1
|
Zhang C, Wei W, Tu S, Liang B, Li C, Li Y, Luo W, Wu Y, Dai X, Wang Y, Zheng L, Hao L, Zhang C, Luo Z, Chen YG, Yan X. Upregulation of CYR61 by TGF-β and YAP signaling exerts a counter-suppression of hepatocellular carcinoma. J Biol Chem 2024; 300:107208. [PMID: 38521502 PMCID: PMC11021963 DOI: 10.1016/j.jbc.2024.107208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/10/2024] [Accepted: 03/13/2024] [Indexed: 03/25/2024] Open
Abstract
Transforming growth factor-β (TGF-β) and Hippo signaling are two critical pathways engaged in cancer progression by regulating both oncogenes and tumor suppressors, yet how the two pathways coordinately exert their functions in the development of hepatocellular carcinoma (HCC) remains elusive. In this study, we firstly conducted an integrated analysis of public liver cancer databases and our experimental TGF-β target genes, identifying CYR61 as a pivotal candidate gene relating to HCC development. The expression of CYR61 is downregulated in clinical HCC tissues and cell lines than that in the normal counterparts. Evidence revealed that CYR61 is a direct target gene of TGF-β in liver cancer cells. In addition, TGF-β-stimulated Smad2/3 and the Hippo pathway downstream effectors YAP and TEAD4 can form a protein complex on the promoter of CYR61, thereby activating the promoter activity and stimulating CYR61 gene transcription in a collaborative manner. Functionally, depletion of CYR61 enhanced TGF-β- or YAP-mediated growth and migration of liver cancer cells. Consistently, ectopic expression of CYR61 was capable of impeding TGF-β- or YAP-induced malignant transformation of HCC cells in vitro and attenuating HCC xenograft growth in nude mice. Finally, transcriptomic analysis indicates that CYR61 can elicit an antitumor program in liver cancer cells. Together, these results add new evidence for the crosstalk between TGF-β and Hippo signaling and unveil an important tumor suppressor function of CYR61 in liver cancer.
Collapse
Affiliation(s)
- Cheng Zhang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wenjing Wei
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Shuo Tu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Bo Liang
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chun Li
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yining Li
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weicheng Luo
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yiqing Wu
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaohui Dai
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yi Wang
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lijuan Zheng
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Liang Hao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Chunbo Zhang
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhijun Luo
- Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Ye-Guang Chen
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohua Yan
- The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, School of Basic Medicine, Jiangxi Medical College, Nanchang University, Nanchang, China; The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
2
|
Ge R, Huang GM. Targeting transforming growth factor beta signaling in metastatic osteosarcoma. J Bone Oncol 2023; 43:100513. [PMID: 38021074 PMCID: PMC10666000 DOI: 10.1016/j.jbo.2023.100513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/28/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Osteosarcoma is a rare type of bone cancer, and half of the cases affect children and adolescents younger than 20 years of age. Despite intensive efforts to improve both chemotherapeutics and surgical management, the clinical outcome for metastatic osteosarcoma remains poor. Transforming growth factor β (TGF-β) is one of the most abundant growth factors in bones. The TGF-β signaling pathway has complex and contradictory roles in the pathogenesis of human cancers. TGF-β is primarily a tumor suppressor that inhibits proliferation and induces apoptosis of premalignant epithelial cells. In the later stages of cancer progression, however, TGF-β functions as a metastasis promoter by promoting tumor growth, inducing epithelial-mesenchymal transition (EMT), blocking antitumor immune responses, increasing tumor-associated fibrosis, and enhancing angiogenesis. In contrast with the dual effects of TGF-β on carcinoma (epithelial origin) progression, TGF-β seems to mainly have a pro-tumoral effect on sarcomas including osteosarcoma (mesenchymal origin). Many drugs that target TGF-β signaling have been developed: neutralizing antibodies that prevent TGF-β binding to receptor complexes; ligand trap employing recombinant Fc-fusion proteins containing the soluble ectodomain of either type II (TβRII) or the type III receptor ((TβRIII), preventing TGF-β from binding to its receptors; antisense nucleotides that reduce TGF-β expression at the transcriptional/translational level; small molecule inhibitors of serine/threonine kinases of the type I receptor (TβRI) preventing downstream signaling; and vaccines that contain cell lines transfected with TβRII antisense genes, or target furin convertase, resulting in reduced TGF-β signaling. TGF-β antagonists have been shown to have effects on osteosarcoma in vitro and in vivo. One of the small molecule TβRI inhibitors, Vactosertib, is currently undergoing a phase 1/2 clinical trial to evaluate its effect on osteosarcoma. Several phase 1/2/3 clinical trials have shown TGF-β antagonists are safe and well tolerated. For instance, Luspatercept, a TGF-β ligand trap, has been approved by the FDA for the treatment of anemia associated with myeloid dysplastic syndrome (MDS) with ring sideroblasts/mutated SF3B1 with acceptable safety. Clinical trials evaluating the long-term safety of Luspatercept are in process.
