1
|
Liu L, Yu P, Zhao Z, Yang H, Yu R. Pharmacological mechanisms of carvacrol against hepatocellular carcinoma by network pharmacology and molecular docking. Technol Health Care 2025:9287329241306192. [PMID: 39973856 DOI: 10.1177/09287329241306192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Preclinical studies have demonstrated that carvacrol possesses various biological and pharmacological properties, including anti-hepatocellular carcinoma (HCC) effects. However, the molecular basis of its therapeutic action on HCC remains unclear. OBJECTIVE The aim of this study was to investigate and further validate the multi-target therapeutic mechanism of carvacrol against HCC. METHODS The chemical structure of carvacrol was obtained from the PubChem database, and its potential targets were identified using SwissTargetPrediction, HERB, and BATMAN-TCM. HCC-specific genes were screened from the TCGA-LIHC cohort. The therapeutic targets of carvacrol against HCC were determined through the intersection of these datasets. Subsequently, a multivariate Cox regression prognostic model was established. Molecular docking was performed to analyze the interactions between carvacrol and its therapeutic targets. Additionally, molecular dynamics simulations were conducted to validate the molecular docking results using Discovery Studio 2019 software. RESULTS A total of 223 carvacrol targets and 882 HCC-specific genes were identified. Fifteen therapeutic targets of carvacrol against HCC were obtained, including CA2, AR, ALB, AURKA, ALPL, EPHX2, BCHE, IL1RN, AGRN, CRP, DMGDH, APOA1, SOX9, HPX, and CHKA. The prognostic model accurately and independently predicted survival outcomes. AGRN and AURKA were significantly associated with HCC overall survival. Molecular docking and molecular dynamics simulations demonstrated that carvacrol exhibited strong potential for stable binding to the therapeutic targets AGRN and AURKA. CONCLUSION Our findings elucidate the multi-target mechanism of action of carvacrol against HCC, providing a foundation for future research on its application in HCC management.
Collapse
Affiliation(s)
- Lu Liu
- Cancer Center, Zhejiang University, Lishui Hospital, Lishui City, Zhejiang Province, China
- Cancer Center, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province, China
- Cancer Center, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Ping Yu
- Department of Pharmacy, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, China
- Department of Pharmacy, Shaoxing Hospital Affiliated Zhejiang University School of Medicine, Shaoxing City, Zhejiang Province, China
| | - Zhongwei Zhao
- Cancer Center, Zhejiang University, Lishui Hospital, Lishui City, Zhejiang Province, China
- Cancer Center, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province, China
- Cancer Center, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Hongyuan Yang
- Cancer Center, Zhejiang University, Lishui Hospital, Lishui City, Zhejiang Province, China
- Cancer Center, The Fifth Affiliated Hospital of Wenzhou Medical College, Lishui City, Zhejiang Province, China
- Cancer Center, Lishui Central Hospital, Lishui City, Zhejiang Province, China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou City, Zhejiang, China
| |
Collapse
|
2
|
Mathur A, Meena A, Luqman S. Monoterpenoids: An upcoming class of therapeutic agents for modulating cancer metastasis. Phytother Res 2024; 38:939-969. [PMID: 38102850 DOI: 10.1002/ptr.8081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/28/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023]
Abstract
Monoterpenoids, a sub-class of terpenoids, are secondary metabolites frequently extracted from the essential oils of aromatic plants. Their antitumor properties including antiproliferative, apoptotic, antiangiogenic, and antimetastatic effects along with other biological activities have been the subject of extensive study due to their diverse characteristics. In recent years, numerous investigations have been conducted to understand its potential anticancer impacts, specifically focusing on antiproliferative and apoptotic mechanisms. Metastasis, a malignancy hallmark, can exert either protective or destructive influences on tumor cells. Despite this, the potential antimetastatic and antiangiogenic attributes of monoterpenoids need further exploration. This review focuses on specific monoterpenoids, examining their effects on metastasis and relevant signaling pathways. The monoterpenoids exhibit a high level of complexity as natural products that regulate metastatic proteins through various signaling pathways, including phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin, mitogen-activated protein kinase/extracellular signal-regulated kinase/jun N-terminal kinase, nuclear factor kappa B, vascular endothelial growth factor, and epithelial mesenchymal transition process. Additionally, this review delves into the biosynthesis and classification of monoterpenoids, their potential antitumor impacts on cell lines, the plant sources of monoterpenoids, and the current status of limited clinical trials investigating their efficacy against cancer. Moreover, monoterpenoids depict promising potential in preventing cancer metastasis, however, inadequate clinical trials limit their drug usage. State-of-the-art techniques and technologies are being employed to overcome the challenges of utilizing monoterpenoids as an anticancer agent.
