1
|
Mondal A, Banerjee S, Terang W, Bishayee A, Zhang J, Ren L, da Silva MN, Bishayee A. Capsaicin: A chili pepper bioactive phytocompound with a potential role in suppressing cancer development and progression. Phytother Res 2024; 38:1191-1223. [PMID: 38176910 DOI: 10.1002/ptr.8107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/06/2024]
Abstract
Cancer profoundly influences morbidity and fatality rates worldwide. Patients often have dismal prognoses despite recent improvements in cancer therapy regimens. However, potent biomolecules derived from natural sources, including medicinal and dietary plants, contain biological and pharmacological properties to prevent and treat various human malignancies. Capsaicin is a bioactive phytocompound present in red hot chili peppers. Capsaicin has demonstrated many biological effects, including antioxidant, anti-inflammatory, antimicrobial, and anticarcinogenic capabilities. This review highlights the cellular and molecular pathways through which capsaicin exhibits antineoplastic activities. Our work also depicts the synergistic anticancer properties of capsaicin in conjunction with other natural bioactive components and approved anticancer drugs. Capsaicin inhibits proliferation in various cancerous cells, and its antineoplastic actions in numerous in vitro and in vivo carcinoma models impact oncogenesis, tumor-promoting and suppressor genes, and associated signaling pathways. Capsaicin alone or combined with other phytocompounds or approved antineoplastic drugs triggers cell cycle progression arrest, generating reactive oxygen species and disrupting mitochondrial membrane integrity, ultimately stimulating caspases and promoting death. Furthermore, capsaicin alone or in combination can promote apoptosis in carcinoma cells by enhancing the p53 and c-Myc gene expressions. In conclusion, capsaicin alone or in combination can have enormous potential for cancer prevention and intervention, but further high-quality studies are needed to firmly establish the clinical efficacy of this phytocompound.
Collapse
Affiliation(s)
- Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha, India
| | - Sabyasachi Banerjee
- Department of Pharmaceutical Chemistry, Gupta College of Technological Sciences, Asansol, India
| | - Wearank Terang
- Department of Pharmacology, Rahman Institute of Pharmaceutical Sciences and Research, Kamrup, India
| | - Anusha Bishayee
- Department of Statistics and Data Science, College of Arts and Sciences, Cornell University, Ithaca, New York, USA
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, China
| | - Milton Nascimento da Silva
- Laboratory of Liquid Chromatography, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Chemistry Post-Graduation Program, Institute of Exact and Natural Sciences, Federal University of Pará, Belém, Brazil
- Pharmaceutical Science Post-Graduation Program, Institute of Health Sciences, Federal University of Pará, Belém, Brazil
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| |
Collapse
|
2
|
Hashemi M, Razzazan M, Bagheri M, Asadi S, Jamali B, Khalafi M, Azimi A, Rad S, Behroozaghdam M, Nabavi N, Rashidi M, Dehkhoda F, Taheriazam A, Entezari M. Versatile function of AMPK signaling in osteosarcoma: An old player with new emerging carcinogenic functions. Pathol Res Pract 2023; 251:154849. [PMID: 37837858 DOI: 10.1016/j.prp.2023.154849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
AMP-activated protein kinase (AMPK) signaling has a versatile role in Osteosarcoma (OS), an aggressive bone malignancy with a poor prognosis, particularly in cases that have metastasized or recurred. This review explores the regulatory mechanisms, functional roles, and therapeutic applications of AMPK signaling in OS. It focuses on the molecular activation of AMPK and its interactions with cellular processes like proliferation, apoptosis, and metabolism. The uncertain role of AMPK in cancer is also discussed, highlighting its potential as both a tumor suppressor and a contributor to carcinogenesis. The therapeutic potential of targeting AMPK signaling in OS treatment is examined, including direct and indirect activators like metformin, A-769662, resveratrol, and salicylate. Further research is needed to determine dosing, toxicities, and molecular mechanisms responsible for the anti-osteosarcoma effects of these compounds. This review underscores the complex involvement of AMPK signaling in OS and emphasizes the need for a comprehensive understanding of its molecular mechanisms. By elucidating the role of AMPK in OS, the aim is to pave the way for innovative therapeutic approaches that target this pathway, ultimately improving the prognosis and quality of life for OS patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Bagheri
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saba Asadi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Behdokht Jamali
- Department of Microbiology and Genetics, Kherad Institute of Higher Education, Bushehr, lran
| | - Maryam Khalafi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Abolfazl Azimi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Sepideh Rad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics,Faculty of Medicine, Islamic Azad University, Kish International Branch, Kish, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Mohsen Rashidi
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran; Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Farshid Dehkhoda
- Department of Orthopedics, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
3
|
Pang Y, Lu T, Xu-Monette ZY, Young KH. Metabolic Reprogramming and Potential Therapeutic Targets in Lymphoma. Int J Mol Sci 2023; 24:5493. [PMID: 36982568 PMCID: PMC10052731 DOI: 10.3390/ijms24065493] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Lymphoma is a heterogeneous group of diseases that often require their metabolism program to fulfill the demand of cell proliferation. Features of metabolism in lymphoma cells include high glucose uptake, deregulated expression of enzymes related to glycolysis, dual capacity for glycolytic and oxidative metabolism, elevated glutamine metabolism, and fatty acid synthesis. These aberrant metabolic changes lead to tumorigenesis, disease progression, and resistance to lymphoma chemotherapy. This metabolic reprogramming, including glucose, nucleic acid, fatty acid, and amino acid metabolism, is a dynamic process caused not only by genetic and epigenetic changes, but also by changes in the microenvironment affected by viral infections. Notably, some critical metabolic enzymes and metabolites may play vital roles in lymphomagenesis and progression. Recent studies have uncovered that metabolic pathways might have clinical impacts on the diagnosis, characterization, and treatment of lymphoma subtypes. However, determining the clinical relevance of biomarkers and therapeutic targets related to lymphoma metabolism is still challenging. In this review, we systematically summarize current studies on metabolism reprogramming in lymphoma, and we mainly focus on disorders of glucose, amino acids, and lipid metabolisms, as well as dysregulation of molecules in metabolic pathways, oncometabolites, and potential metabolic biomarkers. We then discuss strategies directly or indirectly for those potential therapeutic targets. Finally, we prospect the future directions of lymphoma treatment on metabolic reprogramming.