Collapse
Affiliation(s)
- Rongrong Ge
- Hillman Cancer Center at Central Pennsylvania, University of Pittsburg Medical Center, Harrisburg, PA, 17109, USA
| | - Gavin M. Huang
- Harrisburg Academy School, 10 Erford Rd, Wormleysburg, PA, 17043, USA
| |
Collapse
|
3
|
Israel LL, Braubach O, Shatalova ES, Chepurna O, Sharma S, Klymyshyn D, Galstyan A, Chiechi A, Cox A, Herman D, Bliss B, Hasen I, Ting A, Arechavala R, Kleinman MT, Patil R, Holler E, Ljubimova JY, Koronyo-Hamaoui M, Sun T, Black KL. Exposure to environmental airborne particulate matter caused wide-ranged transcriptional changes and accelerated Alzheimer's-related pathology: A mouse study. Neurobiol Dis 2023; 187:106307. [PMID: 37739136 DOI: 10.1016/j.nbd.2023.106307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023] Open
Abstract
Air pollution poses a significant threat to human health, though a clear understanding of its mechanism remains elusive. In this study, we sought to better understand the effects of various sized particulate matter from polluted air on Alzheimer's disease (AD) development using an AD mouse model. We exposed transgenic Alzheimer's mice in their prodromic stage to different sized particulate matter (PM), with filtered clean air as control. After 3 or 6 months of exposure, mouse brains were harvested and analyzed. RNA-seq analysis showed that various PM have differential effects on the brain transcriptome, and these effects seemed to correlate with PM size. Many genes and pathways were affected after PM exposure. Among them, we found a strong activation in mRNA Nonsense Mediated Decay pathway, an inhibition in pathways related to transcription, neurogenesis and survival signaling as well as angiogenesis, and a dramatic downregulation of collagens. Although we did not detect any extracellular Aβ plaques, immunostaining revealed that both intracellular Aβ1-42 and phospho-Tau levels were increased in various PM exposure conditions compared to the clean air control. NanoString GeoMx analysis demonstrated a remarkable activation of immune responses in the PM exposed mouse brain. Surprisingly, our data also indicated a strong activation of various tumor suppressors including RB1, CDKN1A/p21 and CDKN2A/p16. Collectively, our data demonstrated that exposure to airborne PM caused a profound transcriptional dysregulation and accelerated Alzheimer's-related pathology.
