1
|
Maranesi M, Dall’Aglio C, Moscatelli S, Palmioli E, Coliolo P, Marini D, Guelfi G, Scocco P, Mercati F. Diet Supplementation Influences Ghrelin System Expression in the Skin Appendages of the Sheep. Vet Sci 2025; 12:41. [PMID: 39852916 PMCID: PMC11769205 DOI: 10.3390/vetsci12010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/17/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Ghrelin (GhRL) is an orexigenic hormone influenced by nutritional state. It plays a role in skin repair and diseases, though little information exists regarding its function in this organ. GhRL and its receptor were investigated in the skin of sheep under different feeding conditions to explore GhRL system presence and possible modifications due to diet. Three-year-old female sheep were free to graze from June to the pasture maximum flowering (MxF group) and from this period to maximum dryness addicted (Exp group) or not (MxD group) with 600 gr/die/head of barley and corn. Skin samples were processed for immunohistochemistry and real-time PCR. The immunostaining showed the presence of the GhRL system in skin appendages. Indeed, the ligand was localized in the hair follicles whereas the receptor was also observed in sweat glands and smooth muscle cells. The expression of both genes was significantly higher in the Exp group (3.6 and 2.9 folds respectively, p < 0.05) compared with the MxF group. These results suggest that the GhRL system is involved in the regulation of hair follicles and sweat glands. In addition, diet supplementation may positively modulate the expression of GhRL and its receptor in the skin.
Collapse
Affiliation(s)
- Margherita Maranesi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| | - Cecilia Dall’Aglio
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| | - Sara Moscatelli
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (S.M.); (P.S.)
- International School of Advanced Studies, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, Italy
| | - Elisa Palmioli
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
- Department of Philosophy, Social Sciences, and Education, University of Perugia, Piazza G. Ermini, 1, 06123 Perugia, Italy
| | - Paola Coliolo
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| | - Daniele Marini
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18A, 75236 Uppsala, Sweden
| | - Gabriella Guelfi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| | - Paola Scocco
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032 Camerino, Italy; (S.M.); (P.S.)
| | - Francesca Mercati
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (M.M.); (E.P.); (P.C.); (D.M.); (G.G.); (F.M.)
| |
Collapse
|
2
|
Chen X, Mi J, Huang H, Wang J, Wu Y, Wu X, Zhang S. Ghrelin and ghrelin receptor (GHSR) in Chinese alligator, alligator sinensis: Molecular characterization, tissue distribution and mRNA expression changes during the active and hibernating periods. Gen Comp Endocrinol 2022; 327:114097. [PMID: 35853503 DOI: 10.1016/j.ygcen.2022.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/02/2022] [Accepted: 07/13/2022] [Indexed: 11/20/2022]
Abstract
The Chinese alligator (Alligator sinensis) is a freshwater crocodilian endemic to China. So far, the endocrine regulation of feeding and growth in Chinese alligator is poorly understood. In this study, the molecular structure and tissue expression profiles of ghrelin and its receptor GHSR in the Chinese alligator were characterized for the first time. The full-length cDNA of ghrelin was 1770 bp, including a 37 bp 5 '-UTR (untranslated region), a 435 bp ORF (open reading frame) and a 1298 bp 3 '-UTR. The ORF encodes a ghrelin precursor, which consists of 145 amino acid residues, including a signal peptide with 52 amino acid residues at the N-terminus, a mature peptide with 28 amino acid residues, and a possibly obestain at the C-terminus. The full-length cDNA of GHSR was 3961 bp, including a 5'-UTR of 375-bp, an ORF of 1059-bp and a 3' -UTR of 2527-bp. The ORF encodes a protein of 352 amino acid residues containing seven transmembrane domains, with multiple N glycosylation modification sites and conserved cysteine residue sites. The active core "GSSF" of Chinese alligator ghrelin was identical to that of mammals and birds, and the ghrelin binding site of GHSR was similar to that of mammals. The amino acid sequences of both ghrelin and GHSR share high identity with American alligator (Alligator mississippiensis) and birds. Ghrelin was highly expressed in cerebrum, mesencephalon, hypothalamus and multiple peripheral tissues, including lung, stomach and intestine, suggesting that it could play functions in paracrine and/or autocrine manners in addition to endocrine manner. GHSR expression level was higher in hypothalamus, epencephalon and medulla oblongata, and moderate in multiple peripheral tissues including lung, kindey, stomach and oviduct, implicating that ghrelin/GHSR system may participate in the regulation of energy balance, food intake, water and mineral balance, gastrointestinal motility, gastric acid secretion and reproduction. During hibernation, the expression of ghrelin and GHSR in the brain was significantly increased, while ghrelin was significantly decreased in heart, liver, lung, stomach, pancreas and ovary, and GHSR was significantly decreased in heart, liver, spleen, lung, kindey, stomach, ovary and oviduct. These temporal changes in ghrelin and GHSR expression could facilitate the physiological adaption to the hibernation of Chinese alligator. Our study could provide basic data for further studies on the regulation of feeding, physiological metabolism and reproduction of Chinese alligator, which could also be useful for the improvement of artificial breeding of this endangered species.
