1
|
Zhang S, Wang H, Meng Q, Lee WYW, Li Z, Sun S. Recent advances in osteonecrosis of the femoral head: a focus on mesenchymal stem cells and adipocytes. J Transl Med 2025; 23:592. [PMID: 40426076 PMCID: PMC12108002 DOI: 10.1186/s12967-025-06564-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 05/02/2025] [Indexed: 05/29/2025] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a debilitating orthopedic disease characterized by femoral head collapse and destruction of bone and articular cartilage, resulting in severe joint pain and loss of hip mobility. Bone marrow mesenchymal stem cells (BMSCs) exhibit multilineage differentiation potential, including osteoblasts, adipocytes, fibroblasts, chondrocytes, and neurocytes. The imbalance between osteogenesis and adipogenesis in BMSCs plays a critical role in ONFH pathogenesis. Factors such as alcohol consumption and glucocorticoid exposure promote adipogenic differentiation while inhibiting osteogenic differentiation, leading to excessive adipocyte accumulation, reduced bone formation, and vascular impairment. We highlight the molecular mechanisms underlying ONFH with a particular focus on the role of BMSCs and further discuss the involvement of adipocytes. Moreover, we suggest that the use of adipose-derived mesenchymal stem cells (ADMSCs) is a viable approach for stem cell therapy and may have immense potential in ONFH. Several signaling pathways, including the Wnt, TGFβ/BMP, and PI3K/AKT pathways, along with various RNAs and other regulators, govern the osteogenesis and adipogenesis of BMSCs. These signaling pathways target essential transcription factors, such as Runx2 for osteogenesis and PPARγ and C/EBPs for adipogenesis. Adipocytes and their secreted adipokines, including leptin and adiponectin, strongly influence ONFH progression. Emerging therapies involving ADMSCs show potential for promoting bone regeneration and neovascularization. Our review provides a comprehensive overview of the current understanding of ONFH mechanisms by focusing on mesenchymal stem cells and adipocytes and suggests future research directions for therapeutic interventions.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Haojue Wang
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Qi Meng
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China
| | - Wayne Yuk-Wai Lee
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- SH Ho Scoliosis Research Laboratory, Joint Scoliosis Research Centre of the Chinese University of Hong Kong and Nanjing University, The Chinese University of Hong Kong, Hong Kong, China.
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China.
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Department of Joint Surgery, Cheeloo College of Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250012, Shandong, China.
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China.
| |
Collapse
|
2
|
Li L, Zhao S, Leng Z, Chen S, Shi Y, Shi L, Li J, Mao K, Tang H, Meng B, Wang Y, Shang G, Liu H. Pathological mechanisms and related markers of steroid-induced osteonecrosis of the femoral head. Ann Med 2024; 56:2416070. [PMID: 39529511 PMCID: PMC11559024 DOI: 10.1080/07853890.2024.2416070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Osteonecrosis of the femoral head (ONFH) is a refractory orthopedic disease with a high disability rate. Long-term administration of steroids is the most common pathogenic factor for non-traumatic ONFH. Early diagnosis of steroid-induced osteonecrosis of the femoral head (SONFH) is difficult and mainly depends on imaging. OBJECTIVES The objectives of this review were to examine the pathological mechanisms of SONFH, summarize related markers of SONFH, and identify areas for future studies. METHODS We reviewed studies on pathological mechanisms and related markers of SONFH and discussed the relationship between them, as well as clinical applications and the outlook of potential markers. RESULTS The pathological mechanisms of SONFH included decreased osteogenesis, lipid accumulation, increased intraosseous pressure, and microcirculation disruption. Differential proteomics and genomics play crucial roles in the occurrence, progression, and outcome of SONFH, providing novel insights into SONFH. Additionally, the biological functions of mesenchymal stem cells (MSCs) and exosomes (Exos) in SONFH have attracted increasing attention. CONCLUSIONS The pathological mechanisms of SONFH are complex. The related markers mentioned in the current review can predict the occurrence and progression of SONFH, which will help provide effective early clinical prevention and treatment strategies for SONFH.
Collapse
Affiliation(s)
- Longyu Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shangkun Zhao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zikuan Leng
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songfeng Chen
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifang Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Shi
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jinfeng Li
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keya Mao
- Department of Orthopedics, The Chinese PLA General Hospital, Beijing, China
| | - Hai Tang
- Department of Orthopedics, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Bin Meng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yisheng Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guowei Shang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongjian Liu
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Xu M, Zhu M, Qin Q, Xing X, Archer M, Ramesh S, Cherief M, Li Z, Levi B, Clemens TL, James AW. Neuronal regulation of bone and tendon injury repair: a focused review. J Bone Miner Res 2024; 39:1045-1060. [PMID: 38836494 PMCID: PMC12106280 DOI: 10.1093/jbmr/zjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/20/2024] [Accepted: 06/04/2024] [Indexed: 06/06/2024]
Abstract
Beyond the sensation of pain, peripheral nerves have been shown to play crucial roles in tissue regeneration and repair. As a highly innervated organ, bone can recover from injury without scar formation, making it an interesting model in which to study the role of nerves in tissue regeneration. As a comparison, tendon is a musculoskeletal tissue that is hypo-innervated, with repair often resulting in scar formation. Here, we reviewed the significance of innervation in 3 stages of injury repair (inflammatory, reparative, and remodeling) in 2 commonly injured musculoskeletal tissues: bone and tendon. Based on this focused review, we conclude that peripheral innervation is essential for phases of proper bone and tendon repair, and that nerves may dynamically regulate the repair process through interactions with the injury microenvironment via a variety of neuropeptides or neurotransmitters. A deeper understanding of neuronal regulation of musculoskeletal repair, and the crosstalk between nerves and the musculoskeletal system, will enable the development of future therapies for tissue healing.