Collapse
Affiliation(s)
- Yuyang Pang
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Hematology, Ninth People’s Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Tingxun Lu
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Zijun Y. Xu-Monette
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| | - Ken H. Young
- Division of Hematopathology, Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Duke Cancer Institute, Durham, NC 27710, USA
| |
Collapse
|
4
|
Wang J, Yu S, Wang L, Liu T, Yang X, Hu X, Wang Y. Capsaicin decreases fecundity in the Asian malaria vector Anopheles stephensi by inhibiting the target of rapamycin signaling pathway. Parasit Vectors 2022; 15:458. [PMID: 36510333 PMCID: PMC9743593 DOI: 10.1186/s13071-022-05593-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Mosquito-borne diseases threaten human health, but mosquito control faces various challenges, such as resistance to chemical insecticides. Thus, there is an urgent need for more effective and environment-friendly control agents. Capsaicin can downregulate the mTOR signaling pathway of tumor cells. The TOR signaling pathway can mediate the expression of vitellogenin (Vg) to regulate the fecundity of insects. Whether capsaicin has the potential to inhibit fecundity of mosquitoes by regulating TOR pathway and Vg expression is currently unclear. METHODS Anopheles stephensi were fed with blood of mice administered capsaicin by gavage or sugar containing capsaicin followed by a blood feeding with normal mice. Then, the engorged female mosquitoes were tubed individually and underwent oviposition. The eggs and individuals in the subsequent development stages, including larvae, pupae, and emerging adults, were counted and compared between the capsaicin treatment and control groups. Additionally, total RNA and protein were extracted from the engorged mosquitoes at 24 h post blood feeding. Real-time PCR and western blot were performed to detect the transcriptional level and protein expression of the key fecundity-related molecules of mosquitoes. Finally, TOR signaling pathway was inhibited via rapamycin treatment, and changes in fecundity and the key molecule transcription and protein expression levels were examined to verify the role of TOR signaling pathway in the effect of capsaicin on mosquito fecundity. RESULTS The laid and total eggs (laid eggs plus retained eggs) of An. stephensi were significantly reduced by feeding on the blood of capsaicin-treated mice (P < 0.01) or capsaicin-containing sugar (P < 0.01) compared with those in the control group. Moreover, the transcription and protein expression or phosphorylation levels of fecundity-related molecules, such as Akt, TOR, S6K, and Vg, were significantly decreased by capsaicin treatment. However, the effects disappeared between control group and CAP group after the TOR signaling pathway was inhibited by rapamycin. CONCLUSIONS Capsaicin can decrease the fecundity of An. stephensi by inhibiting the TOR signaling pathway. These data can help us to not only understand the effect of capsaicin on the reproductive ability of An. stephensi and its underlying mechanism, but also develop new efficient, safe, and pollution-free mosquito vector control agents.
Collapse
Affiliation(s)
- Jing Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Shasha Yu
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Luhan Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Tingting Liu
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Xuesen Yang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| | - Xiaobing Hu
- Centers for Disease Control and Prevention of Western Theater Command, Lanzhou, 730020 China
| | - Ying Wang
- grid.410570.70000 0004 1760 6682Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, No. 30 Gaotanyan St, Shapingba Dis, Chongqing, 400038 China
| |
Collapse
|
5
|
Zhu YR, Zhang XY, Wu QP, Yu CJ, Liu YY, Zhang YQ. PF-06409577 Activates AMPK Signaling and Inhibits Osteosarcoma Cell Growth. Front Oncol 2021; 11:659181. [PMID: 34336655 PMCID: PMC8316637 DOI: 10.3389/fonc.2021.659181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma (OS) is a common primary bone malignancy. We here investigated the potential activity of PF-06409577, a novel, potent, and direct activator of AMP-activated protein kinase (AMPK), against human OS cells. In established (U2OS, MG-63, and SaOs-2 lines) and primary human OS cells, PF-06409577 inhibited cell viability and proliferation, while inducing cell apoptosis and cell cycle arrest. PF-06409577 induced AMPK activation, mTORC1 inhibition, autophagy induction, and downregulation of multiple receptor tyrosine kinase inOS cells. AMPK inactivation by AMPKα1 shRNA, CRISPR/Cas9 knockout, or dominant negative mutation (T172A) was able to abolish PF-06409577-induced activity in OS cells. In vivo, PF-06409577 oral administration at well-tolerated doses potently inhibited growth of U2OS cells and primary human OS cells in severe combined immunodeficient mice. AMPK activation, mTORC1 inhibition, autophagy induction, as well as RTK degradation and apoptosis activation were detected in PF-06409577-treated xenografts. In conclusion, activation of AMPK by PF-06409577 inhibits OS cell growth.