Collapse
Affiliation(s)
- Anurag Mathur
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
3
|
Othman MS, Aboelnaga SM, Habotta OA, Moneim AEA, Hussein MM. The Potential Therapeutic Role of Green-Synthesized Selenium Nanoparticles Using Carvacrol in Human Breast Cancer MCF-7 Cells. APPLIED SCIENCES 2023; 13:7039. [DOI: 10.3390/app13127039] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
The disadvantages and side effects of currently available breast cancer (BC) therapies have compelled researchers to seek new therapeutic strategies. This study was designed to investigate the effect of selenium nanoparticles biosynthesized with carvacrol (SeNPs-CV) on breast cancer (MCF-7) cell lines and to explore possible underlying pathways. Flow cytometry, MTT assays, and various biochemical techniques were used to evaluate the anti-proliferative effects of SeNPs-CV on MCF-7 cells. Cytotoxicity assays showed that treatment with SeNPs-CV could effectively reduce MCF-7 cell proliferation and viability in a dose-dependent manner. However, SeNPs-CV had no cytotoxic effect against Vero cells. Furthermore, SeNPs-CV showed better anticancer activity than metal nanoparticles of selenium evidenced by the lower IC50 obtained in MCF-7 cells (8.3 µg/mL versus 41.6 µg/mL, respectively). Treatment with SeNPs-CV directly targeted Bcl-2, Bax, and caspase-3, leading to the mitochondrial leakage of cytochrome C and subsequent activation of the apoptotic cascade in MCF-7 cells. In addition, MCF-7 cells treated with SeNPs-CV exhibited elevated levels of oxidative stress, as indicated by noticeable rises in 8-OHDG, ROS, NO, and LPO, paralleled by significant exhaustion in GSH levels and antioxidant enzymes activity. In addition, the administration of SeNPs-CV induced the inflammatory mediator IL-1β and downregulated the expression of cell-proliferating nuclear antigen (PCNA) in MCF-7 cells, which plays a critical role in apoptosis. Therefore, the ability of SeNPs-CV to fight BC may be due to its ability to induce oxidative stress, inflammation, and apoptosis in tumor cells. These findings demonstrate the therapeutic potential of Se nanoparticles conjugated with CV, which may provide a novel approach for combination chemotherapy in BC.
Collapse
Affiliation(s)
- Mohamed S. Othman
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
- Faculty of Biotechnology, October University for Modern Science and Arts (MSA), Giza 12566, Egypt
| | - Shimaa M. Aboelnaga
- Basic Sciences Department, Deanship of Preparatory Year, University of Ha’il, Hail 2440, Saudi Arabia
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Manal M. Hussein
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| |
Collapse
|
4
|
Mohamed EH, Abo El-Magd NF, El Gayar AM. Carvacrol enhances anti-tumor activity and mitigates cardiotoxicity of sorafenib in thioacetamide-induced hepatocellular carcinoma model through inhibiting TRPM7. Life Sci 2023; 324:121735. [PMID: 37142088 DOI: 10.1016/j.lfs.2023.121735] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/16/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
AIMS Sorafenib (Sora) represents one of the few effective drugs for the treatment of advanced hepatocellular carcinoma (HCC), while resistance and cardiotoxicity limit its therapeutic efficacy. This study investigated the effect of transient receptor potential melastatin 7 (TRPM7) inhibitor, carvacrol (CARV), on overcoming Sora resistance and cardiotoxicity in thioacetamide (TAA) induced HCC in rats. MATERIALS AND METHODS TAA (200 mg/kg/twice weekly, intraperitoneal) was administered for 16 weeks to induce HCC. Rats were treated with Sora (10 mg/Kg/day; orally) and CARV (15 mg/kg/day; orally) alone or in combination, for six weeks after HCC induction. Liver and heart functions, antioxidant capacity, and histopathology were performed. Apoptosis, proliferation, angiogenesis, metastasis, and drug resistance were assessed by quantitative real time polymerase chain reaction, enzyme-linked immunosorbent assay, and immunohistochemistry. KEY FINDINGS CARV/Sora combination significantly improved survival rate, and liver functions, reduced Alpha-Fetoprotein level, and attenuated HCC progression compared with Sora group. CARV coadministration almost obviated Sora-induced changes in cardiac and hepatic tissues. The CARV/Sora combination suppressed drug resistance and stemness by downregulating ATP-binding cassette subfamily G member 2, NOTCH1, Spalt like transcription factor 4, and CD133. CARV boosted Sora antiproliferative and apoptotic activities by decreasing cyclin D1 and B-cell leukemia/lymphoma 2 and increasing BCL2-Associated X and caspase-3. SIGNIFICANCE CARV/Sora is a promising combination for tumor suppression and overcoming Sora resistance and cardiotoxicity in HCC by modulating TRPM7. To our best knowledge, this study represents the first study to investigate the efficiency of CARV/ Sora on the HCC rat model. Moreover, no previous studies have reported the effect of inhibiting TRPM7 on HCC.
