1
|
Lee C, Xu S, Samad T, Goodyer WR, Raissadati A, Heinrich P, Wu SM. The cardiac conduction system: History, development, and disease. Curr Top Dev Biol 2024; 156:157-200. [PMID: 38556422 DOI: 10.1016/bs.ctdb.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
The heart is the first organ to form during embryonic development, establishing the circulatory infrastructure necessary to sustain life and enable downstream organogenesis. Critical to the heart's function is its ability to initiate and propagate electrical impulses that allow for the coordinated contraction and relaxation of its chambers, and thus, the movement of blood and nutrients. Several specialized structures within the heart, collectively known as the cardiac conduction system (CCS), are responsible for this phenomenon. In this review, we discuss the discovery and scientific history of the mammalian cardiac conduction system as well as the key genes and transcription factors implicated in the formation of its major structures. We also describe known human diseases related to CCS development and explore existing challenges in the clinical context.
Collapse
Affiliation(s)
- Carissa Lee
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Sidra Xu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States
| | - Tahmina Samad
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States; Department of Pediatrics, Stanford University, Stanford, CA, United States
| | - William R Goodyer
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Alireza Raissadati
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Division of Pediatric Cardiology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, United States
| | - Paul Heinrich
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Regenerative Medicine in Cardiovascular Diseases, First Department of Medicine, Cardiology, Klinikum Rechts der Isar, Technical University of Munich, School of Medicine and Health, Munich, Germany
| | - Sean M Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, United States; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, United States; Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, United States.
| |
Collapse
|
2
|
Henley T, Goudy J, Easterling M, Donley C, Wirka R, Bressan M. Local tissue mechanics control cardiac pacemaker cell embryonic patterning. Life Sci Alliance 2023; 6:e202201799. [PMID: 36973005 PMCID: PMC10043993 DOI: 10.26508/lsa.202201799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
Cardiac pacemaker cells (CPCs) initiate the electric impulses that drive the rhythmic beating of the heart. CPCs reside in a heterogeneous, ECM-rich microenvironment termed the sinoatrial node (SAN). Surprisingly, little is known regarding the biochemical composition or mechanical properties of the SAN, and how the unique structural characteristics present in this region of the heart influence CPC function remains poorly understood. Here, we have identified that SAN development involves the construction of a "soft" macromolecular ECM that specifically encapsulates CPCs. In addition, we demonstrate that subjecting embryonic CPCs to substrate stiffnesses higher than those measured in vivo results in loss of coherent electrical oscillation and dysregulation of the HCN4 and NCX1 ion channels required for CPC automaticity. Collectively, these data indicate that local mechanics play a critical role in maintaining the embryonic CPC function while also quantitatively defining the range of material properties that are optimal for embryonic CPC maturation.
Collapse
Affiliation(s)
- Trevor Henley
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie Goudy
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Marietta Easterling
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carrie Donley
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Robert Wirka
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Michael Bressan
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
3
|
Karimi T, Pan Z, Potaman VN, Alt EU. Conversion of Unmodified Stem Cells to Pacemaker Cells by Overexpression of Key Developmental Genes. Cells 2023; 12:1381. [PMID: 37408215 PMCID: PMC10216671 DOI: 10.3390/cells12101381] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 07/07/2023] Open
Abstract
Arrhythmias of the heart are currently treated by implanting electronic pacemakers and defibrillators. Unmodified adipose tissue-derived stem cells (ASCs) have the potential to differentiate into all three germ layers but have not yet been tested for the generation of pacemaker and Purkinje cells. We investigated if-based on overexpression of dominant conduction cell-specific genes in ASCs-biological pacemaker cells could be induced. Here we show that by overexpression of certain genes that are active during the natural development of the conduction system, the differentiation of ASCs to pacemaker and Purkinje-like cells is feasible. Our study revealed that the most effective procedure consisted of short-term upregulation of gene combinations SHOX2-TBX5-HCN2, and to a lesser extent SHOX2-TBX3-HCN2. Single-gene expression protocols were ineffective. Future clinical implantation of such pacemaker and Purkinje cells, derived from unmodified ASCs of the same patient, could open up new horizons for the treatment of arrythmias.