Collapse
Affiliation(s)
- Yun-Rong Zhu
- Department of Orthopedics, Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| | - Xiang-Yang Zhang
- Department of Orthopaedics, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiu-Ping Wu
- Department of Orthopedics, Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| | - Cheng-Jian Yu
- Department of Emergency, 900 Hospital of The Joint Logistics Team, Dongfang Hospital, Xiamen University, Fuzong Clinical College of Fujian Medical University, Fuzhou, China
| | - Yuan-Yuan Liu
- Clinical Research & Lab Center, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Yun-Qing Zhang
- Department of Orthopedics, Affiliated Jiangyin Hospital of Medical College of Southeast University, Jiangyin, China
| |
Collapse
|
6
|
Xie Z, He B, Jiang Z, Zhao L. Tanshinone IIA inhibits osteosarcoma growth through modulation of AMPK-Nrf2 signaling pathway. J Recept Signal Transduct Res 2020; 40:591-598. [PMID: 32496906 DOI: 10.1080/10799893.2020.1772296] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tanshinone IIA (Tan IIA) is a member of the major lipophilic components extracted from the root of Salvia miltiorrhiza Bunge. Osteosarcomas are primary malignant tumors of bone. The aim of our study is to explore the role of Tan IIA in osteosarcomas survival, migration, and proliferation. MG63 osteosarcoma cell line was cultured in vitro and treated with different concentrations of Tan IIA. Then, ELISA, immunofluorescence, qPCR, western blots, and pathway analysis were conducted to verify whether Tan II modulated osteosarcoma survival, migration, and proliferation through the AMPK/Nrf2 signaling pathway. Our results indicated that Tan IIA dose-dependently inhibited MG63 osteosarcoma cell survival, migration, and proliferation. Mechanistically, Tan IIA reduced cell viability and inhibited the transcriptions of migratory factors. In addition, the number of proliferative MG63 osteosarcoma cell was also reduced by Tan IIA. Molecular investigations demonstrated that Tan IIA treatment caused a drop in the transcriptions and activities of AMPK and Nrf2. Interestingly, knockdown of AMPK and Nrf2 markedly attenuated MG63 osteosarcoma cell survival, migration, and proliferation. Altogether, our results indicate that Tan IIA could be used as an effective anticancer drug to control osteosarcoma proliferation through affecting its survival, migration, and proliferation.
Collapse
Affiliation(s)
- Zengjun Xie
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Binbin He
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Ziyun Jiang
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| | - Liang Zhao
- Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, China
| |
Collapse
|
7
|
Zhao Y, Zhou Y, Wang M. Brosimone I, an isoprenoid-substituted flavonoid, induces cell cycle G 1 phase arrest and apoptosis through ROS-dependent endoplasmic reticulum stress in HCT116 human colon cancer cells. Food Funct 2019; 10:2729-2738. [PMID: 31038133 DOI: 10.1039/c8fo02315h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Brosimone I is an isoprenoid-substituted flavonoid from Artocarpus heterophyllus. Here, we reported for the first time that brosimone I induced cell cycle G1 phase arrest and apoptosis in HCT116 human colon cancer cells. Brosimone I treatment increased the cytosolic Ca2+ level, and subsequently activated the CaMKKβ-AMPK pathway. STO-609, a CaMKKβ inhibitor, and compound C, an AMPK-specific inhibitor, attenuated brosimone I-induced loss of cell viability in HCT116 cells. Furthermore, brosimone I enhanced ER stress. Salubrinal, an ER stress inhibitor, reduced brosimone I-induced cell growth inhibition. In addition, brosimone I was found to increase ROS generation and the inhibition of ROS formation by NAC, a ROS inhibitor, attenuated brosimone I-induced cell death, cytosolic Ca2+ increase, and ER stress markers. Collectively, our findings reveal that brosimone I induces cell cycle G1 phase arrest and apoptosis via the induction of ROS-mediated increased cytosolic Ca2+, ER stress, and the activation of the CaMKKβ-AMPK signaling pathway.