Collapse
Affiliation(s)
- Mingxin Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Manyu Zhu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mary Archer
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Sowmya Ramesh
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Masnsen Cherief
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Benjamin Levi
- Department of Surgery, University of Texas Southwestern, Dallas, TX 75390, United States
| | - Thomas L Clemens
- Department of Orthopaedics, University of Maryland, Baltimore, MD 21205, United States
- Department of Research Services, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, United States
| | - Aaron W James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, United States
| |
Collapse
|
4
|
Fu Z, Lai Y, Zhuang Y, Lin F. Injectable heat-sensitive nanocomposite hydrogel for regulating gene expression in the treatment of alcohol-induced osteonecrosis of the femoral head. APL Bioeng 2023; 7:016107. [PMID: 36691581 PMCID: PMC9862308 DOI: 10.1063/5.0130711] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023] Open
Abstract
For repairing lesions, it is important to recover physiological and cellular activities. Gene therapy can restore these activities by regulating the expression of genes in lesion cells; however, in chronic diseases, such as alcohol-induced osteonecrosis of the femoral head (ONFH), gene therapy has failed to provide long-term effects. In this study, we developed a heat-sensitive nanocomposite hydrogel system with a secondary nanostructure that can regulate gene expression and achieve long-term gene regulation in lesion cells. This nanocomposite hydrogel exists in a liquid state at 25 °C and is injectable. Once injected into the body, the hydrogel can undergo solidification induced by body heat, thereby gaining the ability to be retained in the body for a prolonged time period. With the gradual degradation of the hydrogel in vivo, the internal secondary nanostructures are continuously released. These nanoparticles carry plasmids and siRNA into lesion stem cells to promote the expression of B-cell lymphoma 2 (inhibiting the apoptosis of stem cells) and inhibit the secretion of peroxisome proliferators-activated receptors γ (PPARγ, inhibiting the adipogenic differentiation of stem cells). Finally, the physiological activity of the stem cells in the ONFH area was restored and ONFH repair was promoted. In vivo experiments demonstrated that this nanocomposite hydrogel can be indwelled for a long time, thereby providing long-term treatment effects. As a result, bone reconstruction occurs in the ONFH area, thus enabling the treatment of alcohol-induced ONFH. Our nanocomposite hydrogel provides a novel treatment option for alcohol-related diseases and may serve as a useful biomaterial for other gene therapy applications.
Collapse
Affiliation(s)
- Zherui Fu
- Department of Emergency, The First People's
Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou
Medical University, Hangzhou, Zhejiang,
China
| | - Yi Lai
- Department of Emergency, The First People's
Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou
Medical University, Hangzhou, Zhejiang,
China
| | - Yaping Zhuang
- Department of Orthopedics, Shanghai Key Laboratory
for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute
of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiao Tong
University School of Medicine, 197 Ruijin 2nd Road, Shanghai
200025, People's Republic of China.,Authors to whom correspondence should be
addressed: and
| | - Feng Lin
- Department of Orthopedics, The First
People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital
of Wenzhou Medical University, Hangzhou, Zhejiang,
China,Authors to whom correspondence should be
addressed: and
| |
Collapse
|
5
|
[Progress of pathogenesis and genetics of alcohol-induced osteonecrosis of femoral head]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2022; 36:1420-1427. [PMID: 36382462 PMCID: PMC9681594 DOI: 10.7507/1002-1892.202206072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To review the research progress of pathogenesis and genetics of alcohol-induced osteonecrosis of the femoral head (AIONFH). METHODS The relevant domestic and foreign literature in recent years was extensively reviewed. The pathogenesis, the relationship between gene polymorphism and susceptibility, the related factors of disease progression, and the potential therapeutic targets of AIONFH were summarized. RESULTS AIONFH is a refractory orthopedic disease caused by excessive drinking, seriously affecting the daily life of patients due to its high disability rate. The pathogenesis of AIONFH includes lipid metabolism disorder, endothelial dysfunction, bone homeostasis imbalance, and et al. Gene polymorphism and non-coding RNA are also involved. The hematological and molecular changes involved in AIONFH may be used as early diagnostic markers and potential therapeutic targets of the disease. CONCLUSION The pathogenesis of AIONFH has not been fully elucidated. Research based on genetics, including gene polymorphism and non-coding RNA, combined with next-generation sequencing technology, may provide directions for future research on the mechanism and discovery of potential therapeutic targets.
Collapse
|
6
|
Georgiev-Hristov T, García-Arranz M, Trébol-López J, Barba-Recreo P, García-Olmo D. Searching for the Optimal Donor for Allogenic Adipose-Derived Stem Cells: A Comprehensive Review. Pharmaceutics 2022; 14:2338. [PMID: 36365156 PMCID: PMC9696054 DOI: 10.3390/pharmaceutics14112338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/22/2022] [Accepted: 10/27/2022] [Indexed: 11/15/2023] Open
Abstract
Adipose-derived stem cells comprise several clinically beneficial qualities that have been explored in basic research and have motivated several clinical studies with promising results. After being approved in the European Union, UK, Switzerland, Israel, and Japan, allogeneic adipose-derived stem cells (darvadstrocel) have been recently granted a regenerative medicine advanced therapy (RMAT) designation by US FDA for complex perianal fistulas in adults with Crohn's disease. This huge scientific step is likely to impact the future spread of the indications of allogeneic adipose-derived stem cell applications. The current knowledge on adipose stem cell harvest describes quantitative and qualitative differences that could be influenced by different donor conditions and donor sites. In this comprehensive review, we summarize the current knowledge on the topic and propose donor profiles that could provide the optimal initial quality of this living drug, as a starting point for further applications and studies in different pathological conditions.