Collapse
Affiliation(s)
- Tahereh Karimi
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
| | - Zhizhong Pan
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Vladimir N. Potaman
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
| | - Eckhard U. Alt
- Heart and Vascular Institute, Department of Medicine, Tulane University Health Science Center, 1430 Tulane Ave, New Orleans, LA 70112, USA;
- Alliance of Cardiovascular Researchers, 2211 Augusta Dr #10, Houston, TX 77057, USA
- InGeneron Inc., 8205 El Rio Street, Houston, TX 77054, USA
- Sanford Health, University of South Dakota, Sioux Falls, SD 57104, USA
- Isar Klinikum Munich, Sonnenstr 24-26, 80331 Munich, Germany
| |
Collapse
|
4
|
Mesirca P, Nakao S, Nissen SD, Forte G, Anderson C, Trussell T, Li J, Cox C, Zi M, Logantha S, Yaar S, Cartensen H, Bidaud I, Stuart L, Soattin L, Morris GM, da Costa Martins PA, Cartwright EJ, Oceandy D, Mangoni ME, Jespersen T, Buhl R, Dobrzynski H, Boyett MR, D'Souza A. Intrinsic Electrical Remodeling Underlies Atrioventricular Block in Athletes. Circ Res 2021; 129:e1-e20. [PMID: 33849278 DOI: 10.1161/circresaha.119.316386] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Pietro Mesirca
- IGF, Université de Montpellier, CNRS, INSERM, France (P.M., I.B., M.E.M.)
| | - Shu Nakao
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
- Department of Biomedical Sciences, Ritsumeikan University, Japan (S.N.)
| | - Sarah Dalgas Nissen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences (S.D.N., H.C., R.B.), University of Copenhagen, Denmark
| | - Gabriella Forte
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Cali Anderson
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Tariq Trussell
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Jue Li
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Charlotte Cox
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Min Zi
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Sunil Logantha
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
- Liverpool Centre for Cardiovascular Sciences, University of Liverpool, United Kingdom (S.L.)
| | - Sana Yaar
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Helena Cartensen
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences (S.D.N., H.C., R.B.), University of Copenhagen, Denmark
| | - Isabelle Bidaud
- IGF, Université de Montpellier, CNRS, INSERM, France (P.M., I.B., M.E.M.)
| | - Luke Stuart
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | | | - Gwilym M Morris
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | | | - Elizabeth J Cartwright
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Delvac Oceandy
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| | - Matteo E Mangoni
- IGF, Université de Montpellier, CNRS, INSERM, France (P.M., I.B., M.E.M.)
| | - Thomas Jespersen
- Department of Biomedical Sciences (T.J., M.R.B.), University of Copenhagen, Denmark
| | - Rikke Buhl
- Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences (S.D.N., H.C., R.B.), University of Copenhagen, Denmark
| | - Halina Dobrzynski
- Department of Anatomy, Jagiellonian University Medical College, Poland (H.D.)
| | - Mark R Boyett
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
- Department of Biomedical Sciences (T.J., M.R.B.), University of Copenhagen, Denmark
| | - Alicia D'Souza
- Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N., G.F., C.A., T.T., J.L., C.C., M.Z., S.L., S.Y., L. Stuart, L. Soattin, G.M.M., E.J.C., D.O., H.D., M.R.B., A.D.)