Collapse
Affiliation(s)
- Liron L Israel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Oliver Braubach
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Ekaterina S Shatalova
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Oksana Chepurna
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Sachin Sharma
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Dmytro Klymyshyn
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Anna Galstyan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Antonella Chiechi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Alysia Cox
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - David Herman
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Bishop Bliss
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Irene Hasen
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Amanda Ting
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Rebecca Arechavala
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Michael T Kleinman
- Department of Environmental and Occupational Health, University of California, Irvine 92697, United States of America
| | - Rameshwar Patil
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Eggehard Holler
- Terasaki Institute, Los Angeles, CA 90024, United States of America
| | | | - Maya Koronyo-Hamaoui
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America; Department of Biomedical Sciences, Division of Applied Cell Biology and Physiology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America
| | - Tao Sun
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America.
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, United States of America.
| |
Collapse
|
4
|
Luo C, Zhu Y, Zhou J, Sun X, Zhang S, Tan S, Li Z, Lin H, Zhang W. Increased CYR61 expression activates CCND1/c-Myc pathway to promote nasal epithelial cells proliferation in chronic rhinosinusitis with nasal polyps. Clin Immunol 2023; 247:109235. [PMID: 36681101 DOI: 10.1016/j.clim.2023.109235] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 01/20/2023]
Abstract
PURPOSE Chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) is a chronic sinonasal inflammatory disease characterized histologically by hyperplastic nasal epithelium and epithelial cells proliferation. Cysteine-rich angiogenic inducer 61 (CYR61) acts as a positive regulator of cell cycle process. Cyclin D1 (CCND1) and c-Myc play key roles in the processes of cell cycle and cell growth. The purpose of our research was to explore the expression and roles of CYR61, CCND1 and c-Myc in CRSwNP. METHODS FeaturePlot and vlnPlot functions embedded in the seurat package (version 4.1.1) of R software (version 4.2.0) were applied to explore the cellular distribution of CYR61, CCND1 and c-Myc in the single-cell RNA sequencing (scRNA-seq) dataset of nasal tissue samples. CYR61, CCND1 and c-Myc immunolabeling and mRNA levels in nasal tissue samples were assessed by immunohistochemistry and real-time PCR. Co-localization of CYR61, CCND1 and c-Myc with basal epithelial cell marker P63 was assayed using double-label immunofluorescence staining. Furthermore, we collected and cultured human nasal epithelial cells (HNEC) to assess the regulation and role of CYR61 in vitro study. RESULTS CYR61, CCND1 and c-Myc were primarily expressed by nasal epithelial cells. Significant upregulation of CYR61, CCND1 and c-Myc positive cells and increased levels of CYR61, CCND1 and c-Myc mRNA were found in nasal polyps in comparison to control samples. Of note, CYR61 mRNA and protein levels were altered by SEB, LPS, IFN-γ, IL-13, IL-17A and TGF-β1 in HNEC. In addition, CYR61 intervention could increase CCND1 and c-Myc mRNA and protein levels to promote HNEC proliferation, and siRNA against ITGA2 (si-ITGA2) could reverse CYR61 induced upregulation of CCND1 and c-Myc mRNA and protein levels in HNEC and cell proliferation of HNEC. CONCLUSIONS CYR61, CCND1 and c-Myc were primarily expressed by epithelial cells in nasal mucosa. CYR61, CCND1 and c-Myc expression levels were increased in CRSwNP compared with controls. CYR61 could interact with ITGA2 to enhance HNEC proliferation via upregulating CCND1 and c-Myc levels in the HNEC, leading to hyperplastic nasal epithelium in CRSwNP.
Collapse
Affiliation(s)
- Chunyu Luo
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ying Zhu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jiayao Zhou
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Xiwen Sun
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shiyao Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shaolin Tan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China; Postgraduate Training Base of Shanghai Sixth People's Hospital, Jinzhou Medical University, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China; Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.