Collapse
Affiliation(s)
- Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | | | | |
Collapse
|
8
|
Zhang S, Wang D, Huang J, Hu Y, Xu Y. Application of capsaicin as a potential new therapeutic drug in human cancers. J Clin Pharm Ther 2019; 45:16-28. [DOI: 10.1111/jcpt.13039] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Shengping Zhang
- Department of Surgical Urology The People's Hospital of Longhua Shenzhen China
| | - Dian Wang
- College of Pharmacy Central South University Changsha China
| | - Jingying Huang
- Department of Cell Biology and Genetics Shenzhen University Health Science Center Shenzhen China
| | - Yueming Hu
- Department of Cell Biology and Genetics Shenzhen University Health Science Center Shenzhen China
| | - Yafei Xu
- Department of Cell Biology and Genetics Shenzhen University Health Science Center Shenzhen China
| |
Collapse
|
9
|
Liu B, Ding L, Zhang L, Wang S, Wang Y, Wang B, Li L. Baicalein Induces Autophagy and Apoptosis through AMPK Pathway in Human Glioma Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 47:1405-1418. [PMID: 31488033 DOI: 10.1142/s0192415x19500721] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Baicalein (BAI) is a natural flavonoid. It has been shown that BAI has anticancer effects, but the molecular mechanism is still unclear. The aim of the current study was to confirm whether or not BAI triggers autophagy and induces AMPK activation in glioma U251 cells. The Ad-mcherry-GFP-LC3B adenovirus experiments indicated that BAI induces glioma cell autophagy. Western blotting showed that the level of LC3II expression increased with the time and concentration of BAI. Following treatment with chloroquine, the expression of LC3 was enhanced Immunofluorescence also confirmed this result. At the same time, cleaved caspase-3, DAPI staining, and JC-1 staining revealed that apoptosis was also induced in the induction of autophagy. In addition, we found that BAI activates phosphorylation of AMPK, which is further confirmed using compound C in this process. When the phosphorylation of AMPK was inhibited, autophagy, and apoptosis were also inhibited. In conclusion, BAI induces autophagy and apoptosis through AMPK pathway. Surprisingly, our research provides new insight with the function of anticancer of BAI, and the potential of the promotion in glioma cell apoptosis might be related to autophagy activation. These results demonstrate the anticancer activity of BAI, which can be used as potential therapeutic agents for cancer therapy.
Collapse
Affiliation(s)
- Bingyan Liu
- Department of Histology and Embrology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Lingling Ding
- Department of Histology and Embrology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Li Zhang
- Department of Medical Immunology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Shuang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Yu Wang
- Department of Histology and Embrology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Bin Wang
- Department of Microbiology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| | - Ling Li
- Department of Histology and Embrology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, P. R. China
| |
Collapse
|
10
|
Li M, Zhang CS, Zong Y, Feng JW, Ma T, Hu M, Lin Z, Li X, Xie C, Wu Y, Jiang D, Li Y, Zhang C, Tian X, Wang W, Yang Y, Chen J, Cui J, Wu YQ, Chen X, Liu QF, Wu J, Lin SY, Ye Z, Liu Y, Piao HL, Yu L, Zhou Z, Xie XS, Hardie DG, Lin SC. Transient Receptor Potential V Channels Are Essential for Glucose Sensing by Aldolase and AMPK. Cell Metab 2019; 30:508-524.e12. [PMID: 31204282 PMCID: PMC6720459 DOI: 10.1016/j.cmet.2019.05.018] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/03/2019] [Accepted: 05/21/2019] [Indexed: 02/06/2023]
Abstract
Fructose-1,6-bisphosphate (FBP) aldolase links sensing of declining glucose availability to AMPK activation via the lysosomal pathway. However, how aldolase transmits lack of occupancy by FBP to AMPK activation remains unclear. Here, we show that FBP-unoccupied aldolase interacts with and inhibits endoplasmic reticulum (ER)-localized transient receptor potential channel subfamily V, inhibiting calcium release in low glucose. The decrease of calcium at contact sites between ER and lysosome renders the inhibited TRPV accessible to bind the lysosomal v-ATPase that then recruits AXIN:LKB1 to activate AMPK independently of AMP. Genetic depletion of TRPVs blocks glucose starvation-induced AMPK activation in cells and liver of mice, and in nematodes, indicative of physical requirement of TRPVs. Pharmacological inhibition of TRPVs activates AMPK and elevates NAD+ levels in aged muscles, rejuvenating the animals' running capacity. Our study elucidates that TRPVs relay the FBP-free status of aldolase to the reconfiguration of v-ATPase, leading to AMPK activation in low glucose.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yue Zong
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Jin-Wei Feng
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Teng Ma
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Meiqin Hu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China
| | - Zhizhong Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xiaotong Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Dong Jiang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Ying Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Yanyan Yang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jie Chen
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Jiwen Cui
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Yu-Qing Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Xin Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Qing-Feng Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Jianfeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Zhiyun Ye
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China
| | - Ying Liu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, 100871 Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Scientific Research Center for Translational Medicine, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, 100084 Beijing, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, PKU-IDG/McGovern Institute for Brain Research, Peking University, 100871 Beijing, China
| | - Xiao-Song Xie
- McDermott Center of Human Growth and Development MC8591, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, 361102 Fujian, China.