Collapse
Affiliation(s)
- Eman H Mohamed
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Biochemistry Department, Faculty of Pharmacy, Horus University-Egypt, Damietta 34511, Egypt.
| | - Nada F Abo El-Magd
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Amal M El Gayar
- Biochemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Attenuation of Endoplasmic Reticulum Stress Enhances Carvacrol-Induced Apoptosis in Osteosarcoma Cell Lines. Life (Basel) 2023; 13:life13030744. [PMID: 36983900 PMCID: PMC10054369 DOI: 10.3390/life13030744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023] Open
Abstract
Carvacrol is a monoterpenoid phenol that has excellent antimicrobial, antiviral, and anti-inflammatory activities. It can also improve wound healing. However, few studies have explored its antitumor effect on osteosarcoma. In this report, we tried to determine the potential efficacy of carvacrol against osteosarcoma cell lines. Our data revealed that carvacrol exposure inhibited the proliferation of osteosarcoma HOS and U-2 OS cells. In addition, carvacrol exposure enhanced the levels of cleaved PARP and caspase 3 and increased annexin V-positive cells, indicating that carvacrol exposure triggers apoptosis in osteosarcoma cell lines. Furthermore, the levels of reactive oxygen species (ROS) were enhanced after carvacrol exposure and cotreatment with NAC, the ROS scavenger, decreased the levels of cleaved PARP and caspase 3, suggesting the involvement of ROS in carvacrol-induced apoptosis. Importantly, we found that carvacrol exposure triggered several protein expressions related to endoplasmic reticulum (ER) stress, including GRP78/Bip, IRE1a, PERK, and CHOP, in HOS and U-2 OS cells, indicating that carvacrol exposure could result in ER stress in these cell lines. Cotreatment with the ER stress inhibitor 4-PBA increased the levels of cleaved PARP and caspase 3 and further suppressed cellular proliferation in carvacrol-exposed osteosarcoma cell lines. Overall, the results indicate that induced ER stress can protect cells from apoptosis, but increased ROS contributes to apoptosis in carvacrol-treated cells. In this report, we first demonstrate the role of ER stress in carvacrol-induced apoptosis and suggest that ER stress could be targeted to enhance the antitumor activity of carvacrol in osteosarcoma cell lines.
Collapse
|
6
|
Anti-Inflammatory and Antioxidant Effects of Carvacrol on N-Methyl-N′-Nitro-N-Nitrosoguanidine (MNNG) Induced Gastric Carcinogenesis in Wistar Rats. Nutrients 2022; 14:nu14142848. [PMID: 35889805 PMCID: PMC9323991 DOI: 10.3390/nu14142848] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/19/2022] Open
Abstract
Carvacrol is a dietary polyphenol from Lamiaceae plants that has been shown to possess a wide range of biological activities including antioxidant and antitumor effects. This study aimed to investigate its anti-inflammatory and antioxidant effects on N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) induced gastric carcinogenesis in Wistar rats. Forty-nine rats were randomly assigned to four treatment and three control groups. Over 60 days, MNNG (200 mg/kg BW) was orally applied to animals of groups 1–5 while the rats in groups 2–5 also received different doses of carvacrol (10, 25, 50, and 100 mg/kg BW, respectively) until the end of the experiment. Group 6 rats were treated with 100 mg/kg BW carvacrol and no MNNG whereas group 7 was the control group without any treatment. After the euthanasia of all rats, the inflammatory cytokines and oxidative stress parameters were assessed in the blood and tissues. The expression of caspase 9, Bax, and Bcl-2 proteins in the stomach tissues were investigated through histopathological examinations. Statistically significant differences were observed in the body weight, oxidative stress, and inflammation parameters of groups 1 to 6 compared to group 7 (p ≤ 0.001). Animals in MNNG groups 2 and 3 treated with the low dose carvacrol (10 and 25 mg/kg BW) showed significantly reduced oxidative stress, inflammation, and apoptotic effect compared to animals of the MNNG groups receiving increased doses of carvacrol (50 and 100 mg/kg BW) or no carvacrol. Rats exposed to MNNG exhibited gastric cancer cells in several areas. In the MNNG group receiving 100 mg/kg BW carvacrol, the inflammatory cell infiltration was observed in gastric mucosal and submucosal areas whereas MNNG rats supplemented with 10 and 25 mg/kg BW carvacrol showed no pathological alterations of the gastric cells. The results of this study indicate that significant antioxidant and anti-inflammatory effects induced by carvacrol at doses of 10 and 25 mg/kg BW interfered with gastric carcinogenesis induced by MNNG in Wistar rats as well as provide hepatoprotection. However, high doses of carvacrol (50 and 100 mg/kg BW) increased oxidative stress, inflammation, and apoptosis.