| |
Collapse
|
5
|
He D, Gao J, Zheng L, Liu S, Ye L, Lai H, Pan B, Pan W, Lou C, Chen Z, Fan S. TGF‑β inhibitor RepSox suppresses osteosarcoma via the JNK/Smad3 signaling pathway. Int J Oncol 2021; 59:84. [PMID: 34533199 PMCID: PMC8460063 DOI: 10.3892/ijo.2021.5264] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is the most common malignant bone tumor and the long-term survival rates remain unsatisfactory. Transforming growth factor-β (TGF-β) has been revealed to play a crucial role in OS progression, and RepSox is an effective TGF-β inhibitor. In the present study, the effect of RepSox on the proliferation of the OS cell lines (HOS and 143B) was detected. The results revealed that RepSox effectively inhibited the proliferation of OS cells by inducing S-phase arrest and apoptosis. Moreover, the inhibitory effect of RepSox on cell migration and invasion was confirmed by wound-healing and Transwell assays. Furthermore, western blotting revealed that the protein levels of molecules associated with the epithelial-mesenchymal transition (EMT) phenotype, including E-cadherin, N-cadherin, Vimentin, matrix metalloproteinase (MMP)-2 and MMP-9, were reduced by RepSox treatment. Concurrently, it was also revealed that the JNK and Smad3 signaling pathway was inhibited. Our in vivo findings using a xenograft model also revealed that RepSox markedly inhibited the growth of tumors. In general, our data demonstrated that RepSox suppressed OS proliferation, EMT and promoted apoptosis by inhibiting the JNK/Smad3 signaling pathway. Thus, RepSox may be a potential anti-OS drug.
Collapse
Affiliation(s)
- Dengwei He
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Jiawei Gao
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Lin Zheng
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Shijie Liu
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Lin Ye
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Hehuan Lai
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Bin Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Wenzheng Pan
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Chao Lou
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Zhenzhong Chen
- Department of Orthopedics, Affiliated Lishui Hospital of Zhejiang University, Lishui, Zhejiang 323000, P.R. China
| | - Shunwu Fan
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
6
|
CCN proteins in the musculoskeletal system: current understanding and challenges in physiology and pathology. J Cell Commun Signal 2021; 15:545-566. [PMID: 34228239 PMCID: PMC8642527 DOI: 10.1007/s12079-021-00631-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The acronym for the CCN family was recently revised to represent “cellular communication network”. These six, small, cysteine-enriched and evolutionarily conserved proteins are secreted matricellular proteins, that convey and modulate intercellular communication by interacting with structural proteins, signalling factors and cell surface receptors. Their role in the development and physiology of musculoskeletal system, constituted by connective tissues where cells are interspersed in the cellular matrix, has been broadly studied. Previous research has highlighted a crucial balance of CCN proteins in mesenchymal stem cell commitment and a pivotal role for CCN1, CCN2 and their alter ego CCN3 in chondrogenesis and osteogenesis; CCN4 plays a minor role and the role of CCN5 and CCN6 is still unclear. CCN proteins also participate in osteoclastogenesis and myogenesis. In adult life, CCN proteins serve as mechanosensory proteins in the musculoskeletal system providing a steady response to environmental stimuli and participating in fracture healing. Substantial evidence also supports the involvement of CCN proteins in inflammatory pathologies, such as osteoarthritis and rheumatoid arthritis, as well as in cancers affecting the musculoskeletal system and bone metastasis. These matricellular proteins indeed show involvement in inflammation and cancer, thus representing intriguing therapeutic targets. This review discusses the current understanding of CCN proteins in the musculoskeletal system as well as the controversies and challenges associated with their multiple and complex roles, and it aims to link the dispersed knowledge in an effort to stimulate and guide readers to an area that the writers consider to have significant impact and relevant potentialities.