| |
Collapse
|
11
|
Maruca A, Catalano R, Bagetta D, Mesiti F, Ambrosio FA, Romeo I, Moraca F, Rocca R, Ortuso F, Artese A, Costa G, Alcaro S, Lupia A. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur J Med Chem 2019; 181:111579. [PMID: 31398616 DOI: 10.1016/j.ejmech.2019.111579] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Many bioactive agents have been extracted from plants or belong to functional foods and have been considered in the treatment of serious and multifactorial diseases, such as cancer. In particular, this review is focused on the anti-cancer properties owned by several natural products typically from the Mediterranean area. In some regions of the South of Italy, a lower cancer incidence has been observed. There is increasing evidence that adherence to a Mediterranean dietary pattern correlates with reduced risk of several cancer types. This could be mainly attributed to the typical lifestyle aspects of the Mediterranean diet, such as high consumption of fruit and vegetables. In this review, the main natural products of the Mediterranean area are discussed, with particular attention on their anti-cancer properties endowed with multi-target profiles.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Chemistry and Chemical Technology, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Federica Moraca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Roberta Rocca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine "Magna Græcia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
12
|
Bao Z, Dai X, Wang P, Tao Y, Chai D. Capsaicin induces cytotoxicity in human osteosarcoma MG63 cells through TRPV1-dependent and -independent pathways. Cell Cycle 2019; 18:1379-1392. [PMID: 31095448 DOI: 10.1080/15384101.2019.1618119] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
An accumulating body of evidence has shown that capsaicin induces apoptosis in various tumor cells as a mechanism of its anti-tumor activity. However, the effects of capsaicin on osteosarcoma have not been studied extensively. In the current study, we explore the molecular mechanism of capsaicin-mediated tumor suppressive function in osteosarcoma. We found that capsaicin-induced apoptosis and the activation of transient receptor potential receptor vanilloid 1 (TRPV1) in a dose- and time-dependent manner in human osteosarcoma MG63 cells in vitro. Blocking TRPV1 using capsazepine attenuated the capsaicin-induced cytotoxicity, mitochondrial dysfunction, overproduction of reactive oxygen species (ROS) and decrease in superoxide dismutase (SOD) activity. In addition, the results demonstrated that capsaicin induced the activation of adenosine 5'-monophosphate-activated protein kinase (AMPK), p53 and C-jun N-terminal kinase (JNK). In addition, Compound C (antagonist of AMPK) attenuated the activation of p53, which appeared to be TRPV1 independent. Taken together, the present study suggests that capsaicin effectively causes cell death in human osteosarcoma MG63 cells via the activation of TRPV1-dependent (mitochondrial dysfunction, and overproduction of ROS and JNK) and TRPV1-independent (AMPK-p53) pathways. Thus, capsaicin may be a potential anti-osteosarcoma agent.
Collapse
Affiliation(s)
- Zhengqi Bao
- a Department of Orthopedics , The First Affiliated Hospital of Bengbu Medical College , Bengbu , China
| | - Xiusong Dai
- a Department of Orthopedics , The First Affiliated Hospital of Bengbu Medical College , Bengbu , China
| | - Peter Wang
- b Department of Biochemistry and Molecular Biology, School of Laboratory Medicine , Bengbu Medical College , Anhui , China
| | - Yisheng Tao
- c Department of Pathology , the First Affiliated Hospital of Bengbu Medical College , Bengbu , China
| | - Damin Chai
- c Department of Pathology , the First Affiliated Hospital of Bengbu Medical College , Bengbu , China
| |
Collapse
|
13
|
Chen JC, Ko JC, Yen TC, Chen TY, Lin YC, Ma PF, Lin YW. Capsaicin enhances erlotinib-induced cytotoxicity via AKT inactivation and excision repair cross-complementary 1 (ERCC1) down-regulation in human lung cancer cells. Toxicol Res (Camb) 2019; 8:459-470. [PMID: 31160978 DOI: 10.1039/c8tx00346g] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 03/11/2019] [Indexed: 01/23/2023] Open
Abstract
Capsaicin, a natural active ingredient of green and red peppers, has been demonstrated to exhibit anti-cancer properties in several malignant cell lines. Excision repair cross-complementary 1 (ERCC1) has a leading role in the nucleotide excision repair (NER) process because of its involvement in the excision of DNA adducts. Erlotinib (TarcevaR) is a selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that has demonstrated clinical activity in non-small cell lung cancer (NSCLC) cells. However, whether capsaicin and erlotinib could induce synergistic cytotoxicity in NSCLC cells through modulating ERCC1 expression is unknown. In this study, capsaicin decreased the ERCC1 expression in an AKT inactivation dependent manner in two human lung adenocarcinoma cells, namely, A549 and H1975. Enhancement of AKT activity by transfection with constitutive active AKT vectors increased the ERCC1 protein level as well as the cell survival by capsaicin. Moreover, capsaicin synergistically enhanced the cytotoxicity and cell growth inhibition of erlotinib in NSCLC cells, which were associated with the down-regulation of ERCC1 expression and inactivation of AKT in A549 and H1975 cells. Together, these results may provide a rationale to combine capsaicin with erlotinib for lung cancer treatment.
