), dynamic light scattering (DLS), small-angle X-ray scattering (SAXS) and mutagenesis have been employed for the characterization of the oligomeric states of CK2 in solution. SAXS measurements at 0.35 M NaCl show for the first time the shape of the α2β2 active monomer in solution. At 0.25 M salt, despite single average properties indicating an aggregated holoenzyme, deconvolution analysis of SAXS data reveals an equilibrium involving not only circular trimeric and linear oligomeric (3–4 units) forms of α2β2, but also considerable amounts of the monomer. Together SAXS and mutagenesis confirm the presence in solution of the oligomers deduced by crystal structures. The lack of intermediate species such as αβ2, α or β2 indicates that the holoenzyme is a strong complex that does not spontaneously dissociate, challenging what was recently proposed on the basis of mass spectrometry data. A significant novel finding is that a considerable amount of monomer, the active form of CK2, is present also at low salt. The solution properties of CK2 shown in the present study complement the model of regulation by polymerization.
Collapse
|
14
|
McSkimming DI, Rasheed K, Kannan N. Classifying kinase conformations using a machine learning approach. BMC Bioinformatics 2017; 18:86. [PMID: 28152981 PMCID: PMC5290640 DOI: 10.1186/s12859-017-1506-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/28/2017] [Indexed: 02/07/2023] Open
Abstract
Background Signaling proteins such as protein kinases adopt a diverse array of conformations to respond to regulatory signals in signaling pathways. Perhaps the most fundamental conformational change of a kinase is the transition between active and inactive states, and defining the conformational features associated with kinase activation is critical for selectively targeting abnormally regulated kinases in diseases. While manual examination of crystal structures have led to the identification of key structural features associated with kinase activation, the large number of kinase crystal structures (~3,500) and extensive conformational diversity displayed by the protein kinase superfamily poses unique challenges in fully defining the conformational features associated with kinase activation. Although some computational approaches have been proposed, they are typically based on a small subset of crystal structures using measurements biased towards the active site geometry. Results We utilize an unbiased informatics based machine learning approach to classify all eukaryotic protein kinase conformations deposited in the PDB. We show that the orientation of the activation segment, measured by φ, ψ, χ1, and pseudo-dihedral angles more accurately classify kinase crystal conformations than existing methods. We show that the formation of the K-E salt bridge is statistically dependent upon the activation segment orientation and identify evolutionary differences between the activation segment conformation of tyrosine and serine/threonine kinases. We provide evidence that our method can identify conformational changes associated with the binding of allosteric regulatory proteins, and show that the greatest variation in inactive structures comes from kinase group and family specific side chain orientations. Conclusion We have provided the first comprehensive machine learning based classification of protein kinase active/inactive conformations, taking into account more structures and measurements than any previous classification effort. Further, our unbiased classification of inactive structures reveals residues associated with kinase functional specificity. To enable classification of new crystal structures, we have made our classifier publicly accessible through a stand-alone program housed at https://github.com/esbg/kinconform [DOI:10.5281/zenodo.249090]. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1506-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Khaled Rasheed
- Department of Computer Science, University of Georgia, Athens, GA, 30602, USA
| | - Natarajan Kannan
- Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA. .,Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
15
|
Structural Hypervariability of the Two Human Protein Kinase CK2 Catalytic Subunit Paralogs Revealed by Complex Structures with a Flavonol- and a Thieno[2,3-d]pyrimidine-Based Inhibitor. Pharmaceuticals (Basel) 2017; 10:ph10010009. [PMID: 28085026 PMCID: PMC5374413 DOI: 10.3390/ph10010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/03/2017] [Accepted: 01/05/2017] [Indexed: 11/17/2022] Open
Abstract
Protein kinase CK2 is associated with a number of human diseases, among them cancer, and is therefore a target for inhibitor development in industry and academia. Six crystal structures of either CK2α, the catalytic subunit of human protein kinase CK2, or its paralog CK2α′ in complex with two ATP-competitive inhibitors—based on either a flavonol or a thieno[2,3-d]pyrimidine framework—are presented. The structures show examples for extreme structural deformations of the ATP-binding loop and its neighbourhood and of the hinge/helix αD region, i.e., of two zones of the broader ATP site environment. Thus, they supplement our picture of the conformational space available for CK2α and CK2α′. Further, they document the potential of synthetic ligands to trap unusual conformations of the enzymes and allow to envision a new generation of inhibitors that stabilize such conformations.