Collapse
Affiliation(s)
- Tihomir Georgiev-Hristov
- Servicio de Cirugía General y del Aparato Digestivo, Hospital General Universitario de Villalba, 28400 Madrid, Spain
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
| | - Mariano García-Arranz
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Jacobo Trébol-López
- Servicio de Cirugía General y del Aparato Digestivo, Complejo Asistencial Universitario de Salamanca, 37007 Salamanca, Spain
| | - Paula Barba-Recreo
- Facultad de Medicina, Universidad Alfonso X, 28691 Madrid, Spain
- Servicio de Cirugía Maxilofacial, Hospital Universitario Rey Juan Carlos, 28933 Madrid, Spain
| | - Damián García-Olmo
- Instituto de Investigación Sanitaria, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain
- Departamento de Cirugía, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| |
Collapse
|
7
|
Fernández-Santos ME, Garcia-Arranz M, Andreu EJ, García-Hernández AM, López-Parra M, Villarón E, Sepúlveda P, Fernández-Avilés F, García-Olmo D, Prosper F, Sánchez-Guijo F, Moraleda JM, Zapata AG. Optimization of Mesenchymal Stromal Cell (MSC) Manufacturing Processes for a Better Therapeutic Outcome. Front Immunol 2022; 13:918565. [PMID: 35812460 PMCID: PMC9261977 DOI: 10.3389/fimmu.2022.918565] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/10/2022] [Indexed: 12/20/2022] Open
Abstract
MSCs products as well as their derived extracellular vesicles, are currently being explored as advanced biologics in cell-based therapies with high expectations for their clinical use in the next few years. In recent years, various strategies designed for improving the therapeutic potential of mesenchymal stromal cells (MSCs), including pre-conditioning for enhanced cytokine production, improved cell homing and strengthening of immunomodulatory properties, have been developed but the manufacture and handling of these cells for their use as advanced therapy medicinal products (ATMPs) remains insufficiently studied, and available data are mainly related to non-industrial processes. In the present article, we will review this topic, analyzing current information on the specific regulations, the selection of living donors as well as MSCs from different sources (bone marrow, adipose tissue, umbilical cord, etc.), in-process quality controls for ensuring cell efficiency and safety during all stages of the manual and automatic (bioreactors) manufacturing process, including cryopreservation, the use of cell banks, handling medicines, transport systems of ATMPs, among other related aspects, according to European and US legislation. Our aim is to provide a guide for a better, homogeneous manufacturing of therapeutic cellular products with special reference to MSCs.
Collapse
Affiliation(s)
- Maria Eugenia Fernández-Santos
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Mariano Garcia-Arranz
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Enrique J. Andreu
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Ana Maria García-Hernández
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Miriam López-Parra
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Eva Villarón
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Pilar Sepúlveda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Francisco Fernández-Avilés
- Cardiology Department, HGU Gregorio Marañón. GMP-ATMPs Production Unit, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM). Complutense University, CIBER Cardiovascular (CIBERCV), ISCIII, Madrid, Spain
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
| | - Damian García-Olmo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- New Therapies Laboratory, Health Research Institute-Fundación Jiménez Díaz University Hospital (IIS-FJD). Surgery Department, Autonoma University of Madrid, Madrid, Spain
| | - Felipe Prosper
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematology Department and Cell Therapy Area, Clínica Universidad de Navarra. CIBEROC and IDISNA, Pamplona, Spain
| | - Fermin Sánchez-Guijo
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Cell Therapy Area and Hematology Department, IBSAL-University Hospital of Salamanca, University of Salamanca, Salamanca, Spain
| | - Jose M. Moraleda
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Agustin G. Zapata
- Platform GMP Units from TerCel and TERAV Networks. RETIC TerCel & RICORS TERAV, ISCIII, Madrid, Spain
- Department of Cell Biology, Complutense University, Madrid, Spain
- *Correspondence: Maria Eugenia Fernández-Santos, ; Agustin G. Zapata,
| |
Collapse
|
8
|
Expression of angiogenesis-related proteins in bone marrow mesenchymal stem cells induced by osteoprotegerin during osteogenic differentiation in rats. Int Immunopharmacol 2021; 98:107821. [PMID: 34118644 DOI: 10.1016/j.intimp.2021.107821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/16/2021] [Accepted: 05/24/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to discuss the expression of angiogenesis-related proteins in bone marrow mesenchymal stem cells (BMSCs) induced by osteoprotegerin (OGP) during osteogenic differentiation in rats, and to analyze the effect of fracture healing inflammatory factor TNF-ɑ on the osteogenic differentiation of BMSCs of rats. BMSCs isolated and cultured from the third generation rats were taken as the research object. According to the addition amount of OGP, BMSCs were divided into control group, OGP (10-7 mol/L) group, OGP (10-8 mol/L) group, and OGP (10-9 mol/L) group. The cell growth and morphological characteristics of each group were observed by inverted phase contrast microscope, the cell proliferation rate was measured by MTT method, angiogenesis-related markers (platelet growth factor (VEGF), cingulate protein 5 (Fbln5), and angiogenin-like protein 4 (Angptl4)) were quantitatively detected by Western blot, and the effect of TNF-ɑ on osteogenic differentiation was detected by CCK. Compared with the control group, MTT results showed that the value-added rate of cells in the OGP (10-8 mol/L) group reached the maximum at 9 days (P < 0.05). The ALP activity in osteoblasts in the OGP (10-8 mol/L) group reached the maximum at 9 days (P < 0.01). The OGP (10-8 mol/L) group had the highest expression of vascular regeneration proteins (VEGF, Fbln5, and Angptl4) (P < 0.05). CCK analysis showed that the TNF-ɑ (1.0 ng/mL) group showed a significant increase in absorbance compared with the control group on 6 days (P < 0.05), and the OD value of the TNF-ɑ (10 ng/mL) group decreased at all time points (P < 0.05). Overall, 10-8 mol/L OGP can induce the proliferation and osteogenic differentiation of MSCs, and promote the expression of angiogenesis-related proteins (VEGF, Fbln5, and Angptl4) during osteogenic differentiation. Besides, 1.0 ng/mL of TNF-ɑ can also promote osteogenesis differentiation of BMSCs in the short term.