Collapse
Affiliation(s)
- Xianxian Chen
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jicong Mi
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Hongbin Huang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Jing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Yu Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Xiaobing Wu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Shengzhou Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China.
| |
Collapse
|
3
|
Álvarez-Vásquez JL, Bravo-Guapisaca MI, Gavidia-Pazmiño JF, Intriago-Morales RV. Adipokines in dental pulp: physiological, pathological, and potential therapeutic roles. J Oral Biosci 2021; 64:59-70. [PMID: 34808362 DOI: 10.1016/j.job.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hundreds of adipokines have been identified, and their extensive range of endocrine functions-regulating distant organs such as oral tissues-and local autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly known proteins in the dental pulp; few of them have been studied despite their large number. This study reviews recent advances in the investigation of dental-pulp adipokines, with an emphasis on their roles in inflammatory processes and their potential therapeutic applications. HIGHLIGHTS The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous physiological and pathological functions in the pulp tissue: they are closely related to pulp inflammatory mechanisms and actively participate in cell differentiation, mineralization, angiogenesis, and immune-system modulation. CONCLUSION Adipokines have potential clinical applications in regenerative endodontics and as biomarkers or targets for the pharmacological management of inflammatory and degenerative processes in dental pulp. A promising direction for the development of new therapies may be the use of agonists/antagonists to modulate the expression of the most studied adipokines.
Collapse
|
4
|
Ugur K, Aydin S, Donder E, Sahin İ, Yardim M, Kalayci M, Gozel N, Ulu R, Dag MS, Sarikaya M. Saliva and serum ghrelin and obestatin in iron deficiency anemia patients. LABORATORIUMSMEDIZIN 2018; 42:183-188. [DOI: 10.1515/labmed-2018-0096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
AbstractBackgroundSerum ghrelin level is also associated with iron deficiency anemia (IDA), but no study has yet been published on the obestatin level in patients with IDA, even though both hormones are a single gene product. Therefore, the purpose of this investigation was to determine whether there is a link between IDA and these two hormones among other hematological parameters in patients with IDA.MethodsTo measure ghrelin and obestatin, human saliva and serum were collected from 30 women with IDA and 30 control women with repeated collection of samples over a period of 1 week and 1 month. Saliva and serum ghrelin levels were measured by enzyme-linked immunosorbent assay.ResultsSaliva and serum ghrelin and obestatin levels were significantly lower in the IDA group compared with controls; these levels increased slightly above baseline with iron treatment, but remained below the control values. Serum hemoglobin (Hb), ferritin and hematocrit (Hct) levels significantly increased with iron treatment, while total iron-binding capacity (TIBC) decreased compared to baseline concentrations.ConclusionsThe findings suggest that IDA might be linked to imbalance of circulating (serum) and non-circulating (saliva) ghrelin and obestatin levels. Using saliva in place of serum for monitoring the two hormones should minimize inconvenience and patient discomfort.