| |
Collapse
|
5
|
Lang D, Glukhov AV. Cellular and Molecular Mechanisms of Functional Hierarchy of Pacemaker Clusters in the Sinoatrial Node: New Insights into Sick Sinus Syndrome. J Cardiovasc Dev Dis 2021; 8:jcdd8040043. [PMID: 33924321 PMCID: PMC8069964 DOI: 10.3390/jcdd8040043] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/17/2022] Open
Abstract
The sinoatrial node (SAN), the primary pacemaker of the heart, consists of a heterogeneous population of specialized cardiac myocytes that can spontaneously produce action potentials, generating the rhythm of the heart and coordinating heart contractions. Spontaneous beating can be observed from very early embryonic stage and under a series of genetic programing, the complex heterogeneous SAN cells are formed with specific biomarker proteins and generate robust automaticity. The SAN is capable to adjust its pacemaking rate in response to environmental and autonomic changes to regulate the heart's performance and maintain physiological needs of the body. Importantly, the origin of the action potential in the SAN is not static, but rather dynamically changes according to the prevailing conditions. Changes in the heart rate are associated with a shift of the leading pacemaker location within the SAN and accompanied by alterations in P wave morphology and PQ interval on ECG. Pacemaker shift occurs in response to different interventions: neurohormonal modulation, cardiac glycosides, pharmacological agents, mechanical stretch, a change in temperature, and a change in extracellular electrolyte concentrations. It was linked with the presence of distinct anatomically and functionally defined intranodal pacemaker clusters that are responsible for the generation of the heart rhythm at different rates. Recent studies indicate that on the cellular level, different pacemaker clusters rely on a complex interplay between the calcium (referred to local subsarcolemmal Ca2+ releases generated by the sarcoplasmic reticulum via ryanodine receptors) and voltage (referred to sarcolemmal electrogenic proteins) components of so-called "coupled clock pacemaker system" that is used to describe a complex mechanism of SAN pacemaking. In this review, we examine the structural, functional, and molecular evidence for hierarchical pacemaker clustering within the SAN. We also demonstrate the unique molecular signatures of intranodal pacemaker clusters, highlighting their importance for physiological rhythm regulation as well as their role in the development of SAN dysfunction, also known as sick sinus syndrome.
Collapse
|
6
|
Assembly of the Cardiac Pacemaking Complex: Electrogenic Principles of Sinoatrial Node Morphogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8040040. [PMID: 33917972 PMCID: PMC8068396 DOI: 10.3390/jcdd8040040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/31/2021] [Accepted: 04/05/2021] [Indexed: 11/24/2022] Open
Abstract
Cardiac pacemaker cells located in the sinoatrial node initiate the electrical impulses that drive rhythmic contraction of the heart. The sinoatrial node accounts for only a small proportion of the total mass of the heart yet must produce a stimulus of sufficient strength to stimulate the entire volume of downstream cardiac tissue. This requires balancing a delicate set of electrical interactions both within the sinoatrial node and with the downstream working myocardium. Understanding the fundamental features of these interactions is critical for defining vulnerabilities that arise in human arrhythmic disease and may provide insight towards the design and implementation of the next generation of potential cellular-based cardiac therapeutics. Here, we discuss physiological conditions that influence electrical impulse generation and propagation in the sinoatrial node and describe developmental events that construct the tissue-level architecture that appears necessary for sinoatrial node function.
Collapse
|
7
|
Guide Cells Support Muscle Regeneration and Affect Neuro-Muscular Junction Organization. Int J Mol Sci 2021; 22:ijms22041939. [PMID: 33669272 PMCID: PMC7920023 DOI: 10.3390/ijms22041939] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them 'guide' cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.
Collapse
|
8
|
Zhao Y, Rafatian N, Wang EY, Wu Q, Lai BFL, Lu RX, Savoji H, Radisic M. Towards chamber specific heart-on-a-chip for drug testing applications. Adv Drug Deliv Rev 2020; 165-166:60-76. [PMID: 31917972 PMCID: PMC7338250 DOI: 10.1016/j.addr.2019.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Modeling of human organs has long been a task for scientists in order to lower the costs of therapeutic development and understand the pathological onset of human disease. For decades, despite marked differences in genetics and etiology, animal models remained the norm for drug discovery and disease modeling. Innovative biofabrication techniques have facilitated the development of organ-on-a-chip technology that has great potential to complement conventional animal models. However, human organ as a whole, more specifically the human heart, is difficult to regenerate in vitro, in terms of its chamber specific orientation and its electrical functional complexity. Recent progress with the development of induced pluripotent stem cell differentiation protocols, made recapitulating the complexity of the human heart possible through the generation of cells representative of atrial & ventricular tissue, the sinoatrial node, atrioventricular node and Purkinje fibers. Current heart-on-a-chip approaches incorporate biological, electrical, mechanical, and topographical cues to facilitate tissue maturation, therefore improving the predictive power for the chamber-specific therapeutic effects targeting adult human. In this review, we will give a summary of current advances in heart-on-a-chip technology and provide a comprehensive outlook on the challenges involved in the development of human physiologically relevant heart-on-a-chip.