Collapse
|
7
|
Zhang D, Zhang Y, Cai Z, Tu Y, Hu Z. Dexamethasone and lenvatinib inhibit migration and invasion of non-small cell lung cancer by regulating EKR/AKT and VEGF signal pathways. Exp Ther Med 2019; 19:762-770. [PMID: 31853327 DOI: 10.3892/etm.2019.8225] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 02/24/2017] [Indexed: 12/22/2022] Open
Abstract
Migration and invasion is one of the most important features in tumor metastasis and development. Non-small cell lung cancer (NSCLC) is one of the most common types of cancer globally, and has been linked to air contamination. Evidence indicates that cysteine-rich angiogenic inducer 61 (CYR61) is associated with the migration and invasion of NSCLC. Overexpression of CYR61 protein promotes the migration and the transition of tumor-derived vascular endothelial cells in NSCLC. However, the association between CYR61 and NSCLC remains poorly understood. Lenvatinib is an oral multi-target drug that targets various receptors upon tumor angiogenesis. Dexamethasone is widely approved for combination therapy in patients with NSCLC. In the current study, the expression and function of CYR61 in NSCLC was analyzed during the progression of NSCLC. Inhibitory effects on migration and invasion induced by lenvatinib and dexamethasone were determined by migratory and invasion assays. Migratory pathways of extracellular signal-regulated kinases (ERK) and protein kinase B (AKT) were also investigated by targeting vascular endothelial growth factor (VEGF) and CYR61 via synergistic treatment with transforming growth factor-β1 (TGF-β1) and dexamethasone. Therapeutic outcomes of combined treatment with lenvatinib and dexamethasone were assessed in NSCLC-bearing mice. The results of the present study indicate that cooperative treatment of lenvatinib and dexamethasone significantly inhibited TGF-β1-induced cell migration and suppressed tumor growth (P<0.01). Notably, the results demonstrated that dexamethasone eradicated the promotion effects of TGF-β1 on the AKT/epithelial-mesenchymal transition process and lenvatinib extinguished tumor cell metastasis by targeting VEGF. The results of the current study also demonstrate that dexamethasone suppressed the expression of CAG-I and enhanced expression of matrix metalloproteinase-1. Synergistic treatment for NSCLC was demonstrated to be efficacious. In conclusion, dexamethasone inhibited AKT/ERK phosphorylation and lenvatinib antagonism bound VEGF leading to the limitation of migration and invasion of cancer cells in NSCLC.
Collapse
Affiliation(s)
- Daye Zhang
- Department of Pharmacy, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Yongxiang Zhang
- Respiratory and Clinical Care Unit, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Zeyuan Cai
- Department of Cardiovascular Institute, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Ying Tu
- Department of Pharmacy, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| | - Zhansong Hu
- Department of Pharmacy, Tianjin Chest Hospital, Tianjin 300222, P.R. China
| |
Collapse
|
8
|
Li X, Yuan N, Lin L, Yin L, Qu Y. Targeting cysteine-rich angiogenic inducer-61 by antibody immunotherapy suppresses growth and migration of non-small cell lung cancer. Exp Ther Med 2018; 16:730-738. [PMID: 30116327 PMCID: PMC6090314 DOI: 10.3892/etm.2018.6274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 03/17/2017] [Indexed: 02/04/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most frequent type of human lung cancer; lung cancer is responsible for the highest rates of cancer-associated mortality in the world. Cysteine-rich angiogenic inducer-61 (CYR-61) has been identified as a tumorigenesis-, development- and metastasis-related gene, and is reported to enhance proliferation, migration and invasion through hepatocyte growth factor (HGF)-induced scattering and the metastasis-inducing HGF/Met signaling pathway in tumor cells and xenograft models. CYR-61 is a protein that promotes human lung cancer cell metastasis and is closely related to the patient's prognosis in NSCLC. The purpose of the present study was to investigate whether CYR-61 may serve as a dual potential target for gene therapy of human NSCLC. In the present study, an antibody targeted against CYR-61 (anti-CYR-61) was constructed and the therapeutic effects and underlying mechanism of this antibody in NSCLC cells and mice with NSCLC was investigated. It was observed that NSCLC cell viability, migration and invasion were inhibited while cell apoptosis was induced by the neutralization of CYR-61 protein by anti-CYR-61. Western blotting demonstrated that extracellular signal-regulated kinase (ERK) and protein kinase B (AKT) expression levels in NSCLC cells were decreased following treatment with anti-CYR-61. In addition, it was observed that inhibition of NSCLC cell viability was achieved by the suppression of the epithelial-mesenchymal transition signaling pathway. ERK and AKT phosphorylation levels were downregulated in NSCLC cells and tumors following anti-CYR-61 treatment. Analysis of a murine model indicated that tumor growth was inhibited and tumor metastasis was significantly suppressed (P<0.01) following anti-CYR-61 treatment for CYR-61. In conclusion, CYR-61 may serve as a potential target for gene therapy for the treatment of human NSCLC.