Collapse
Affiliation(s)
- Kader Ugur
- Department of Endocrinology and Metabolism Disease, Firat University School of Medicine, Elazig 23119, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research group), Firat University Hospital, Elazig, Turkey
| | - Emir Donder
- Department of Internal Medicine, Firat University Hospital, Elazig, Turkey
| | - İbrahim Sahin
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research group), Firat University Hospital, Elazig, Turkey
- Department of Medical Biology, School of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Meltem Yardim
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research group), Firat University Hospital, Elazig, Turkey
| | - Mehmet Kalayci
- Department of Medical Biochemistry and Clinical Biochemistry (Firat Hormones Research group), Firat University Hospital, Elazig, Turkey
| | - Nevzat Gozel
- Department of Internal Medicine, Firat University Hospital, Elazig, Turkey
| | - Ramazan Ulu
- Department of Nephrology, Firat University Hospital, Elazig, Turkey
| | - Muhammed Sait Dag
- Department of Gastroenterology, Medical Park Hospital, Gaziantep, Turkey
| | - Murat Sarikaya
- Department of Gastroenterology, Tokat Medical Park Hospital, Tokat, Turkey
| |
Collapse
|
5
|
Ozkorucu D, Cetin N, Sav NM, Yildiz B. Urine and serum ghrelin, sCD80 and sCTLA-4 levels in doxorubicin-induced experimental nephrotic syndrome. Int Urol Nephrol 2016; 48:1187-96. [PMID: 26922067 DOI: 10.1007/s11255-016-1249-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 02/16/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Nephrotic syndrome (NS) is an immune-mediated disorder associated with hyperlipidemia. NS has been proposed to be mediated through CD80-related T cell immune response, which could be blocked using soluble cytotoxic T lymphocyte-associated s(CTLA)-4. Although ghrelin is a hormone-modulating lipid metabolism and suppressing immune system, the precise role of ghrelin in NS is not well established. METHODS We evaluated the levels of ghrelin, soluble CD80 (sCD80) and sCTLA4 in serum and urine in doxorubicin-induced NS in rats. We also investigated the relation between their levels and the levels of serum total cholesterol (TC), triglyceride, albumin and urine protein. RESULTS While urinary ghrelin levels were significantly lower in the nephrotic rats compared to the control group, serum ghrelin levels were comparable in the nephrotic and control rats. In contrast, serum and urinary sCD80 and sCTLA4 levels were higher in the nephrotic rats than the controls. The urinary ghrelin levels were negatively correlated with the levels of serum triglyceride, TC and urine protein, sCD80 and sCTLA4. The urine sCD80 levels were positively correlated with the TC, urine protein and urine sCTLA4 levels, and negatively correlated with the serum albumin. The urine sCTLA4 levels were positively correlated with the TC and urine protein levels and negatively correlated with the serum albumin levels. In regression analysis, the urine ghrelin levels significantly relate to urine sCD80 levels. Besides, hyperlipidemia in NS did not appear to be related to serum ghrelin levels. CONCLUSION Low urine ghrelin levels might be relevant to pathogenesis of doxorubicin-induced NS. The reduction in urine ghrelin levels might also be associated with increased levels of urine sCTLA4 and sCD80 which reflect proteinuria.
Collapse
Affiliation(s)
- Duygu Ozkorucu
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Nuran Cetin
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Nadide Melike Sav
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey
| | - Bilal Yildiz
- Department of Pediatric Nephrology, Faculty of Medicine, Eskisehir Osmangazi University, TR-26480, Eskisehir, Turkey.
| |
Collapse
|
6
|
Liu B, Han X, Feng W, Cui J, Hasegawa T, Amizuka N, Xu X, Li M. Altered distribution of Ghrelin protein in mice molar development. Arch Oral Biol 2016; 65:82-6. [PMID: 26871984 DOI: 10.1016/j.archoralbio.2016.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 01/25/2016] [Accepted: 01/31/2016] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Ghrelin, an appetite-stimulating hormone, plays diverse regulatory functions in cell growth, proliferation, differentiation and apoptosis during mammalian development. There is limited information currently available regarding Ghrelin expression during mammalian tooth development, thus we aimed to establish the spatiotemporal expression of Ghrelin during murine molar odontogenesis. DESIGN Immunohistochemistry was performed to detect the expression pattern of Ghrelin in mandible molar from E15.5 to PN7 during murine tooth development. RESULTS The results showed that Ghrelin initially expressed in the inner enamel epithelium and the adjacent mesenchymal cells below, further with persistent expression in the ameloblasts and odontoblasts throughout the following developmental stages. In addition, Ghrelin was also present in Hertwig's epithelial root sheath at the beginning of tooth root formation. CONCLUSIONS These results suggest that Ghrelin was present in tooth organs throughout the stages of tooth development, especially in ameloblasts and odontoblasts with little spatiotemporal expression differences. However, the potential regulatory roles of this hormone in tooth development still need to be validated by functional studies.