Collapse
Affiliation(s)
- Jyh-Cheng Chen
- Department of Food Science , National Chiayi University , Chiayi , Taiwan
| | - Jen-Chung Ko
- Department of Internal Medicine , National Taiwan University Hospital , Hsin-Chu Branch , Taiwan
| | - Ting-Chuan Yen
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Tzu-Ying Chen
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Yuan-Cheng Lin
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Peng-Fang Ma
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| | - Yun-Wei Lin
- Department of Biochemical Science and Technology , National Chiayi University , Chiayi , Taiwan . ; ; Tel: +886-5-271-7770
| |
Collapse
|
14
|
Lin RJ, Wu IJ, Hong JY, Liu BH, Liang RY, Yuan TM, Chuang SM. Capsaicin-induced TRIB3 upregulation promotes apoptosis in cancer cells. Cancer Manag Res 2018; 10:4237-4248. [PMID: 30323679 PMCID: PMC6177521 DOI: 10.2147/cmar.s162383] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is one of the main pungent components of chili peppers and has been shown to exert various effects on numerous physiological processes. Recent studies have focused on the chemopreventive effects of capsaicin, which can combat growth in various human cancer cell systems. The tribbles-related protein 3 (TRIB3) is evolutionarily conserved from Drosophila to humans. In the latter, TRIB3 is a key determinant in numerous cellular processes, including apoptosis. Purpose The aim of this study was to examine the importance of TRIB3 in the antitumor efficacy of capsaicin in human cancer cells, and further assess potential mechanism(s) underlying the capsaicin-induced upregulation of TRIB3. Methods Human cancer cell lines were treated with capsaicin, then evaluated for levels of TRIB3 and molecules related to apoptosis or signaling pathways. The impact of TRIB3 on capsaicin-induced apoptosis was investigated using si-RNA or overexpression of TRIB3. Results It is the first time to show that TRIB3 is targeted by capsaicin to promote apoptosis. Capsaicin promotes apoptotic cell death by upregulating TRIB3 expression in cancer cells. Overexpression of TRIB3 enhances capsaicin-induced apoptosis, and TRIB3 knockdown experiments demonstrate that the effect of capsaicin in apoptotic cell death is correlated with the induction of TRIB3 in cancer cells. Finally, enhancements in gene expression and protein stability are involved in the capsaicin-induced upregulation of TRIB3. Conclusion Our results show that the capsaicin-induced upregulation of TRIB3 triggers apoptosis and thereby contributes to the suppression of cell growth in cancer cell lines.
Collapse
Affiliation(s)
- Rong-Jaan Lin
- College of Life Sciences, National Chung Hsing University.,Taichung Hospital, Ministry of Health and Welfare
| | - I-Jung Wu
- College of Life Sciences, National Chung Hsing University.,Taichung Hospital, Ministry of Health and Welfare
| | - Jo-Yu Hong
- Bachelor Program of Biotechnology, College of Agriculture and Natural Resources
| | - Bang-Hung Liu
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University,
| | - Ruei-Yue Liang
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University,
| | - Tein-Ming Yuan
- Surgery Department, Feng-Yuan Hospital, Ministry of Health and Welfare
| | - Show-Mei Chuang
- Institute of Biomedical Sciences, College of Life Sciences, National Chung Hsing University, .,Department of Nursing, Asia University, .,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan,
| |
Collapse
|
15
|
López-Gallardo E, Emperador S, Hernández-Ainsa C, Montoya J, Bayona-Bafaluy MP, Ruiz-Pesini E. Food derived respiratory complex I inhibitors modify the effect of Leber hereditary optic neuropathy mutations. Food Chem Toxicol 2018; 120:89-97. [PMID: 29991444 DOI: 10.1016/j.fct.2018.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/21/2018] [Accepted: 07/05/2018] [Indexed: 01/14/2023]
Abstract
Mitochondrial DNA mutations in genes encoding respiratory complex I polypeptides can cause Leber hereditary optic neuropathy. Toxics affecting oxidative phosphorylation system can also cause mitochondrial optic neuropathy. Some complex I inhibitors found in edible plants might differentially interact with these pathologic mutations and modify their penetrance. To analyze this interaction, we have compared the effect of rotenone, capsaicin and rolliniastatin-1 on cybrids harboring the most frequent Leber hereditary optic neuropathy mutations and found that m.3460G > A mutation increases rotenone resistance but capsaicin and rolliniastatin-1 susceptibility. Thus, to explain the pathogenicity of mitochondrial diseases due to mitochondrial DNA mutations, their potential interactions with environment factors will have to be considered.
Collapse
Affiliation(s)
- Ester López-Gallardo
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Sonia Emperador
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Carmen Hernández-Ainsa
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain.
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - M Pilar Bayona-Bafaluy
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular. Universidad de Zaragoza, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigaciones Biomédicas En Red de Enfermedades Raras (CIBERER), Zaragoza, Spain; Fundación ARAID, Zaragoza, Spain.
| |
Collapse
|
16
|
mTOR: An attractive therapeutic target for osteosarcoma? Oncotarget 2018; 7:50805-50813. [PMID: 27177330 PMCID: PMC5226621 DOI: 10.18632/oncotarget.9305] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/05/2016] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma (OS) is a common primary malignant bone tumor with high morbidity and mortality in children and young adults. How to improve poor prognosis of OS due to resistance to chemotherapy remains a challenge. Recently, growing findings show activation of mammalian target of rapamycin (mTOR), is associated with OS cell growth, proliferation, metastasis. Targeting mTOR may be a promising therapeutic approach for treating OS. This review summarizes the roles of mTOR pathway in OS and present research status of mTOR inhibitors in the context of OS. In addition, we have attempted to discuss how to design a better treatment project for OS by combining mTOR inhibitor with other drugs.