Collapse
|
16
|
Brear P, De Fusco C, Hadje Georgiou K, Francis-Newton NJ, Stubbs CJ, Sore HF, Venkitaraman AR, Abell C, Spring DR, Hyvönen M. Specific inhibition of CK2α from an anchor outside the active site. Chem Sci 2016; 7:6839-6845. [PMID: 28451126 PMCID: PMC5355960 DOI: 10.1039/c6sc02335e] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/10/2016] [Indexed: 01/10/2023] Open
Abstract
The development of selective inhibitors of protein kinases is challenging because of the significant conservation of the ATP binding site. Here, we describe a new mechanism by which the protein kinase CK2α can be selectively inhibited using features outside the ATP site. We have identified a new binding site for small molecules on CK2α adjacent to the ATP site and behind the αD loop, termed the αD pocket. An elaborated fragment anchored in this site has been linked with a low affinity fragment binding in the ATP site, creating a novel and selective inhibitor (CAM4066) that binds CK2α with a Kd of 320 nM and shows significantly improved selectivity compared to other CK2α inhibitors. CAM4066 shows target engagement in several cell lines and similar potency to clinical trial candidate CX4945. Our data demonstrate that targeting a poorly conserved, cryptic pocket allows inhibition of CK2α via a novel mechanism, enabling the development of a new generation of selective CK2α inhibitors.
Collapse
Affiliation(s)
- Paul Brear
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - Claudia De Fusco
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - Kathy Hadje Georgiou
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - Nicola J Francis-Newton
- Medical Research Council Cancer Unit , University of Cambridge , Hutchison/MRC Research Centre , Hills Road , Cambridge CB2 0XZ , UK
| | - Christopher J Stubbs
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| | - Hannah F Sore
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - Ashok R Venkitaraman
- Medical Research Council Cancer Unit , University of Cambridge , Hutchison/MRC Research Centre , Hills Road , Cambridge CB2 0XZ , UK
| | - Chris Abell
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - David R Spring
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge , CB2 1EW , UK
| | - Marko Hyvönen
- Department of Biochemistry , University of Cambridge , 80 Tennis Court Road , Cambridge CB2 1GA , UK .
| |
Collapse
|
17
|
Protein Kinase CK2: A Targetable BCR-ABL Partner in Philadelphia Positive Leukemias. Adv Hematol 2015; 2015:612567. [PMID: 26843864 PMCID: PMC4710905 DOI: 10.1155/2015/612567] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/20/2015] [Indexed: 12/23/2022] Open
Abstract
BCR-ABL-mediated leukemias, either Chronic Myeloid Leukemia (CML) or Philadelphia positive Acute Lymphoblastic Leukemia (ALL), are the paradigm of targeted molecular therapy of cancer due to the impressive clinical responses obtained with BCR-ABL specific tyrosine kinase inhibitors (TKIs). However, BCR-ABL TKIs do not allow completely eradicating both CML and ALL. Furthermore, ALL therapy is associated with much worse responses to TKIs than those observed in CML. The identification of additional pathways that mediate BCR-ABL leukemogenesis is indeed mandatory to achieve synthetic lethality together with TKI. Here, we review the role of BCR-ABL/protein kinase CK2 interaction in BCR-ABL leukemias, with potentially relevant implications for therapy.
Collapse
|
18
|
Le Bihan T, Hindle M, Martin SF, Barrios-Llerena ME, Krahmer J, Kis K, Millar AJ, van Ooijen G. Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri. Proteomics 2015; 15:4135-44. [PMID: 25930153 PMCID: PMC4716292 DOI: 10.1002/pmic.201500086] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 03/25/2015] [Accepted: 04/24/2015] [Indexed: 11/06/2022]
Abstract
Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975).
