1
|
Mathes S, Vanmunster M, Bloch W, Suhr F. Evidence for skeletal muscle fiber type-specific expressions of mechanosensors. Cell Mol Life Sci 2019; 76:2987-3004. [PMID: 30701284 PMCID: PMC11105595 DOI: 10.1007/s00018-019-03026-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 01/30/2023]
Abstract
Mechanosensors govern muscle tissue integrity and constitute a subcellular structure known as costameres. Costameres physically link the muscle extracellular matrix to contractile and signaling 'hubs' inside muscle fibers mainly via integrins and are localized beneath sarcolemmas of muscle fibers. Costameres are the main mechanosensors converting mechanical cues into biological events. However, the fiber type-specific costamere architecture in muscles is unexplored. We hypothesized that fiber types differ in the expression of genes coding for costamere components. By coupling laser microdissection to a multiplex tandem qPCR approach, we demonstrate that type 1 and type 2 fibers indeed show substantial differences in their mechanosensor complexes. We confirmed these data by fiber type population-specific protein analysis and confocal microscopy-based localization studies. We further show that knockdown of the costamere gene integrin-linked kinase (Ilk) in muscle precursor cells results in significantly increased slow-myosin-coding Myh7 gene, while the fast-myosin-coding genes Myh1, Myh2, and Myh4 are downregulated. In parallel, protein synthesis-enhancing signaling molecules (p-mTORSer2448, p < 0.05; p-P70S6KThr389, tendency with p < 0.1) were reduced upon Ilk knockdown. However, overexpression of slow type-inducing NFATc1 in muscle precursor cells did not change Ilk or other costamere gene expressions. In addition, we demonstrate fiber type-specific costamere gene regulation upon mechanical loading and unloading conditions. Our data imply that costamere genes, such as Ilk, are involved in the control of muscle fiber characteristics. Further, they identify costameres as muscle fiber type-specific loading management 'hubs' and may explain adaptation differences of muscle fiber types to mechanical (un)loading.
Collapse
Affiliation(s)
- Sebastian Mathes
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Mathias Vanmunster
- Exercise Physiology Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Tervuursevest 101, Bus 1500, 3001, Leuven, Belgium
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany
| | - Frank Suhr
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Cologne, Germany.
- Exercise Physiology Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Tervuursevest 101, Bus 1500, 3001, Leuven, Belgium.
| |
Collapse
|
2
|
Stuart CA, Stone WL, Howell MEA, Brannon MF, Hall HK, Gibson AL, Stone MH. Myosin content of individual human muscle fibers isolated by laser capture microdissection. Am J Physiol Cell Physiol 2015; 310:C381-9. [PMID: 26676053 DOI: 10.1152/ajpcell.00317.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Muscle fiber composition correlates with insulin resistance, and exercise training can increase slow-twitch (type I) fibers and, thereby, mitigate diabetes risk. Human skeletal muscle is made up of three distinct fiber types, but muscle contains many more isoforms of myosin heavy and light chains, which are coded by 15 and 11 different genes, respectively. Laser capture microdissection techniques allow assessment of mRNA and protein content in individual fibers. We found that specific human fiber types contain different mixtures of myosin heavy and light chains. Fast-twitch (type IIx) fibers consistently contained myosin heavy chains 1, 2, and 4 and myosin light chain 1. Type I fibers always contained myosin heavy chains 6 and 7 (MYH6 and MYH7) and myosin light chain 3 (MYL3), whereas MYH6, MYH7, and MYL3 were nearly absent from type IIx fibers. In contrast to cardiomyocytes, where MYH6 (also known as α-myosin heavy chain) is seen solely in fast-twitch cells, only slow-twitch fibers of skeletal muscle contained MYH6. Classical fast myosin heavy chains (MHC1, MHC2, and MHC4) were present in variable proportions in all fiber types, but significant MYH6 and MYH7 expression indicated slow-twitch phenotype, and the absence of these two isoforms determined a fast-twitch phenotype. The mixed myosin heavy and light chain content of type IIa fibers was consistent with its role as a transition between fast and slow phenotypes. These new observations suggest that the presence or absence of MYH6 and MYH7 proteins dictates the slow- or fast-twitch phenotype in skeletal muscle.