Collapse
|
9
|
Wang X, Chen X, Lu L, Yu X. Alcoholism and Osteoimmunology. Curr Med Chem 2021; 28:1815-1828. [PMID: 32334496 DOI: 10.2174/1567201816666190514101303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 03/26/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Chronic consumption of alcohol has an adverse effect on the skeletal system, which may lead to osteoporosis, delayed fracture healing and osteonecrosis of the femoral head. Currently, the treatment is limited, therefore, there is an urgent need to determine the underline mechanism and develop a new treatment. It is well-known that normal bone remodeling relies on the balance between osteoclast-mediated bone resorption and - mediated bone formation. Various factors can destroy the balance, including the dysfunction of the immune system. In this review, we summarized the relevant research in the alcoholic osteopenia with a focus on the abnormal osteoimmunology signals. We provided a new theoretical basis for the prevention and treatment of the alcoholic bone. METHODS We searched PubMed for publications from 1 January 1980 to 1 February 2020 to identify relevant and recent literature, summarizing evaluation and the prospect of alcoholic osteopenia. Detailed search terms were 'alcohol', 'alcoholic osteoporosis', 'alcoholic osteopenia' 'immune', 'osteoimmunology', 'bone remodeling', 'osteoporosis treatment' and 'osteoporosis therapy'. RESULTS A total of 135 papers are included in the review. About 60 papers described the mechanisms of alcohol involved in bone remodeling. Some papers were focused on the pathogenesis of alcohol on bone through osteoimmune mechanisms. CONCLUSION There is a complex network of signals between alcohol and bone remodeling and intercellular communication of osteoimmune may be a potential mechanism for alcoholic bone. Studying the osteoimmune mechanism is critical for drug development specific to the alcoholic bone disorder.
Collapse
Affiliation(s)
- Xiuwen Wang
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiang Chen
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lingyun Lu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xijie Yu
- Laboratory of Endocrinology and Metabolism, Department of Endocrinology and Metabolism, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Xu J, Wang J, Chen X, Li Y, Mi J, Qin L. The Effects of Calcitonin Gene-Related Peptide on Bone Homeostasis and Regeneration. Curr Osteoporos Rep 2020; 18:621-632. [PMID: 33030684 DOI: 10.1007/s11914-020-00624-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW The goals of this review are two folds: (1) to describe the recent understandings on the roles of calcitonin gene-related peptide-α (CGRP) in bone homeostasis and the underlying mechanisms of related neuronal regulation and (2) to propose innovative CGRP-modulated approaches for enhancing bone regeneration in challenging bone disorders. RECENT FINDINGS CGRP is predominantly produced by the densely distributed sensory neuronal fibers in bone, declining with age. Under mechanical and biochemical stimulations, CGRP releases and exerts either physiological or pathophysiological roles. CGRP at physiological level orchestrates the communications of bone cells with cells of other lineages, affecting not only osteogenesis, osteoclastogenesis, and adipogenesis but also angiogenesis, demonstrating with pronounced anabolic effect, thus is essential for maintaining bone homeostasis, with tuned nerve-vessel-bone network. In addition, its effects on immunity and cell recruitment are also crucial for bone fracture healing. Binding to the G protein-coupled receptor composited by calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein 1 (RAMP1) on cellular surface, CGRP triggers various intracellular signaling cascades involving cyclic adenosine monophosphate (cAMP) and cAMP response element-binding protein (CREB). Peaking at early stage post-fracture, CGRP promotes bone formation, displaying with larger callus. Then CGRP gradually decreases over time, allowing normal or physiological bone remodeling. By elevating CGRP at early stage, low-intensity pulsed ultrasound (LIPUS), electrical stimulation, and magnesium-based bio-mineral products may promisingly accelerate bone regeneration experimentally in medical conditions like osteoporosis, osteoporotic fracture, and spine fusion. Excess CGRP expression is commonly observed in pathological conditions including cancer metastatic lesions in bone and fracture delayed- or non-healing, resulting in persistent chronic pain. To date, these discoveries have largely been limited to animal models. Clinical applications are highly desirable. Compelling evidence show the anabolic effects of CGRP on bone in animals. However, further validation on the role of CGRP and the underlying mechanisms in human skeletons is required. It remains unclear if it is type H vessel connecting neuronal CGRP to osteogenesis, and if there is only specific rather than all osteoprogenitors responsible to CGRP. Clear priority should be put to eliminate these knowledge gaps by integrating with high-resolution 3D imaging of transparent bulk bone and single-cell RNA-sequencing. Last but not the least, given that small molecule antagonists such as BIBN4096BS can block the beneficial effects of CGRP on bone, concerns on the potential side effects of humanized CGRP-neutralizing antibodies when systemically administrated to treat migraine in clinics are arising.
Collapse
Affiliation(s)
- Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| | - Jiali Wang
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, China
| | - Xiaodan Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Li
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Jie Mi
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics & Traumatology, The Chinese University of Hong Kong, Hong Kong, China.
- Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Health and Science Institute, The Chinese University of Hong Kong, Hong Kong, China.