Collapse
Affiliation(s)
- Yimu Zhao
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Division of Cardiology and Peter Munk Cardiac Center, University of Health Network, Toronto, Ontario M5G 2N2, Canada
| | - Erika Yan Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Qinghua Wu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Benjamin F L Lai
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick Xingze Lu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Houman Savoji
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada.
| |
Collapse
|
9
|
Delisle BP, Yu Y, Puvvula P, Hall AR, Huff C, Moon AM. Tbx3-Mediated Regulation of Cardiac Conduction System Development and Function: Potential Contributions of Alternative RNA Processing. Pediatr Cardiol 2019; 40:1388-1400. [PMID: 31372681 DOI: 10.1007/s00246-019-02166-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/18/2019] [Indexed: 11/28/2022]
Abstract
In this article, we provide a brief summary of work by us and others to discover the molecular underpinnings of early conduction system development and function. We focus on how the multifunctional protein Tbx3 contributes to acquisition and homeostasis of the tissue-specific properties of the sinoatrial and atrioventricular nodes. We also provide unpublished, preliminary findings supporting the role of Tbx3-regulated alternative RNA processing in the developing conduction system.
Collapse
Affiliation(s)
- Brian P Delisle
- Department of Physiology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pavan Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, 100 North Academy Ave 26-18, Danville, PA, 17822, USA
| | - Allison R Hall
- Department of Physiology, University of Kentucky School of Medicine, Lexington, KY, USA
| | - Chad Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, 100 North Academy Ave 26-18, Danville, PA, 17822, USA. .,Departments of Pediatrics and Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
10
|
Abstract
The rate and rhythm of heart muscle contractions are coordinated by the cardiac conduction system (CCS), a generic term for a collection of different specialized muscular tissues within the heart. The CCS components initiate the electrical impulse at the sinoatrial node, propagate it from atria to ventricles via the atrioventricular node and bundle branches, and distribute it to the ventricular muscle mass via the Purkinje fibre network. The CCS thereby controls the rate and rhythm of alternating contractions of the atria and ventricles. CCS function is well conserved across vertebrates from fish to mammals, although particular specialized aspects of CCS function are found only in endotherms (mammals and birds). The development and homeostasis of the CCS involves transcriptional and regulatory networks that act in an embryonic-stage-dependent, tissue-dependent, and dose-dependent manner. This Review describes emerging data from animal studies, stem cell models, and genome-wide association studies that have provided novel insights into the transcriptional networks underlying CCS formation and function. How these insights can be applied to develop disease models and therapies is also discussed.