Collapse
Affiliation(s)
- Thierry Le Bihan
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Matthew Hindle
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Sarah F Martin
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Johanna Krahmer
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Katalin Kis
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Andrew J Millar
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Gerben van Ooijen
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
19
|
Herhaus L, Perez-Oliva AB, Cozza G, Gourlay R, Weidlich S, Campbell DG, Pinna LA, Sapkota GP. Casein kinase 2 (CK2) phosphorylates the deubiquitylase OTUB1 at Ser16 to trigger its nuclear localization. Sci Signal 2015; 8:ra35. [PMID: 25872870 PMCID: PMC4421874 DOI: 10.1126/scisignal.aaa0441] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The deubiquitylating enzyme OTUB1 is present in all tissues and targets many substrates, in both the cytosol and nucleus. We found that casein kinase 2 (CK2) phosphorylated OTUB1 at Ser(16) to promote its nuclear accumulation in cells. Pharmacological inhibition or genetic ablation of CK2 blocked the phosphorylation of OTUB1 at Ser(16), causing its nuclear exclusion in various cell types. Whereas we detected unphosphorylated OTUB1 mainly in the cytosol, we detected Ser(16)-phosphorylated OTUB1 only in the nucleus. In vitro, Ser(16)-phosphorylated OTUB1 and nonphosphorylated OTUB1 exhibited similar catalytic activity, bound K63-linked ubiquitin chains, and interacted with the E2 enzyme UBE2N. CK2-mediated phosphorylation and subsequent nuclear localization of OTUB1 promoted the formation of 53BP1 (p53-binding protein 1) DNA repair foci in the nucleus of osteosarcoma cells exposed to ionizing radiation. Our findings indicate that the activity of CK2 is necessary for the nuclear translocation and subsequent function of OTUB1 in DNA damage repair.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Active Transport, Cell Nucleus/genetics
- Animals
- Casein Kinase II/antagonists & inhibitors
- Casein Kinase II/genetics
- Casein Kinase II/metabolism
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Cells, Cultured
- Cysteine Endopeptidases/genetics
- Cysteine Endopeptidases/metabolism
- Deubiquitinating Enzymes
- Embryo, Mammalian/cytology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- HEK293 Cells
- HeLa Cells
- Humans
- Immunoblotting
- Lysine/genetics
- Lysine/metabolism
- Mice, Knockout
- Microscopy, Fluorescence
- Mutation
- Phosphorylation/drug effects
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA Interference
- Receptor, Transforming Growth Factor-beta Type I
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Serine/genetics
- Serine/metabolism
- Transforming Growth Factor beta/pharmacology
- Ubiquitin-Conjugating Enzymes/genetics
- Ubiquitin-Conjugating Enzymes/metabolism
Collapse
Affiliation(s)
- Lina Herhaus
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Ana B Perez-Oliva
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Giorgio Cozza
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Robert Gourlay
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Simone Weidlich
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David G Campbell
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Lorenzo A Pinna
- Department of Biomedical Sciences and CNR Institute of Neurosciences, University of Padova, via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
20
|
Booth AK, Gutierrez-Hartmann A. Signaling pathways regulating pituitary lactotrope homeostasis and tumorigenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:37-59. [PMID: 25472533 DOI: 10.1007/978-3-319-12114-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Dysregulation of the signaling pathways that govern lactotrope biology contributes to tumorigenesis of prolactin (PRL)-secreting adenomas, or prolactinomas, leading to a state of pathological hyperprolactinemia. Prolactinomas cause hypogonadism, infertility, osteoporosis, and tumor mass effects, and are the most common type of neuroendocrine tumor. In this review, we highlight signaling pathways involved in lactotrope development, homeostasis, and physiology of pregnancy, as well as implications for signaling pathways in pathophysiology of prolactinoma. We also review mutations found in human prolactinoma and briefly discuss animal models that are useful in studying pituitary adenoma, many of which emphasize the fact that alterations in signaling pathways are common in prolactinomas. Although individual mutations have been proposed as possible driving forces for prolactinoma tumorigenesis in humans, no single mutation has been clinically identified as a causative factor for the majority of prolactinomas. A better understanding of lactotrope-specific responses to intracellular signaling pathways is needed to explain the mechanism of tumorigenesis in prolactinoma.
Collapse
Affiliation(s)
- Allyson K Booth
- Program in Reproductive Sciences and Integrated Physiology, University of Colorado Denver Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
21
|
Schnitzler A, Olsen BB, Issinger OG, Niefind K. The Protein Kinase CK2Andante Holoenzyme Structure Supports Proposed Models of Autoregulation and Trans-Autophosphorylation. J Mol Biol 2014; 426:1871-82. [DOI: 10.1016/j.jmb.2014.02.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 02/11/2014] [Accepted: 02/24/2014] [Indexed: 11/28/2022]
|
22
|
Rajeeve V, Vendrell I, Wilkes E, Torbett N, Cutillas PR. Cross-species proteomics reveals specific modulation of signaling in cancer and stromal cells by phosphoinositide 3-kinase (PI3K) inhibitors. Mol Cell Proteomics 2014; 13:1457-70. [PMID: 24648465 DOI: 10.1074/mcp.m113.035204] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The tumor microenvironment plays key roles in cancer biology, but its impact on the regulation of signaling pathway activity in cancer cells has not been systemically investigated. We designed an analytical strategy that allows differential analysis of signaling between cancer and stromal cells present in tumor xenografts. We used this approach to investigate how in vivo growth conditions and PI3K inhibitors regulate pathway activities in both cancer and stromal cell populations. We found that, despite inducing more modest changes in protein expression, in vivo growing conditions extensively rewired protein kinase networks in cancer cells. As a result, different sets of phosphorylation sites were modulated by PI3K inhibitors in cancer cells growing in tumors relative to when these cells were in culture. The p110δ PI3K-selective compound CAL-101 (Idelalisib) did not inhibit markers of PI3K activity in cancer or stromal cells; however, unexpectedly, it induced phosphorylation on SQ motifs in both subpopulations of tumor cells in vivo but not in vitro. Thus, the interaction between cancer cells and the stroma modulated the ability of PI3K inhibitors to induce the activation of apoptosis in solid tumors. Our study provides proof-of-principle of a proteomics workflow for measuring signaling specifically in cancer and stromal cells and for investigating how cancer biochemistry is modulated in vivo.