- Joint Laboratory of Chinese Academic of Science and Hong Kong for Biomaterials, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
11
|
Therapeutic effects of calcitonin gene-related peptide-modified bone marrow mesenchymal stem cells combined with autogenous bone grafting for treatment of osteonecrosis of the femoral head in rabbits. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
12
|
Bai H, Chen T, Lu Q, Zhu W, Zhang J. Gene expression profiling of the bone trabecula in patients with osteonecrosis of the femoral head by RNA sequencing. J Biochem 2019; 166:475-484. [PMID: 31518413 DOI: 10.1093/jb/mvz060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 07/26/2019] [Indexed: 01/17/2023] Open
Abstract
Early diagnosis and treatment of osteonecrosis of the femoral head (ONFH) is challenging. Bone trabecula play a vital role in the severity and progression of ONFH. In the present study, the investigators used gene expression profiling of bone trabecula to investigate gene alterations in ONFH patients. Osteonecrotic bone trabecula (ONBT) such as necrosis, fibrosis, and lacuna were confirmed by histological examination in the patients. The adjacent 'normal' bone trabecula (ANBT) did not show any pathological changes. Gene sequencing data revealed that although ANBT showed no significant histological changes, alteration of mRNA profiling in ANBT was observed, similar to that in ONBT. Our results indicated that the alteration of mRNA profiling in ANBT may cause normal bone tissue to develop into necrotic bone. RNA-seq data indicated that 2,297 differentially abundant mRNAs were found in the ONBT group (1,032 upregulated and 1,265 downregulated) and 1,523 differentially abundant mRNAs in the ANBT group (744 upregulated and 799 downregulated) compared with the healthy control group. Gene ontology (GO) enrichment analysis suggested that fatty acid metabolism and degradation were the main zones enriched with differentially expressed genes (DEG). Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis indicated that peroxisome proliferator-activated receptor γ (PPAR-γ) pathway was the most significantly regulated pathway. Lipocalin-2 (LCN2), an osteoblast-enriched secreted protein, was significantly decreased in ONBT suggesting that downregulation of LCN2 might affect lipid metabolism and lead to hyperlipidemia, and thus promote pathogenesis of ONFH.
Collapse
Affiliation(s)
- Haobo Bai
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 1 Yi Xue Yuan Road, Yu Zhong District, Chongqing 400016, China.,Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, 1 Road Yixueyuan, Yuzhong District, Chongqing 400016, China
| | - Tingmei Chen
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, 1 Road Yixueyuan, Yuzhong District, Chongqing 400016, China
| | - Qian Lu
- Heart Centre, the Children's Hospital of Chongqing Medical University, 136 Zhongshan Er Road, Yu Zhong District, Chongqing 400016, China
| | - Weiwen Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 1 Yi Xue Yuan Road, Yu Zhong District, Chongqing 400016, China.,Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, 1 Road Yixueyuan, Yuzhong District, Chongqing 400016, China
| | - Jian Zhang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, 1 Yi Xue Yuan Road, Yu Zhong District, Chongqing 400016, China
| |
Collapse
|
13
|
Abstract
Granulocytes are the major type of phagocytes constituting the front line of innate immune defense against bacterial infection. In adults, granulocytes are derived from hematopoietic stem cells in the bone marrow. Alcohol is the most frequently abused substance in human society. Excessive alcohol consumption injures hematopoietic tissue, impairing bone marrow production of granulocytes through disrupting homeostasis of granulopoiesis and the granulopoietic response. Because of the compromised immune defense function, alcohol abusers are susceptible to infectious diseases, particularly septic infection. Alcoholic patients with septic infection and granulocytopenia have an exceedingly high mortality rate. Treatment of serious infection in alcoholic patients with bone marrow inhibition continues to be a major challenge. Excessive alcohol consumption also causes diseases in other organ systems, particularly severe alcoholic hepatitis which is life threatening. Corticosteroids are the only therapeutic option for improving short-term survival in patients with severe alcoholic hepatitis. The existence of advanced alcoholic liver diseases and administration of corticosteroids make it more difficult to treat serious infection in alcoholic patients with the disorder of granulopoieis. This article reviews the recent development in understanding alcohol-induced disruption of marrow granulopoiesis and the granulopoietic response with the focus on progress in delineating cell signaling mechanisms underlying the alcohol-induced injury to hematopoietic tissue. Efforts in exploring effective therapy to improve patient care in this field will also be discussed.
Collapse
|
14
|
Chen Y, Zhu D, Gao J, Xu Z, Tao S, Yin W, Zhang Y, Gao Y, Zhang C. Diminished membrane recruitment of Akt is instrumental in alcohol‐associated osteopenia via thePTEN/Akt/GSK‐3β/β‐catenin axis. FEBS J 2019; 286:1101-1119. [PMID: 30656849 DOI: 10.1111/febs.14754] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/23/2018] [Accepted: 01/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yi‐Xuan Chen
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Dao‐Yu Zhu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Junjie Gao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Centre for Orthopaedic Translational Research School of Biomedical Sciences University of Western Australia Nedlands Perth Australia
| | - Zheng‐Liang Xu
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Shi‐Cong Tao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Wen‐Jing Yin
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yue‐Lei Zhang
- Department of Orthopedics The First Affiliated Hospital of Anhui Medical University Hefei China
| | - You‐Shui Gao
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Centre for Orthopaedic Translational Research School of Biomedical Sciences University of Western Australia Nedlands Perth Australia
| | - Chang‐Qing Zhang
- Department of Orthopedic Surgery Shanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
- Institute of Microsurgery on Extremities Shanghai China
| |
Collapse
|
15
|
Fang S, Li Y, Chen P. Osteogenic effect of bone marrow mesenchymal stem cell-derived exosomes on steroid-induced osteonecrosis of the femoral head. Drug Des Devel Ther 2018; 13:45-55. [PMID: 30587927 PMCID: PMC6305133 DOI: 10.2147/dddt.s178698] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Animal studies have demonstrated the therapeutic effect of mesenchymal stem cells (MSCs) on osteogenesis, but little is known about the functions of exosomes (Exos) released by bone MSCs (BMSCs). Here, we investigated the effect of BMSC Exos on steroid-induced femoral head necrosis (SFHN) and explored the vital genes involved in this process. MATERIALS AND METHODS BMSCs were isolated from healthy and SFHN rats. BMSC Exos were isolated using the Exosome Precipitation Kit and characterized by transmission electron microscopy and Western blotting. SFHN BMSCs were incubated with Exos from healthy BMSCs. Osteogenic ability was assessed by oil red O staining and alizarine red staining. Differentially expressed genes (DEGs) induced by Exos were screened using the Osteogenesis RT2 Profiler PCR Array. The effect of upregulated Sox9 was examined using lentivirus-mediated siRNA. RESULTS The results revealed that BMSC Exos were 100-150 nm in size and expressed CD63. Moreover, BMSC Exo-treated SFHN cells exhibited suppressed adipogenesis compared to model cells. PCR array showed that eleven and nine genes were upregulated and downregulated, respectively, in the BMSC Exo-treated SFHN cells compared to the model group. Among the DEGs, osteogenesis-related genes, including Bmp2, Bmp6, Bmpr1b, Mmp9, and Sox9, may play important roles in SFHN. Furthermore, the DEGs were mainly involved in immune response, osteoblast differentiation, and in the transforming growth factor-β/bone morphogenetic protein signaling pathway. The level of the SOX9 protein was upregulated by Exos, and Sox9 silencing significantly decreased the osteogenic effect of BMSC Exos. CONCLUSION Our data suggest that Exos derived from BMSCs mainly affect SFHN osteogenesis, and this finding can be further investigated to develop a novel therapeutic agent for SFHN.