Collapse
|
11
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
12
|
Coronel-Cruz C, Sánchez I, Hernández-Tellez B, Rodríguez-Mata V, Pinzón-Estrada E, Castell-Rodríguez A, Pérez-Armendariz E. Connexin 30.2 is expressed in exocrine vascular endothelial and ductal epithelial cells throughout pancreatic postnatal development. Acta Histochem 2018; 120:558-565. [PMID: 30100173 DOI: 10.1016/j.acthis.2018.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/10/2018] [Accepted: 06/29/2018] [Indexed: 02/08/2023]
Abstract
Previously we have demonstrated that the GJ protein connexin 30.2 (Cx30.2) is expressed in pancreatic beta cells and endothelial cells (ECs) of the islet. In the present study, we address whether Cx30.2 is expressed in the exocrine pancreas, including its vascular system. For this, adult mouse pancreatic sections were double labeled with specific antibodies against Cx30.2 and CD31, an endothelial cell marker, or with anti-α-actin smooth muscle, a smooth muscle cell (SMC) marker or anti-mucin-1, a marker of epithelial ductal cells, using immunofluorescence (IF) studies. Cx30.2-IF hot spots were found at junctional membranes of exocrine ECs and SMCs of blood vessels. Furthermore, Cx30.2 was localized in mucin-1 positive cells or epithelial ductal cells. Using immunohistochemistry (IHC) studies, it was found that in vessels and ducts of different diameters, Cx30.2 was also expressed in these cell types. In addition, it was found that Cx30.2 is already expressed in these cell types in pancreatic sections of 3, 14 and 21 days postpartum. Moreover, this cell specific pattern of expression was also found in the adult rat, hamster and guinea pig pancreas. Expression of Cx30.2 mRNA and protein in the pancreas of all these species was confirmed by RT-PCR and Western blot studies. Overall, our results suggest that intercellular coupling mediated by Cx30.2 intercellular channels may synchronize the functional activity of ECs and SMCs of vascular cells, as well as of epithelial ductal cells after birth.
Collapse
|
13
|
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Takano M, Nagase S, Morita H, Kusano KF, Ito H. HCN4-Overexpressing Mouse Embryonic Stem Cell-Derived Cardiomyocytes Generate a New Rapid Rhythm in Rats with Bradycardia. Int Heart J 2018; 59:601-606. [PMID: 29628472 DOI: 10.1536/ihj.17-241] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A biological pacemaker is expected to solve the persisting problems of an artificial cardiac pacemaker including short battery life, lead breaks, infection, and electromagnetic interference. We previously reported HCN4 overexpression enhances pacemaking ability of mouse embryonic stem cell-derived cardiomyocytes (mESC-CMs) in vitro. However, the effect of these cells on bradycardia in vivo has remained unclear. Therefore, we transplanted HCN4-overexpressing mESC-CMs into bradycardia model animals and investigated whether they could function as a biological pacemaker. The rabbit Hcn4 gene was transfected into mouse embryonic stem cells and induced HCN4-overexpressing mESC-CMs. Non-cardiomyocytes were removed under serum/glucose-free and lactate-supplemented conditions. Cardiac balls containing 5 × 103 mESC-CMs were made by using the hanging drop method. One hundred cardiac balls were injected into the left ventricular free wall of complete atrioventricular block (CAVB) model rats. Heart beats were evaluated using an implantable telemetry system 7 to 30 days after cell transplantation. The result showed that ectopic ventricular beats that were faster than the intrinsic escape rhythm were often observed in CAVB model rats transplanted with HCN4-overexpressing mESC-CMs. On the other hand, the rats transplanted with non-overexpressing mESC-CMs showed sporadic single premature ventricular contraction but not sustained ectopic ventricular rhythms. These results indicated that HCN4-overexpressing mESC-CMs produce rapid ectopic ventricular rhythms as a biological pacemaker.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Masashi Yoshida
- Department of Chronic Kidney Disease and Cardiovascular Disease, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Hiroki Sugiyama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Morita
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Kengo F Kusano
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences.,Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| |
Collapse
|
14
|
Brown K, Legros S, Ortega FA, Dai Y, Doss MX, Christini DJ, Robinson RB, Foley AC. Overexpression of Map3k7 activates sinoatrial node-like differentiation in mouse ES-derived cardiomyocytes. PLoS One 2017; 12:e0189818. [PMID: 29281682 PMCID: PMC5744947 DOI: 10.1371/journal.pone.0189818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022] Open
Abstract
In vivo, cardiomyocytes comprise a heterogeneous population of contractile cells defined by unique electrophysiologies, molecular markers and morphologies. The mechanisms directing myocardial cells to specific sub-lineages remain poorly understood. Here we report that overexpression of TGFβ-Activated Kinase (TAK1/Map3k7) in mouse embryonic stem (ES) cells faithfully directs myocardial differentiation of embryoid body (EB)-derived cardiac cells toward the sinoatrial node (SAN) lineage. Most cardiac cells in Map3k7-overexpressing EBs adopt markers, cellular morphologies, and electrophysiological behaviors characteristic of the SAN. These data, in addition to the fact that Map3k7 is upregulated in the sinus venous—the source of cells for the SAN—suggest that Map3k7 may be an endogenous regulator of the SAN fate.