Collapse
|
17
|
Zhang Y, Deng X, Lei T, Yu C, Wang Y, Zhao G, Luo X, Tang K, Quan Z, Jiang D. Capsaicin inhibits proliferation and induces apoptosis in osteosarcoma cell lines via the mitogen‑activated protein kinase pathway. Oncol Rep 2017; 38:2685-2696. [PMID: 29048662 PMCID: PMC5780021 DOI: 10.3892/or.2017.5960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 08/29/2017] [Indexed: 12/31/2022] Open
Abstract
Capsaicin, a pungent molecular compound present in many hot peppers, exerts anticancer activities against various human cancer cell lines by inducing apoptosis. However, the effects of capsaicin on human osteosarcoma (OS) as well as the related mechanisms remain to be fully elucidated. In the present study, the anticancer effects of capsaicin on 3 human OS cell lines (MG63, 143B and HOS) were investigated. Various concentrations of capsaicin (50-300 µM) effectively decreased cell viability in all 3 OS cell lines in a dose-dependent manner. Notably, capsaicin-induced apoptosis was observed when OS cells were treated with relatively high concentrations of capsaicin (starting at 250 µM). In addition, the mitochondrial apoptotic pathway was involved in the capsaicin-induced apoptosis in the OS cells. Meanwhile, our results also indicated that at relatively low concentrations (e.g., 100 µM), capsaicin could inhibit the proliferation, decrease the colony forming ability and induce G0/G1 phase cell cycle arrest of OS cells in a dose-dependent manner. Moreover, our results revealed that the anticancer effects induced by capsaicin on OS cell lines involved multiple MAPK signaling pathways as indicated by inactivation of the ERK1/2 and p38 pathways and activation of the JNK pathway. Furthermore, the results of animal experiments showed that capsaicin inhibited tumor growth in a xenograft model of human OS. In conclusion, these results indicate that capsaicin may exert therapeutic benefits as an adjunct to current cancer therapies but not as an independent anticancer agent.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xu Deng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Tao Lei
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Chang Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Guosheng Zhao
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Xiaoji Luo
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Ke Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Zhengxue Quan
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dianming Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| |
Collapse
|
18
|
An updated review on molecular mechanisms underlying the anticancer effects of capsaicin. Food Sci Biotechnol 2017; 26:1-13. [PMID: 30263503 DOI: 10.1007/s10068-017-0001-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
The quest for developing anticancer principles from natural sources has a long historical track record and remarkable success stories. The pungent principle of hot chili pepper, capsaicin, has been a subject of research for anticancer drug discovery for more than three decades. However, the majority of research has revealed that capsaicin interferes with various hallmarks of cancer, such as increased cell proliferation, evasion from apoptosis, inflammation, tumor angiogenesis and metastasis, and tumor immune escape. Moreover, the compound has been reported to inhibit carcinogen activation and chemically induced experimental tumor growth. Capsaicin has also been reported to inhibit the activation of various kinases and transcription that are involved in tumor promotion and progression. The compound activated mitochondria-dependent and death receptor-mediated tumor cell apoptosis. Considering the growing interest in capsaicin, this review provides an update on the molecular targets of capsaicin in modulating oncogenic signaling.
Collapse
|
19
|
Kumar A, Giri S, Kumar A. 5-Aminoimidazole-4-carboxamide ribonucleoside-mediated adenosine monophosphate-activated protein kinase activation induces protective innate responses in bacterial endophthalmitis. Cell Microbiol 2016; 18:1815-1830. [PMID: 27264993 DOI: 10.1111/cmi.12625] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/25/2016] [Accepted: 05/27/2016] [Indexed: 12/14/2022]
Abstract
The retina is considered to be the most metabolically active tissue in the body. However, the link between energy metabolism and retinal inflammation, as incited by microbial infection such as endophthalmitis, remains unexplored. In this study, using a mouse model of Staphylococcus aureus (SA) endophthalmitis, we demonstrate that the activity (phosphorylation) of 5' adenosine monophosphate-activated protein kinase alpha (AMPKα), a cellular energy sensor and its endogenous substrate; acetyl-CoA carboxylase is down-regulated in the SA-infected retina. Intravitreal administration of an AMPK activator, 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), restored AMPKα and acetyl-CoA carboxylase phosphorylation. AICAR treatment reduced both the bacterial burden and intraocular inflammation in SA-infected eyes by inhibiting NF-kB and MAP kinases (p38 and JNK) signalling. The anti-inflammatory effects of AICAR were diminished in eyes pretreated with AMPK inhibitor, Compound C. The bioenergetics (Seahorse) analysis of SA-infected microglia and bone marrow-derived macrophages revealed an increase in glycolysis, which was reinstated by AICAR treatment. AICAR also reduced the expression of SA-induced glycolytic genes, including hexokinase 2 and glucose transporter 1 in microglia, bone marrow-derived macrophages and the mouse retina. Interestingly, AICAR treatment enhanced the bacterial phagocytic and intracellular killing activities of cultured microglia, macrophages and neutrophils. Furthermore, AMPKα1 global knockout mice exhibited increased susceptibility towards SA endophthalmitis, as evidenced by increased inflammatory mediators and bacterial burden and reduced retinal function. Together, these findings provide the first evidence that AMPK activation promotes retinal innate defence in endophthalmitis by modulating energy metabolism and that it can be targeted therapeutically to treat ocular infections.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| | - Shailendra Giri
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University, Detroit, MI, USA.,Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA.,Department of Immunology and Microbiology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