Collapse
Affiliation(s)
- Xinpeng Li
- Department of Respiration, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Respiration, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Naxin Yuan
- Department of Respiration, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Lingdan Lin
- Department of Cardiology, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Lixia Yin
- Department of Respiration, Dezhou People's Hospital, Dezhou, Shandong 253014, P.R. China
| | - Yiqing Qu
- Department of Respiration, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
9
|
Verrecchia F, Rédini F. Transforming Growth Factor-β Signaling Plays a Pivotal Role in the Interplay Between Osteosarcoma Cells and Their Microenvironment. Front Oncol 2018; 8:133. [PMID: 29761075 PMCID: PMC5937053 DOI: 10.3389/fonc.2018.00133] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcomas are the most frequent form of primary bone tumors and mainly affect children, adolescents, and young adults. Despite encouraging progress in therapeutic management, including the advent of multidrug chemotherapy, the survival rates have remained unchanged for more than four decades: 75% at 5 years for localized disease, but two groups of patients are still at high risk: metastatic at diagnosis (overall survival around 40% at 5 years) and/or poor responders to chemotherapy (20% at 5 years). Because these tumors are classified as “complex genomic,” it is extremely difficult to determine the signaling pathways that might be targeted by specific therapies. A hypothesis has thus emerged, stating that the particular microenvironment of these tumors may interfere with the tumor cells that promote chemoresistance and the dissemination of metastases. The stroma is composed of a large number of cell types (immune cells, endothelial cells, mesenchymal stromal cells, etc.) which secrete growth factors, such as transforming growth factor-β (TGF-β), which favors the development of primary tumors and dissemination of metastases by constituting a permissive niche at primary and distant sites. Rather than targeting the tumor cells themselves, which are very heterogeneous in osteosarcoma, the hypothesis is instead to target the key actors secreted in the microenvironment, such as TGF-βs, which play a part in tumor progression. In the last decade, numerous studies have shown that overexpression of TGF-β is a hallmark of many cancers, including primary bone tumors. In this context, TGF-β signaling has emerged as a crucial factor in the cross talk between tumor cells and stroma cells in poor-prognosis cancers. Secretion of TGF-β by tumor cells or stroma cells can effectively act in a paracrine manner to regulate the phenotype and functions of the microenvironment to stimulate protumorigenic microenvironmental changes. TGF-β can thus exert its protumorigenic function in primary bone tumors by promoting angiogenesis, bone remodeling and cell migration, and by inhibiting immunosurveillance. This review focuses on the involvement of TGF-β signaling in primary bone tumor development, and the related therapeutic options that may be possible for these tumors.