Collapse
Affiliation(s)
- Kemar Brown
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Stephanie Legros
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Francis A. Ortega
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yunkai Dai
- Department of Bioengineering, Clemson University, Charleston, SC, United States of America
| | - Michael Xavier Doss
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - David J. Christini
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Richard B. Robinson
- Department of Pharmacology, Columbia University Medical Center, New York, NY, United States of America
| | - Ann C. Foley
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Bioengineering, Clemson University, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
15
|
(Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 2017; 120:142-167. [PMID: 28916499 DOI: 10.1016/j.addr.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.
Collapse
|
16
|
Hamilton RM. "Chip off the old block"-Do genetic factors contribute to postoperative heart block? Heart Rhythm 2016; 14:410-411. [PMID: 27988370 DOI: 10.1016/j.hrthm.2016.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Robert M Hamilton
- Labatt Family Heart Centre/Physiology and Experimental Medicine, The Hospital for Sick Children and Research Institute, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
17
|
Development of the cardiac pacemaker. Cell Mol Life Sci 2016; 74:1247-1259. [PMID: 27770149 DOI: 10.1007/s00018-016-2400-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/16/2016] [Accepted: 10/17/2016] [Indexed: 01/11/2023]
Abstract
The sinoatrial node (SAN) is the dominant pacemaker of the heart. Abnormalities in SAN formation and function can cause sinus arrhythmia, including sick sinus syndrome and sudden death. A better understanding of genes and signaling pathways that regulate SAN development and function is essential to develop more effective treatment to sinus arrhythmia, including biological pacemakers. In this review, we briefly summarize the key processes of SAN morphogenesis during development, and focus on the transcriptional network that drives SAN development.
Collapse
|
18
|
Maass K, Shekhar A, Lu J, Kang G, See F, Kim EE, Delgado C, Shen S, Cohen L, Fishman GI. Isolation and characterization of embryonic stem cell-derived cardiac Purkinje cells. Stem Cells 2016; 33:1102-12. [PMID: 25524238 DOI: 10.1002/stem.1921] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 12/16/2022]
Abstract
The cardiac Purkinje fiber network is composed of highly specialized cardiomyocytes responsible for the synchronous excitation and contraction of the ventricles. Computational modeling, experimental animal studies, and intracardiac electrical recordings from patients with heritable and acquired forms of heart disease suggest that Purkinje cells (PCs) may also serve as critical triggers of life-threatening arrhythmias. Nonetheless, owing to the difficulty in isolating and studying this rare population of cells, the precise role of PC in arrhythmogenesis and the underlying molecular mechanisms responsible for their proarrhythmic behavior are not fully characterized. Conceptually, a stem cell-based model system might facilitate studies of PC-dependent arrhythmia mechanisms and serve as a platform to test novel therapeutics. Here, we describe the generation of murine embryonic stem cells (ESC) harboring pan-cardiomyocyte and PC-specific reporter genes. We demonstrate that the dual reporter gene strategy may be used to identify and isolate the rare ESC-derived PC (ESC-PC) from a mixed population of cardiogenic cells. ESC-PC display transcriptional signatures and functional properties, including action potentials, intracellular calcium cycling, and chronotropic behavior comparable to endogenous PC. Our results suggest that stem-cell derived PC are a feasible new platform for studies of developmental biology, disease pathogenesis, and screening for novel antiarrhythmic therapies.