Collapse
Affiliation(s)
- Shanhong Fang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China,
| | - Yongfeng Li
- Department of Bone Surgery, Fujian Medical University, Fuzhou 350005, China
| | - Peng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China,
| |
Collapse
|
16
|
Wang A, Ren M, Wang J. The pathogenesis of steroid-induced osteonecrosis of the femoral head: A systematic review of the literature. Gene 2018; 671:103-109. [DOI: 10.1016/j.gene.2018.05.091] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022]
|
17
|
Yao BJ, He XQ, Lin YH, Dai WJ. Cardioprotective effects of anisodamine against myocardial ischemia/reperfusion injury through the inhibition of oxidative stress, inflammation and apoptosis. Mol Med Rep 2017; 17:1253-1260. [PMID: 29115503 DOI: 10.3892/mmr.2017.8009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 07/12/2017] [Indexed: 11/05/2022] Open
Abstract
The aim of the present study was to investigate the cardioprotective effects of anisodamine against myocardial ischemia/reperfusion (I/R) injury and the molecular mechanisms involved. The present results demonstrated that anisodamine attenuated myocardial infarct sizes, decreased the levels of creatine kinase and lactate dehydrogenase, whereas it increased the left ventricular (LV) systolic pressure, the LV end‑diastolic pressure, and the LV pressure maximum rising and falling rates in a myocardial I/R rat model. In addition, anisodamine was revealed to suppress oxidative stress, inflammatory factor production and myocardial cell apoptosis, as demonstrated by the downregulation of caspase‑3 and apoptosis regulator BAX protein expression. The production of reactive oxygen species was decreased and the protein expression of inducible nitric oxide synthase (iNOS) was downregulated, whereas the expression of endothelial NOS was enhanced. In addition, the activity of nicotinamide‑adenine dinucleotide phosphate oxidase (Nox) was suppressed and the expression of Nox4 was downregulated in rats with myocardial I/R injury. In conclusion, the results of the present study suggested that anisodamine exerted a cardioprotective effect against myocardial I/R injury in rats, through the inhibition of oxidative stress, the suppression of inflammatory processes and the inhibition of myocardial cell apoptosis.
Collapse
Affiliation(s)
- Bao-Ju Yao
- Department of Cardiology, The First People's Hospital of Huainan, Huainan, Anhui 232007, P.R. China
| | - Xiao-Qing He
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Yu-Hui Lin
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Wen-Jun Dai
- Department of Cardiology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
18
|
Chen J, Ma G, Liu W, Liu Y, Ding Y. The influence of the sensory neurotransmitter calcitonin gene-related peptide on bone marrow mesenchymal stem cells from ovariectomized rats. J Bone Miner Metab 2017; 35:473-484. [PMID: 27623790 DOI: 10.1007/s00774-016-0780-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/16/2016] [Indexed: 12/13/2022]
Abstract
In order to explore the effects of calcitonin gene-related peptide (CGRP) on bone mesenchymal stem cells (BMSCs) from ovariectomized (OVX) rats, an OVX rat model was used. An ELISA was performed to examine the changes in CGRP level in the plasma and skeleton. The BMSCs from the sham rats were designated group A. The BMSCs from the OVX rats (groups B, C, D and E) were treated with different concentrations of CGRP (10-6, 10-8, 10-10 and 0 M) in vitro. The proliferation and osteogenic and adipogenic differentiation potential of the BMSCs were evaluated. BMSCs sheets and Bio-Oss® mixtures were transplanted into nude mice to observe the effects of CGRP on bone formation in vivo. The level of CGRP was decreased by almost 27 and 17 % in the plasma and bone, respectively, in OVX rats compared with sham rats (p < 0.05). Treatment with CGRP increased the proliferation and mineralization of BMSCs, and significantly decreased the lipid accumulation of BMSCs in a dose-dependent manner. The expression of Runx2 and Osterix was upregulated, but the expression of peroxisome proliferator-activated receptor γ was significantly downregulated in groups B, C and D compared with group E (p < 0.05). Micro computed tomography showed no difference between the images of the planted mixtures. Hematoxylin and eosin stain revealed the formation of slightly more hard bone-like structures in groups B and C. These results suggested that CGRP played a role in adjusting bone mass and strength by promoting the proliferation and osteogenic differentiation of BMSCs, as well as significantly suppressing the adipogenic differentiation of BMSCs.