Collapse
Affiliation(s)
- Franck Verrecchia
- UMR1238 INSERM, Université de Nantes, PHY-OS, "Bone Sarcomas and Remodeling of Calcified Tissues", Medical School, Nantes, France
| | - Françoise Rédini
- UMR1238 INSERM, Université de Nantes, PHY-OS, "Bone Sarcomas and Remodeling of Calcified Tissues", Medical School, Nantes, France
| |
Collapse
|
10
|
Quercetin Suppresses CYR61-Mediated Multidrug Resistance in Human Gastric Adenocarcinoma AGS Cells. Molecules 2018; 23:molecules23020209. [PMID: 29364834 PMCID: PMC6017870 DOI: 10.3390/molecules23020209] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 01/23/2023] Open
Abstract
Cysteine-rich angiogenic inducer 61 (CYR61) is an extracellular matrix-associated protein involved in survival, tumorigenesis, and drug resistance. Therefore, we examined the effects of flavones against CYR61-overexpressing human gastric adenocarcinoma AGS (AGS-cyr61) cells, which show remarkable resistance to 5-fluorouracil (5-FU), adriamycin (ADR), tamoxifen (TAM), paclitaxel (PAC), and docetaxel (DOC). Among the tested flavones, quercetin had the lowest 50% inhibitory concentration (IC50) and significantly reduced the viability of AGS-cyr61 cells compared with AGS cells. Quercetin: (1) reduced multidrug resistance-associated protein 1 and nuclear factor (NF)-kappa B p65 subunit levels; (2) reversed multidrug resistance (MDR); (3) inhibited colony formation and induced caspase-dependent apoptosis; and (4) suppressed migration and down-regulated epithelial-mesenchymal transition-related proteins in AGS-cyr61. Moreover, AGS-cyr61 cells treated with quercetin concentrations close to the IC50 and simultaneously treated with 5-FU or ADR in the sub-lethal range showed strong synergism between quercetin and these two drugs. These findings indicate that CYR61 is a potential regulator of drug resistance and that quercetin may be a novel agent for improving the efficacy of anticancer drugs in AGS-cyr61 cells.
Collapse
|
11
|
Lamora A, Talbot J, Mullard M, Brounais-Le Royer B, Redini F, Verrecchia F. TGF-β Signaling in Bone Remodeling and Osteosarcoma Progression. J Clin Med 2016; 5:E96. [PMID: 27827889 PMCID: PMC5126793 DOI: 10.3390/jcm5110096] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 12/17/2022] Open
Abstract
Osteosarcomas are the most prevalent malignant primary bone tumors in children. Despite intensive efforts to improve both chemotherapeutics and surgical management, 40% of all osteosarcoma patients succumb to the disease. Specifically, the clinical outcome for metastatic osteosarcoma remains poor; less than 30% of patients who present metastases will survive five years after initial diagnosis. Treating metastatic osteosarcoma thus remains a challenge. One of the main characteristics of osteosarcomas is their ability to deregulate bone remodelling. The invasion of bone tissue by tumor cells indeed affects the balance between bone resorption and bone formation. This deregulation induces the release of cytokines or growth factors initially trapped in the bone matrix, such as transforming growth factor-β (TGF-β), which in turn promote tumor progression. Over the past years, there has been considerable interest in the TGF-β pathway within the cancer research community. This review discusses the involvement of the TGF-β signalling pathway in osteosarcoma development and in their metastatic progression.
Collapse
Affiliation(s)
- Audrey Lamora
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
- INSERM Liliane Bettencourt School, 75014 Paris, France.
| | - Julie Talbot
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Mathilde Mullard
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Benedicte Brounais-Le Royer
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Françoise Redini
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| | - Franck Verrecchia
- INSERM, UMR 957, Equipe Labellisée Ligue contre le Cancer 2012, Faculté de Médecine, 1 rue Gaston Veil, 44035 Nantes cedex, France.
- Laboratoire de Physiopathologie de la Résorption Osseuse et Thérapie des Tumeurs Osseuses Primitives, Université de Nantes, 44000 Nantes, France.