Collapse
Affiliation(s)
- Vinothini Rajeeve
- From the ‡Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, UK
| | | | - Edmund Wilkes
- From the ‡Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, UK
| | - Neil Torbett
- §Activiomics Ltd, Charterhouse Square, London, UK
| | - Pedro R Cutillas
- From the ‡Integrative Cell Signalling and Proteomics, Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, Barts School of Medicine and Dentistry, UK;
| |
Collapse
|
23
|
Lolli G, Cozza G, Mazzorana M, Tibaldi E, Cesaro L, Donella-Deana A, Meggio F, Venerando A, Franchin C, Sarno S, Battistutta R, Pinna LA. Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry 2012; 51:6097-107. [PMID: 22794353 DOI: 10.1021/bi300531c] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sixteen flavonoids and related compounds have been tested for their ability to inhibit three acidophilic Ser/Thr protein kinases: the Golgi apparatus casein kinase (G-CK) recently identified with protein FAM20C, protein kinase CK1, and protein kinase CK2. While G-CK is entirely insensitive to all compounds up to 40 μM concentration, consistent with the view that it is not a member of the kinome, and CK1 is variably inhibited in an isoform-dependent manner by fisetin and luteolin, and to a lesser extent by myricetin and quercetin, CK2 is susceptible to drastic inhibition by many flavonoids, displaying with six of them IC(50) values < 1 μM. A common denominator of these compounds (myricetin, quercetin, fisetin, kaempferol, luteolin, and apigenin) is a flavone scaffold with at least two hydroxyl groups at positions 7 and 4'. Inhibition is competitive with respect to the phospho-donor substrate ATP. The crystal structure of apigenin and luteolin in complex with the catalytic subunit of Zea mays CK2 has been solved, revealing their ability to interact with both the hinge region (Val116) and the positive area near Lys68 and the conserved water W1, the two main polar ligand anchoring points in the CK2 active site. Modeling experiments account for the observation that luteolin but not apigenin inhibits also CK1. The observation that luteolin shares its pyrocatechol moiety with tyrphostin AG99 prompted us to solve also the structure of this compound in complex with CK2. AG99 was found inside the ATP pocket, consistent with its mode of inhibition competitive with respect to ATP. As in the case of luteolin, the pyrocatechol group of AG99 is critical for binding, interacting with the positive area in the deepest part of the CK2 active site.
Collapse
Affiliation(s)
- Graziano Lolli
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy, Via G. Orus 2 35129 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Klopffleisch K, Issinger OG, Niefind K. Low-density crystal packing of human protein kinase CK2 catalytic subunit in complex with resorufin or other ligands: a tool to study the unique hinge-region plasticity of the enzyme without packing bias. ACTA CRYSTALLOGRAPHICA SECTION D: BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:883-92. [PMID: 22868753 DOI: 10.1107/s0907444912016587] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 04/16/2012] [Indexed: 12/13/2022]
Abstract
A low-resolution structure of the catalytic subunit CK2α of human protein kinase CK2 (formerly known as casein kinase 2) in complex with the ATP-competitive inhibitor resorufin is presented. The structure supplements previous human CK2α structures in which the interdomain hinge/helix αD region adopts a closed conformation correlating to a canonically established catalytic spine as is typical for eukaryotic protein kinases. In the corresponding crystal packing the hinge/helix αD region is nearly unaffected by crystal contacts, so that largely unbiased conformational adaptions are possible. This is documented by published human CK2α structures with the same crystal packing but with an open hinge/helix αD region, one of which has been redetermined here with a higher symmetry. An overview of all published human CK2α crystal packings serves as the basis for a discussion of the factors that determine whether the open or the closed hinge/helix αD conformation is adopted. Lyotropic salts in crystallization support the closed conformation, in which the Phe121 side chain complements the hydrophobic catalytic spine ensemble. Consequently, genuine ligand effects on the hinge/helix αD conformation can be best studied under moderate salt conditions. Ligands that stabilize either the open or the closed conformation by hydrogen bonds are known, but a general rule is not yet apparent.
Collapse
Affiliation(s)
- Karsten Klopffleisch
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Otto-Fischer-Strasse 12-14, D-50674 Köln, Germany
| | | | | |
Collapse
|
25
|
Structural and functional analysis of the flexible regions of the catalytic α-subunit of protein kinase CK2. J Struct Biol 2012; 177:382-91. [DOI: 10.1016/j.jsb.2011.12.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 01/27/2023]
|