Collapse
Affiliation(s)
- Karen Maass
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vedantham V. New Approaches to Biological Pacemakers: Links to Sinoatrial Node Development. Trends Mol Med 2015; 21:749-761. [PMID: 26611337 DOI: 10.1016/j.molmed.2015.10.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 12/30/2022]
Abstract
Irreversible degeneration of the cardiac conduction system is a common disease that can cause activity intolerance, fainting, and death. While electronic pacemakers provide effective treatment, alternative approaches are needed when long-term indwelling hardware is undesirable. Biological pacemakers comprise electrically active cells that functionally integrate with the heart. Recent findings on cardiac pacemaker cells (PCs) within the sinoatrial node (SAN), along with developments in stem cell technology, have opened a new era in biological pacing. Recent experiments that have derived PC-like cells from non-PCs have brought the field closer than ever before to biological pacemakers that can faithfully recapitulate SAN activity. In this review, I discuss these approaches in the context of SAN biology and address the potential for clinical translation.
Collapse
Affiliation(s)
- Vasanth Vedantham
- Department of Medicine, Cardiology Division, University of California, San Francisco, CA, USA; Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.
| |
Collapse
|
20
|
Saito Y, Nakamura K, Yoshida M, Sugiyama H, Ohe T, Kurokawa J, Furukawa T, Takano M, Nagase S, Morita H, Kusano KF, Ito H. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker. PLoS One 2015; 10:e0138193. [PMID: 26384234 PMCID: PMC4575154 DOI: 10.1371/journal.pone.0138193] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 08/26/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If) flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels and attenuation of the inward rectifier K+ current (IK1) flowing through inward rectifier potassium (Kir) channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs) and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs) function as a biological pacemaker in vitro. METHODS AND RESULTS The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded to ivabradine, an If inhibitor, and to isoproterenol, a beta-adrenergic receptor agonist. Co-culture of human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) with aggregates composed of mESC-CMs resulted in synchronized contraction of the cells. The beating rate of hiPSC-CMs co-cultured with aggregates of HCN4-overexpressing mESC-CMs was significantly higher than that of non-treated hiPSC-CMs and that of hiPSC-CMs co-cultured with aggregates of non-overexpressing mESC-CMs. CONCLUSIONS We generated HCN4-overexpresssing mESC-CMs expressing genes required for impulse conduction, showing rapid spontaneous beating, responding to an If inhibitor and beta-adrenergic receptor agonist, and having pacing ability in an in vitro co-culture system with other excitable cells. The results indicated that these cells could be applied to a biological pacemaker.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kazufumi Nakamura
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- * E-mail:
| | - Masashi Yoshida
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroki Sugiyama
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Tohru Ohe
- Sakakibara Heart Institute of Okayama, Okayama, Japan
| | - Junko Kurokawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsushi Furukawa
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Makoto Takano
- Department of Physiology, Kurume University School of Medicine, Kurume, Japan
| | - Satoshi Nagase
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Hiroshi Morita
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- Department of Cardiovascular Therapeutics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Kengo F. Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hiroshi Ito
- Department of Cardiovascular Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
21
|
Günther A, Baumann A. Distinct expression patterns of HCN channels in HL-1 cardiomyocytes. BMC Cell Biol 2015; 16:18. [PMID: 26141616 PMCID: PMC4490601 DOI: 10.1186/s12860-015-0065-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 06/05/2015] [Indexed: 01/05/2023] Open
Abstract
Background Cardiac rhythmic activity is initiated in functionally specialized areas of the heart. Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels are fundamental for these processes of cardiac physiology. Results Here we investigated transcript and protein expression patterns of HCN channels in HL-1 cardiomyocytes using a combination of quantitative PCR analysis and immunocytochemistry. Gene expression profiles of hcn1, hcn2 and hcn4 were acutely affected during HL-1 cell propagation. In addition, distinct expression patterns were uncovered for HCN1, HCN2 and HCN4 proteins. Conclusions Our results suggest that HCN channel isoforms might be involved in the concerted differentiation of HL-1 cells and may indirectly affect the occurrence of contractile HL-1 cell activity. We expect that these findings will promote studies on other molecular markers that contribute to cardiac physiology. Electronic supplementary material The online version of this article (doi:10.1186/s12860-015-0065-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Günther
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Wilhelm-Johnen-Straße, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Wilhelm-Johnen-Straße, Forschungszentrum Jülich, D-52425, Jülich, Germany.