20
|
Kim HJ, Park C, Han MH, Hong SH, Kim GY, Hoon Hong S, Deuk Kim N, Choi YH. Baicalein Induces Caspase-dependent Apoptosis Associated with the Generation of ROS and the Activation of AMPK in Human Lung Carcinoma A549 Cells. Drug Dev Res 2016; 77:73-86. [DOI: 10.1002/ddr.21298] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/06/2016] [Indexed: 01/13/2023]
Affiliation(s)
- Hong Jae Kim
- Department of Pharmacy, College of Pharmacy; Pusan National University; Busan 609-735 South Korea
- Anti-Aging Research Center, Dongeui University; Busan 614-714 South Korea
| | - Cheol Park
- Department of Molecular Biology, College of Natural Sciences and Human Ecology; Dongeui University; Busan 614-714 South Korea
| | - Min-Ho Han
- Natural Products Research Team, National Marine Biodiversity Institute of Korea; Seocheon 325-902 South Korea
| | - Su-Hyun Hong
- Department of Biochemistry; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| | - Gi-Young Kim
- Department of Marine Life Sciences; Jeju National University; Jeju 690-756 South Korea
| | - Sang Hoon Hong
- Department of Internal Medicine; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| | - Nam Deuk Kim
- Department of Pharmacy, College of Pharmacy; Pusan National University; Busan 609-735 South Korea
| | - Yung Hyun Choi
- Anti-Aging Research Center, Dongeui University; Busan 614-714 South Korea
- Department of Biochemistry; Dongeui University College of Korean Medicine; Busan 614-052 South Korea
| |
Collapse
|
21
|
Lee YH, Chen HY, Su LJ, Chueh PJ. Sirtuin 1 (SIRT1) Deacetylase Activity and NAD⁺/NADH Ratio Are Imperative for Capsaicin-Mediated Programmed Cell Death. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7361-7370. [PMID: 26255724 DOI: 10.1021/acs.jafc.5b02876] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Capsaicin is considered a chemopreventive agent by virtue of its selective antigrowth activity, commonly associated with apoptosis, against cancer cells. However, noncancerous cells possess relatively higher tolerance to capsaicin, although the underlying mechanism for this difference remains unclear. Hence, this study aimed to elucidate the differential effects of capsaicin on cell lines from lung tissues by addressing the signal pathway leading to two types of cell death. In MRC-5 human fetal lung cells, capsaicin augmented silent mating type information regulation 1 (SIRT1) deacetylase activity and the intracellular NAD(+)/NADH ratio, decreasing acetylation of p53 and inducing autophagy. In contrast, capsaicin decreased the intracellular NAD(+)/NADH ratio, possibly through inhibition of tumor-associated NADH oxidase (tNOX), and diminished SIRT1 expression leading to enhanced p53 acetylation and apoptosis. Moreover, SIRT1 depletion by RNA interference attenuated capsaicin-induced apoptosis in A549 cancer cells and autophagy in MRC-5 cells, suggesting a vital role for SIRT1 in capsaicin-mediated cell death. Collectively, these data not only explain the differential cytotoxicity of capsaicin but shed light on the distinct cellular responses to capsaicin in cancerous and noncancerous cell lines.
Collapse
Affiliation(s)
- Yi-Hui Lee
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | - Huei-Yu Chen
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | - Lilly J Su
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
| | - Pin Ju Chueh
- Institute of Biomedical Sciences, National Chung Hsing University , Taichung 40227, Taiwan
- Graduate Institute of Basic Medicine, China Medical University , Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital , Taichung 40402, Taiwan
- Department of Biotechnology, Asia University , Taichung 41354, Taiwan
| |
Collapse
|
22
|
Pan Y, Wang Z, Shao D, Zheng H, Chen Y, Zheng X, Zhang M, Li J, Li F, Chen L. CTAB induced mitochondrial apoptosis by activating the AMPK–p53 pathway in hepatocarcinoma cells. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00227j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
CTAB induced mitochondrial apoptosis by activating the AMPK-p53 pathway in hepatocarcinoma cells.
Collapse
|
23
|
Jin J, Lin G, Huang H, Xu D, Yu H, Ma X, Zhu L, Ma D, Jiang H. Capsaicin mediates cell cycle arrest and apoptosis in human colon cancer cells via stabilizing and activating p53. Int J Biol Sci 2014; 10:285-95. [PMID: 24643130 PMCID: PMC3957084 DOI: 10.7150/ijbs.7730] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 01/25/2014] [Indexed: 12/23/2022] Open
Abstract
Capsaicin is the major pungent ingredient in red peppers which is world widely consumed. Except its potent pain relieving efficacy as reported, capsaicin also exerted its antitumor activity in several tumor models. Here, we reported that capsaicin had a profound anti-proliferative effect on human colon cancer cells via inducing cell cycle G0/G1 phase arrest and apoptosis, which was associated with an increase of p21, Bax and cleaved PARP. The underlying mechanism of capsaicin's antitumor potency was mainly attributed to the stabilization and activation of p53. Capsaicin substantially prolonged the half-life of p53 and significantly elevated the transcriptional activity of p53. Through suppressing the interaction between p53 and MDM2, MDM2-mediated p53 ubiquitination was remarkably decreased after capsaicin treatment, which resulted in the stabilization and accumulation of p53. The results of p53-shRNA experiment further demonstrated that p53 knockdown severely impaired the sensitivity of tested cells to capsaicin, G0/G1 phase arrest and the apoptosis induced by capsaicin in p53-knockdown cells was also dramatically decreased, implicating the important role of p53 played in capsaicin's antitumor activity. In summary, our data suggested that capsaicin, or a related analogue, may have a role in the management of human colon cancer.
Collapse
Affiliation(s)
- Junzhe Jin
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Guofu Lin
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hong Huang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dong Xu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Hao Yu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Xu Ma
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Lisi Zhu
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Dongyan Ma
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Honglei Jiang
- The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|