Collapse
Affiliation(s)
- Jie Chen
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center of Oral Diseases, School of Stomatology, Fourth Military Medical University (FMMU), Xi'an, People's Republic of China
- Department of Stomatology, Lanzhou Military Region General Hospital, Lanzhou, People's Republic of China
| | - Ge Ma
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center of Oral Diseases, School of Stomatology, Fourth Military Medical University (FMMU), Xi'an, People's Republic of China
| | - Wei Liu
- Postgraduate Institute, FMMU, Xi'an, People's Republic of China
| | - Yanpu Liu
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center of Oral Diseases, School of Stomatology, Fourth Military Medical University (FMMU), Xi'an, People's Republic of China
| | - Yuxiang Ding
- Department of Oral Surgery, State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Clinical Research Center of Oral Diseases, School of Stomatology, Fourth Military Medical University, 145 Western Changle Road, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
19
|
miR-27a attenuates adipogenesis and promotes osteogenesis in steroid-induced rat BMSCs by targeting PPARγ and GREM1. Sci Rep 2016; 6:38491. [PMID: 27910957 PMCID: PMC5133594 DOI: 10.1038/srep38491] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 11/11/2016] [Indexed: 02/07/2023] Open
Abstract
The imbalance between adipogenic and osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs) plays a significant role in the pathogenesis of steroid-induced osteonecrosis of the femoral head (ONFH). Several microRNAs (miRNAs) are involved in regulating adipogenesis and osteogenesis. In this study, we established a steroid-induced ONFH rat model to identify the potential relevant miRNAs. We identified 9 up-regulated and 28 down-regulated miRNAs in the ONFH rat model. Of these, miR-27a was down-regulated and negatively correlated with peroxisome proliferator-activated receptor gamma (PPARγ) and gremlin 1 (GREM1) expression. Further studies confirmed that PPARγ and GREM1 were direct targets of miRNA-27a. Additionally, adipogenic differentiation was enhanced by miR-27a down-regulation, whereas miRNA-27a up-regulation attenuated adipogenesis and promoted osteogenesis in steroid-induced rat BMSCs. Moreover, miRNA-27a up-regulation had a stronger effect on adipogenic and osteogenic differentiation in steroid-induced rat BMSCs than si-PPARγ and si-GREM1. In conclusion, we identified 37 differentially expressed miRNAs in the steroid-induced ONFH model, of which miR-27a was down-regulated. Our results showed that miR-27a up-regulation could inhibit adipogenesis and promote osteogenesis by directly targeting PPARγ and GREM1. Thus, miR-27a is likely a key regulator of adipogenesis in steroid-induced BMSCs and a potential therapeutic target for ONFH treatment.
Collapse
|
20
|
Enhanced proliferation and differentiation effects of a CGRP- and Sr-enriched calcium phosphate cement on bone mesenchymal stem cells. J Appl Biomater Funct Mater 2016; 14:e431-e440. [PMID: 27514494 DOI: 10.5301/jabfm.5000295] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2016] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Because of its good osteoconductivity, strontium (Sr) ranelate has been extensively used as a bone substitute for the treatment of bone disorders. To facilitate treatment, Sr is also incorporated into calcium phosphate cement (Sr-CPC); however, the Sr from Sr-CPC is not sufficient to induce a significant increase of bone mass in an ovariectomized rat model. To improve the efficiency of Sr-CPC, we developed a calcitonin gene-related peptide (CGRP)- and Sr-enriched CPC (CGRP-Sr-CPC). METHODS We used X-ray diffraction and Fourier transform infrared spectroscopy to measure properties of CGRP-Sr-CPC. We also employed a cell proliferation assay, alkaline phosphatase (ALP) assay and real-time PCR to assess the effects of CPC implants on proliferation and differentiation of bone mesenchymal stem cells (BMSCs) from an ovariectomized rat model. RESULTS CGRP did not change the composition, pore sizes and compressive strength of the cement body as compared with Sr-CPC. Meanwhile, CGRP-Sr-CPC did not show cell cytotoxicity to BMSCs. Further, CGRP and Sr released from CGRP-Sr-CPC significantly enhanced the cell proliferation of BMSCs and increased the activity of ALP during differentiation of BMSCs, compared with CGRP- or Sr-CPC. Moreover, CGRP-Sr-CPC significantly up-regulated the expression levels of osteogenic differentiation-related genes including Alp, Bmp2, Osteonectin and Runx2 during differentiation. CONCLUSIONS These findings demonstrate the optimized effects of CGRP- and Sr-enriched CPC in promoting proliferation and osteogenic differentiation of BMSCs, suggesting the potential ability of this novel cement to assist the formation of new bone during osteoporosis-induced bone disorders.
Collapse
|
21
|
Jeong W, Yang X, Lee J, Ryoo Y, Kim J, Oh Y, Kwon S, Liu D, Son D. Serial changes in the proliferation and differentiation of adipose-derived stem cells after ionizing radiation. Stem Cell Res Ther 2016; 7:117. [PMID: 27530249 PMCID: PMC4988041 DOI: 10.1186/s13287-016-0378-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/23/2016] [Accepted: 07/27/2016] [Indexed: 02/06/2023] Open
Abstract
Background Adipose-derived stem cells (ASCs) are important to homeostasis and the regeneration of subcutaneous fat. Hence, we examined the proliferation and differentiation capacity of irradiated ASCs over time. Methods Two female pigs received a single 18 Gy dose of ionizing radiation to an 18 × 8 cm area on the dorsal body skin via a 6 MeV electron beam. After irradiation, the ASCs were cultured from adipose tissue harvested from a non-irradiated area and an irradiated area at 2, 4, and 6 weeks. The proliferation capacity of ASCs was evaluated by a colony-forming units–fibroblasts (CFUs-Fs) assay, a cholecystokinin (CCK) test with 10 % fetal bovine serum (FBS), and a 1 % FBS culture test. The senescence of ASCs was evaluated through morphological examination, immunophenotyping, and β-galactosidase activity, and the multipotent differentiation potential of ASCs was evaluated in adipogenic, osteogenic, and chondrogenic differentiation media. Results Irradiated ASCs demonstrated significantly decreased proliferative capacity 6 weeks after irradiation. As well, the cells underwent senescence, which was confirmed by blunted morphology, weak mesenchymal cell surface marker expression, and elevated β-galactosidase activity. Irradiated ASCs also exhibited significant losses in the capacity for adipocyte and chondrocyte differentiation. In contrast, osteogenic differentiation was preserved in irradiated ASCs. Conclusions We observed decreased proliferation and senescence of irradiated ASCs compared to non-irradiated ASCs 6 weeks after irradiation. Furthermore, irradiated ASCs demonstrated impaired adipocyte and chondrocyte differentiation but retained their osteogenic differentiation capacity. Our results could shed light on additional pathogenic effects of late irradiation, including subcutaneous fibrosis and calcinosis.