| |
Collapse
|
22
|
Tsai SY, Maass K, Lu J, Fishman GI, Chen S, Evans T. Efficient Generation of Cardiac Purkinje Cells from ESCs by Activating cAMP Signaling. Stem Cell Reports 2015; 4:1089-102. [PMID: 26028533 PMCID: PMC4471825 DOI: 10.1016/j.stemcr.2015.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/27/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022] Open
Abstract
Dysfunction of the specialized cardiac conduction system (CCS) is associated with life-threatening arrhythmias. Strategies to derive CCS cells, including rare Purkinje cells (PCs), would facilitate models for mechanistic studies and drug discovery and also provide new cellular materials for regenerative therapies. A high-throughput chemical screen using CCS:lacz and Contactin2:egfp (Cntn2:egfp) reporter embryonic stem cell (ESC) lines was used to discover a small molecule, sodium nitroprusside (SN), that efficiently promotes the generation of cardiac cells that express gene profiles and generate action potentials of PC-like cells. Imaging and mechanistic studies suggest that SN promotes the generation of PCs from cardiac progenitors initially expressing cardiac myosin heavy chain and that it does so by activating cyclic AMP signaling. These findings provide a strategy to derive scalable PCs, along with insight into the ontogeny of CCS development. A chemical screen was carried out for compounds that induce cardiac conduction cells Two ESC reporter lines were used to identify lead hits Sodium nitroprusside efficiently generated scalable amounts of PC-like cells By activating cAMP signaling, PCs are derived from cardiac progenitors
Collapse
Affiliation(s)
- Su-Yi Tsai
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Karen Maass
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Jia Lu
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA
| | - Glenn I Fishman
- Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, NY 10016, USA.
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
23
|
Barbuti A, Robinson RB. Stem cell-derived nodal-like cardiomyocytes as a novel pharmacologic tool: insights from sinoatrial node development and function. Pharmacol Rev 2015; 67:368-88. [PMID: 25733770 DOI: 10.1124/pr.114.009597] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Since the first reports on the isolation and differentiation of stem cells, and in particular since the early success in driving these cells down a cardiac lineage, there has been interest in the potential of such preparations in cardiac regenerative therapy. Much of the focus of such research has been on improving mechanical function after myocardial infarction; however, electrophysiologic studies of these preparations have revealed a heterogeneous mix of action potential characteristics, including some described as "pacemaker" or "nodal-like," which in turn led to interest in the therapeutic potential of these preparations in the treatment of rhythm disorders; several proof-of-concept studies have used these cells to create a biologic alternative to electronic pacemakers. Further, there are additional potential applications of a preparation of pacemaker cells derived from stem cells, for example, in high-throughput screens of new chronotropic agents. All such applications require reasonably efficient methods for selecting or enriching the "nodal-like" cells, however, which in turn depends on first defining what constitutes a nodal-like cell since not all pacemaking cells are necessarily of nodal lineage. This review discusses the current state of the field in terms of characterizing sinoatrial-like cardiomyocytes derived from embryonic and induced pluripotent stem cells, markers that might be appropriate based on the current knowledge of the gene program leading to sinoatrial node development, what functional characteristics might be expected and desired based on studies of the sinoatrial node, and recent efforts at enrichment and selection of nodal-like cells.
Collapse
Affiliation(s)
- Andrea Barbuti
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy (A.B.); and Department of Pharmacology, Columbia University Medical Center, New York, New York (R.B.R.)
| | - Richard B Robinson
- Department of Biosciences, Università degli Studi di Milano, Milano, Italy (A.B.); and Department of Pharmacology, Columbia University Medical Center, New York, New York (R.B.R.)
| |
Collapse
|