| |
Collapse
|
12
|
Han S, Bui NT, Ho MT, Kim YM, Cho M, Shin DB. Dexamethasone Inhibits TGF-β1-Induced Cell Migration by Regulating the ERK and AKT Pathways in Human Colon Cancer Cells Via CYR61. Cancer Res Treat 2015; 48:1141-53. [PMID: 26693911 PMCID: PMC4946372 DOI: 10.4143/crt.2015.209] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 11/14/2015] [Indexed: 12/17/2022] Open
Abstract
PURPOSE One of the features in cancer development is the migration of cancer cells to form metastatic lesions. CYR61 protein promotes migration and the epithelial-mesenchymal transition in several cancer cell types. Evidence suggests that CYR61 and dexamethasone are relevant to colorectal cancer. However, relationships between them and colorectal cancer are still unclear. Understanding the molecular mechanism of colorectal cancer progression related with CYR61 and dexamethasone, which is widely used for combination chemotherapy, is necessary for improved therapy. MATERIALS AND METHODS We used colorectal cancer cells, HCT116, co-treated with transforming growth factor β1 (TGF-β1) and dexamethasone to examine the inhibitory migration effect of dexamethasone by migratory assay. Alternatively, both migratory pathways, expression of AKT and ERK, and the target factor CYR61 was also tested by co-treatment with TGF-β1 and dexamethasone. RESULTS We report that dexamethasone significantly inhibited TGF-β1-induced cell migration, without affecting cell proliferation. Importantly, we observed that TGF-β1 promoted the epithelial-mesenchymal transition process and that dexamethasone co-treatment abolished this effect. ERK and AKT signaling pathways were found to mediate TGF-β1-induced migration, which was inhibited by dexamethasone. In addition, TGF-β1 treatment induced CYR61 expression whereas dexamethasone reduced it. These observations were compatible with the modulation of migration observed following treatment of HCT116 cells with human recombinant CYR61 and anti-CYR61 antibody. Our results also indicated that TGF-β1 enhanced collagen I and reduced matrix metalloproteinase 1 expression, which was reversed by dexamethasone treatment. CONCLUSION These findings suggested that dexamethasone inhibits AKT and ERK phosphorylation, leading to decreased CYR61 expression, which in turn blocks TGF-β1-induced migration.
Collapse
Affiliation(s)
- Sanghoon Han
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Korea
| | - Ngoc Thuy Bui
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Manh Tin Ho
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Young Mee Kim
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Moonjae Cho
- Department of Biochemistry, Jeju National University School of Medicine, Jeju, Korea
| | - Dong Bok Shin
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, Korea
| |
Collapse
|
13
|
Xu S, Yang S, Sun G, Huang W, Zhang Y. Transforming growth factor-beta polymorphisms and serum level in the development of osteosarcoma. DNA Cell Biol 2014; 33:802-6. [PMID: 25098449 DOI: 10.1089/dna.2014.2527] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transforming growth factor-beta (TGF-β) signaling pathway plays critical roles in the development of various diseases. The current study investigated whether TGF-β was involved in the pathogenesis of osteosarcoma from the genetic polymorphism perspective and serum level perspective. We first examined two TGF-β1 polymorphisms, rs1800469C/T and rs1800470T/C, in 202 osteosarcoma patients and 216 healthy controls. Data revealed that the prevalence of rs1800470TT genotype and T allele was significantly elevated in patients than in controls (odds ratio [OR]=2.28, 95% confidence interval [CI]: 1.30-3.98, p<0.001, and OR=1.49, 95% CI: 1.14-1.96, p<0.001). Function analyses showed that healthy controls carrying rs1800470TT genotype had a significantly higher serum level of TGF-β than those carrying the rs1800470CC genotype (191.1±15.7 pg/mL vs. 129.4±10.9 pg/mL, p=0.003). We then compared the serum level of TGF-β between osteosarcoma patients and healthy controls. Results demonstrated a significantly increased serum level of TGF-β in patients than in controls. Further analyses identified that patients with metastasis had augmented levels of serum TGF-β than those without metastasis. These data indicate that TGF-β may be closely involved in the pathogenesis of osteosarcoma.
Collapse
Affiliation(s)
- Shaogang Xu
- 1 Department of Orthopedics, Zhengzhou Orthopedics Hospital , Zhengzhou, Henan, China
| | | | | | | | | |
Collapse
|