Collapse
Affiliation(s)
- Bo Liu
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China; Stomatology Department of Jining Medical University, China
| | - Xiuchun Han
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Wei Feng
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Jian Cui
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Tomoka Hasegawa
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Norio Amizuka
- Department of Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Xin Xu
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Minqi Li
- Department of Bone Metabolism, School of Stomatology, Shandong University, Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
7
|
Aygen B, Kucuksu M, Aydin S, Ozercan IH. Effect of enalapril maleate on ghrelin levels in metabolic syndrome in rats. Peptides 2015; 67:39-44. [PMID: 25784288 DOI: 10.1016/j.peptides.2015.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/05/2015] [Accepted: 03/05/2015] [Indexed: 12/13/2022]
Abstract
We have explored how enalapril affects ghrelin levels in serum and renal tissues of rats with fructose-induced MetS, using 5-week-old Wistar albino male rats weighing 220 ± 20 g. They divided into 5 groups: (i) control (CT), no fructose supplement fed on standard rat pellet and tap water for 60 days, (ii) metabolic syndrome (MetS) fed with 10% fructose for 60 days, (iii) rats after metabolic syndrome developed treated with enalapril over 30 days (MetS+E30), (iv) rats in which only enalapril was administered for 60 days (E60), and (v) MetS-treated with enalapril for 60 days (MetS+E60). Enalapril maleate was given at 20mg/kg per day by gavage. Fasting serum insulin, uric acid, triglyceride, low-density lipoprotein cholesterol and total cholesterol levels were significantly higher, and the amount of high density lipoprotein cholesterol, and acylated and desacyl ghrelin levels was significantly lower in the MetS groups. Ghrelins were significantly lower in all 3 groups, which were administered enalapril than that of MetS and the control group. Immunohistochemical staining showed that the density of ghrelin was parallel to the serum levels of the peptide. Ghrelin immunoreactivity in the kidneys was of moderate density in the distal and collecting tubules, mild density in the proximal tubule and glomeruli, whereas the density decreased in the MetS group and other enalapril-treated groups. In conclusion, ghrelin levels in MetS groups were significantly lower than control group, and thus Enalapril treatment improves components of MetS and has direct effects on serum ghrelin levels that are independent of MetS.
Collapse
Affiliation(s)
- Bilge Aygen
- Department of Nephrology, Firat University, Faculty of Medicine, Elazig, 23119, Turkey.
| | - Mehmet Kucuksu
- Department of Nephrology, Firat University, Faculty of Medicine, Elazig, 23119, Turkey
| | - Suleyman Aydin
- Department of Medical Biochemistry (Firat Hormones Research Group), Firat University, Faculty of Medicine, Elazig, 23119, Turkey.
| | - Ibrahim Hanifi Ozercan
- Department of Medical Pathology, Firat University, Faculty of Medicine, Elazig, 23119, Turkey
| |
Collapse
|
8
|
Abstract
Levels of obesity have reached epidemic proportions on a global scale, which has led to considerable increases in health problems and increased risk of several diseases, including cardiovascular and pulmonary diseases, cancer and diabetes mellitus. People with obesity consume more food than is needed to maintain an ideal body weight, despite the discrimination that accompanies being overweight and the wealth of available information that overconsumption is detrimental to health. The relationship between energy expenditure and energy intake throughout an individual's lifetime is far more complicated than previously thought. An improved comprehension of the relationships between taste, palatability, taste receptors and hedonic responses to food might lead to increased understanding of the biological underpinnings of energy acquisition, as well as why humans sometimes eat more than is needed and more than we know is healthy. This Review discusses the role of taste receptors in the tongue, gut, pancreas and brain and their hormonal involvement in taste perception, as well as the relationship between taste perception, overeating and the development of obesity.
Collapse
Affiliation(s)
- Sara Santa-Cruz Calvo
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, NIH, Biomedical Research Center, Room 09B133, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224-6825, USA
| |
Collapse
|
9
|
Currow DC, Abernethy AP. Anamorelin hydrochloride in the treatment of cancer anorexia-cachexia syndrome. Future Oncol 2014; 10:789-802. [PMID: 24472001 DOI: 10.2217/fon.14.14] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anamorelin hydrochloride is an orally active ghrelin receptor agonist in development by Helsinn, for the treatment of non-small-cell lung cancer (NSCLC) cachexia. In preclinical and clinical studies, the potent affinity of anamorelin for the ghrelin receptor is associated with significant appetite-enhancing activity and resultant improvements in body weight, lean body mass, and handgrip strength compared with placebo. The accompanying stimulatory effects on growth hormone and IGF-1 are not associated with tumor growth, and overall survival in patients with cancer is not compromised. Anamorelin is well tolerated with no dose-limiting toxicities identified to date. The findings of ongoing Phase III studies are needed to confirm the significant potential of anamorelin to treat NSCLC cachexia.