Collapse
Affiliation(s)
- Woonhyeok Jeong
- Department of Plastic and Reconstructive Surgery, Institute for Medical Science, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Xiao Yang
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jeongmi Lee
- Department of Plastic and Reconstructive Surgery, Institute for Medical Science, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Youngwook Ryoo
- Department of Dermatology, Institute for Medical Science, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jinhee Kim
- Department of Radiation Oncology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Youngkee Oh
- Department of Radiation Oncology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Sunyoung Kwon
- Department of Pathology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Dalie Liu
- Department of Plastic and Reconstructive Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Daegu Son
- Department of Plastic and Reconstructive Surgery, Institute for Medical Science, Keimyung University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
22
|
The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 2015; 16:485. [PMID: 25789373 PMCID: PMC4395972 DOI: 10.1186/s13075-014-0485-1] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The peripheral nervous system is critically involved in bone metabolism, osteogenesis, and bone remodeling. Nerve fibers of sympathetic and sensory origin innervate synovial tissue and subchondral bone of diathrodial joints. They modulate vascularization and matrix differentiation during endochondral ossification in embryonic limb development, indicating a distinct role in skeletal growth and limb regeneration processes. In pathophysiological situations, the innervation pattern of sympathetic and sensory nerve fibers is altered in adult joint tissues and bone. Various resident cell types of the musculoskeletal system express receptors for sensory and sympathetic neurotransmitters. Osteoblasts, osteoclasts, mesenchymal stem cells, synovial fibroblasts, and different types of chondrocytes produce distinct subtypes of adrenoceptors, receptors for vasointestinal peptide, for substance P and calcitonin gene-related peptide. Many of these cells even synthesize neuropeptides such as substance P and calcitonin gene-related peptide and are positive for tyrosine-hydroxylase, the rate-limiting enzyme for biosynthesis of catecholamines. Sensory and sympathetic neurotransmitters modulate osteo-chondrogenic differentiation of mesenchymal progenitor cells during endochondral ossification in limb development. In adults, sensory and sympathetic neurotransmitters are critical for bone regeneration after fracture and are involved in the pathology of inflammatory diseases as rheumatoid arthritis which manifests mainly in joints. Possibly, they might also play a role in pathogenesis of degenerative joint disorders, such as osteoarthritis. All together, accumulating data imply that sensory and sympathetic neurotransmitters have crucial trophic effects which are critical for proper limb formation during embryonic skeletal growth. In adults, they modulate bone regeneration, bone remodeling, and articular cartilage homeostasis in addition to their classic neurological actions.
Collapse
|
23
|
Zhang Y, Ma C, Yu Y, Liu M, Yi C. Are CXCL13/CXCR5/FAK critical regulators of MSCs migration and differentiation? Med Hypotheses 2015; 84:213-5. [DOI: 10.1016/j.mehy.2014.12.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
|
24
|
Liang W, Zhuo X, Tang Z, Wei X, Li B. Calcitonin gene-related peptide stimulates proliferation and osteogenic differentiation of osteoporotic rat-derived bone mesenchymal stem cells. Mol Cell Biochem 2015; 402:101-10. [PMID: 25563479 DOI: 10.1007/s11010-014-2318-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/23/2014] [Indexed: 01/27/2023]
Abstract
Osteoporosis, a systemic bone disorder, is prevalent in postmenopausal woman. Bone mesenchymal stem cells (BMSCs), precursors of osteogenic cells, may contribute to prevention or treatment of bone frustrate in osteoporosis. Recently, two studies suggested a role of calcitonin gene-related peptide (CGRP) in promoting osteogenesis of BMSCs under physiological conditions. However, the role of CGRP on BMSCs, which are derived from osteoporotic tissues, is unclear. Here, we investigated the role of CGRP on BMSCs isolated from female osteoporotic rats. Data showed that CGRP stimulated cell proliferation and inhibited cell apoptosis for short-term culture of BMSCs. Instead, CGRP induced BMSCs differentiation into the osteoblasts and promoted formation of calcified nodules after long-term culture. Moreover, CGRP gradually up-regulated expression levels of osteoporotic differentiation-related genes including alkaline phosphatase, Collagen type I, Bmp2, Osteonectin, and Runx2 during osteogenic differentiation. In conclusion, CGRP promoted proliferation and induced osteogenic differentiation and mineralization during female osteoporotic rat-derived BMSC differentiation. These findings support a potential role of CGRP on the prevention or treatment of osteoporotic fracture.
Collapse
Affiliation(s)
- Wei Liang
- The Fourth Affiliated Hospital, Guangxi Medical University, No. 1 Liushi Road, Yufeng, Liuzhou, 545005, Guangxi, China
| | | | | | | | | |
Collapse
|