Collapse
Affiliation(s)
- Charles A Stuart
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee;
| | - William L Stone
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; and
| | - Mary E A Howell
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Marianne F Brannon
- Department of Pediatrics, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee; and
| | - H Kenton Hall
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Andrew L Gibson
- Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Michael H Stone
- Department of Exercise and Sport Science, Clemmer College of Education, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
3
|
Taverna D, Norris JL, Caprioli RM. Histology-directed microwave assisted enzymatic protein digestion for MALDI MS analysis of mammalian tissue. Anal Chem 2014; 87:670-6. [PMID: 25427280 PMCID: PMC4287167 DOI: 10.1021/ac503479a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
This study presents on-tissue proteolytic
digestion using a microwave
irradiation and peptide extraction method for in situ analysis of proteins from spatially defined regions of a tissue
section. The methodology utilizes hydrogel discs (1 mm diameter) embedded
with trypsin solution. The enzyme-laced hydrogel discs are applied
to a tissue section, directing enzymatic digestion to a spatially
confined area of the tissue. By applying microwave radiation, protein
digestion is performed in 2 min on-tissue, and the extracted peptides
are then analyzed by matrix assisted laser desorption/ionization mass
spectrometry (MALDI MS) and liquid chromatography tandem mass spectrometry
(LC-MS/MS). The reliability and reproducibility of the microwave assisted
hydrogel mediated on-tissue digestion is demonstrated by the comparison
with other on-tissue digestion strategies, including comparisons with
conventional heating and in-solution digestion. LC-MS/MS data were
evaluated considering the number of identified proteins as well as
the number of protein groups and distinct peptides. The results of
this study demonstrate that rapid and reliable protein digestion can
be performed on a single thin tissue section while preserving the
relationship between the molecular information obtained and the tissue
architecture, and the resulting peptides can be extracted in sufficient
abundance to permit analysis using LC-MS/MS. This approach will be
most useful for samples that have limited availability but are needed
for multiple analyses, especially for the correlation of proteomics
data with histology and immunohistochemistry.
Collapse
Affiliation(s)
- Domenico Taverna
- Department of Chemistry and Technological Chemistry, University of Calabria , Arcavacata di Rende, Cosenza 87036, Italy
| | | | | |
Collapse
|
4
|
Morissette MP, Susser SE, Stammers AN, O'Hara KA, Gardiner PF, Sheppard P, Moffatt TL, Duhamel TA. Differential regulation of the fiber type-specific gene expression of the sarcoplasmic reticulum calcium-ATPase isoforms induced by exercise training. J Appl Physiol (1985) 2014; 117:544-55. [PMID: 24876362 DOI: 10.1152/japplphysiol.00092.2014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The regulatory role of adenosine monophosphate-activated protein kinase (AMPK)-α2 on sarcoplasmic reticulum calcium-ATPase (SERCA) 1a and SERCA2a in different skeletal muscle fiber types has yet to be elucidated. Sedentary (Sed) or exercise-trained (Ex) wild-type (WT) and AMPKα2-kinase dead (KD) transgenic mice, which overexpress a mutated and inactivated AMPKα2 subunit, were utilized to characterize how genotype or exercise training influenced the regulation of SERCA isoforms in gastrocnemius. As expected, both Sed and Ex KD mice had >40% lower AMPK phosphorylation and 30% lower SERCA1a protein than WT mice (P < 0.05). In contrast, SERCA2a protein was not different among KD and WT mice. Exercise increased SERCA1a and SERCA2a protein content among WT and KD mice, compared with their Sed counterparts. Maximal SERCA activity was lower in KD mice, compared with WT. Total phospholamban protein was higher in KD mice than in WT and lower in Ex compared with Sed mice. Exercise training increased phospholamban Ser(16) phosphorylation in WT mice. Laser capture microdissection and quantitative PCR indicated that SERCA1a mRNA expression among type I fibers was not altered by genotype or exercise, but SERCA2a mRNA was increased 30-fold in WT+Ex, compared with WT+Sed. In contrast, the exercise-stimulated increase for SERCA2a mRNA was blunted in KD mice. Exercise upregulated SERCA1a and SERCA2a mRNA among type II fibers, but was not altered by genotype. Collectively, these data suggest that exercise differentially influences SERCA isoform expression in type I and type II fibers. Additionally, AMPKα2 influences the regulation of SERCA2a mRNA in type I skeletal muscle fibers following exercise training.
Collapse
Affiliation(s)
- Marc P Morissette
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Shanel E Susser
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
| | - Andrew N Stammers
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Kimberley A O'Hara
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Phillip F Gardiner
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Spinal Cord Research Institute, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patricia Sheppard
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Spinal Cord Research Institute, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Teri L Moffatt
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada
| | - Todd A Duhamel
- Health, Leisure, and Human Performance Research Institute, Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg, Manitoba, Canada; Institute of Cardiovascular Sciences, St. Boniface General Hospital Research Centre, Winnipeg, Manitoba, Canada; Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada; and
| |
Collapse
|