Collapse
Affiliation(s)
- David C Currow
- Discipline of Palliative & Supportive Services, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | | |
Collapse
|
10
|
Zhang S, Zeng Y, Qu J, Luo Y, Wang X, Li W. Endogenous EGF maintains Sertoli germ cell anchoring junction integrity and is required for early recovery from acute testicular ischemia/reperfusion injury. Reproduction 2013; 145:177-89. [DOI: 10.1530/rep-12-0336] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Administration of exogenous epidermal growth factor (EGF) improves testicular injury after acute ischemia–reperfusion (IR) stress, but the molecular basis is poorly understood. The role of endogenous EGF in testicular recovery and the underlying intracellular signaling pathways involved were herein investigated. In mice, testicular IR injury significantly enhanced the expression level of endogenousEgfat the very beginning of reperfusion. Expression of EGF receptor (Egfr(ErbB1)) was accordingly upregulated 3 h after reperfusion. Deprivation of majority of circulated EGF by sialoadenectomy aggravated testicular detriment (especially in pachytene spermatocytes), enhanced germ cell apoptosis, and thereafter resulted in impaired meiotic differentiation after IR insult. Mechanistically, endogenous EGF signaling appeared to be indispensable for the proper maintenance of Sertoli germ cells anchoring junction dynamics during the early testicular recovery. We also provided thein vitroevidences in a well-established rat Sertoli germ cell co-cultures model that the pro-survival effect of endogenous EGF on germ cells in response to testicular IR insult is mediated, at least in part, via the phosphatidylinositol 3-kinase/pAkt pathway. Collectively, our results suggest that the augment of endogenous EGF during the early testicular recovery may act on top of an endocrinous cascade orchestrating the intimate interactions between Sertoli cells and germ cells and may operate as indispensable defensive mechanism in response to testicular IR stress. Future studies in this field would shed light on this complicated pathogenesis.
Collapse
|
11
|
Beléen C, Martínez-Fuentes AJ, Gracia-Navarro F. Role of SST, CORT and ghrelin and its receptors at the endocrine pancreas. Front Endocrinol (Lausanne) 2012; 3:114. [PMID: 23162532 PMCID: PMC3444847 DOI: 10.3389/fendo.2012.00114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 09/03/2012] [Indexed: 12/21/2022] Open
Abstract
Somatostatin (SST), cortistatin (CORT), and its receptors (sst1-5), and ghrelin and its receptors (GHS-R) are two highly interrelated neuropeptide systems with a broad range of overlapping biological actions at central, cardiovascular, and immune levels among others. Besides their potent regulatory role on GH release, its endocrine actions are highlighted by SST/CORT and ghrelin influence on insulin secretion, glucose homeostasis, and insulin resistance. Interestingly, most components of these systems are expressed at the endocrine pancreas and are actively involved in the modulation of pancreatic islet function and, consequently influence glucose homeostasis. In addition, some of them also participate in islet survival and regeneration. Furthermore, under severe metabolic condition as well as in endocrine pathologies, their expression profile is severely deregulated. These findings suggest that SST/CORT and ghrelin systems could play a relevant role in pancreatic function under metabolic and endocrine pathologies. Accordingly, these systems have been therapeutically targeted for the prevention or amelioration of certain metabolic conditions (obesity) as well as for tumor growth inhibition and/or hormonal regulation in endocrine pathologies (neuroendocrine tumors). This review focuses on the interrelationship between SST/CORT and ghrelin systems and their role in severe metabolic conditions and some endocrine disorders.
Collapse
Affiliation(s)
- Chanclón Beléen
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
| | - Antonio J. Martínez-Fuentes
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
| | - Francisco Gracia-Navarro
- Department of Cell Biology, Physiology and Immunology, University of CórdobaCórdoba, Spain
- Instituto Maimónides de Investigación Biomédica de CórdobaCórdoba, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y NutriciónCórdoba, Spain
- *Correspondence: Francisco Gracia-Navarro, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Campus de Rabanales, Edificio Severo-Ochoa, Planta 3, E-14014 Córdoba, Spain. e-mail:
| |
Collapse
|