Collapse
|
7
|
A Narrative Review of the Antitumor Activity of Monoterpenes from Essential Oils: An Update. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6317201. [PMID: 35655488 PMCID: PMC9155973 DOI: 10.1155/2022/6317201] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/17/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Monoterpenes are a group of natural products that have been widely studied due to their therapeutic potential against various pathologies. These compounds are abundant in the chemical composition of essential oils. Cancer is a term that covers more than 100 different types of malignant diseases and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options applicable to cancer is urgent. In this review, studies on the antitumor activity of monoterpenes found in essential oils were selected, and botanical, chemical, and pharmacological aspects were discussed. The most investigated monoterpenes were carvacrol and linalool with highly significant in vitro and in vivo tumor inhibition in several types of cancers. The action mechanisms of these natural products are also presented and are wildly varied being apoptosis the most prevalent followed by cell cycle impairment, ROS production, autophagy, necroptosis, and others. The studies reported here confirm the antitumor properties of monoterpenes and their anticancer potential against various types of tumors, as demonstrated in in vitro and in vivo studies using various types of cancer cells and tumors in animal models. The data described serve as a reference for the advancement in the mechanistic studies of these compounds and in the preparation of synthetic derivatives or analogues with a better antitumor profile.
Collapse
|
8
|
Fatima K, Luqman S, Meena A. Carvacrol Arrests the Proliferation of Hypopharyngeal Carcinoma Cells by Suppressing Ornithine Decarboxylase and Hyaluronidase Activities. Front Nutr 2022; 9:857256. [PMID: 35464036 PMCID: PMC9028219 DOI: 10.3389/fnut.2022.857256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022] Open
Abstract
Carvacrol, a monoterpene known for its pharmacological activities, is present in the essential oil of Origanum majorana, Origanum vulgare, Thymus vulgaris, and Lippia graveolens. It is used in food as a flavoring and preservative agent in cosmetics and medicines because of its useful bioactivities in clinical practice. However, carvacrol was not much explored for its anticancer potential. Targeting enzymes involved in carcinogenesis, such as ornithine decarboxylase (ODC), cyclooxygenase-2 (COX-2), lipoxygenase-5 (LOX-5), and hyaluronidase (HYAL) by monoterpenes are amongst the efficient approaches for cancer prevention and treatment. In this study, the efficacy of carvacrol was investigated against deregulated cancer biomarkers/targets in organ-specific human cancer cell lines (FaDu, K562, and A549) utilizing in vitro, in silico, and in vivo approaches. The efficacy of carvacrol was evaluated on human cancer cell lines using neutral red uptake (NRU), sulpho rhodamine B (SRB), and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assays. The mechanistic study was carried out in cell-based test systems. Further, the potency of carvacrol was confirmed by the quantitative real-time PCR analysis and molecular docking studies. The in vivo anti-tumor potential of carvacrol was performed on mice S-180 model, and the toxicity examination was accomplished through in silico approach. Carvacrol significantly impeded the growth of FaDu, K562, and A549 cell lines with IC50 values ranging from 9.61 ± 0.05 to 81.32 ± 11.83 μM. Further, the efficacy of carvacrol was explored against different cancer targets in FaDu, K562, and A549 cell lines. Carvacrol inhibits the ODC, COX-2, LOX-5, and HYAL activities in FaDu cell line and ODC, COX-2, and HYAL activities in K562 cell line. The results were validated by expression analysis revealing the downregulation of the targeted gene with a significant change in the transcript level of ODC and HYAL in FaDu cell line with a fold change of 1.56 and 1.61, respectively. A non-significant effect of carvacrol was observed on the downstream signaling pathway of PI3K and HIF-1α/vascular endothelial growth factor (VEGF) in FaDu cells. The cell cycle, reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and Annexin V-fluorescein isothiocyanate (FITC) experiments demonstrate that carvacrol induces apoptosis of FaDu cells. Further, the potency of carvacrol was also evaluated in vivo on mice S-180 tumor model, wherein it inhibits tumor growth (72%) at 75 mg/kg body weight (bw). ADMET studies predicted carvacrol as a safe molecule. Overall, carvacrol delayed the growth of FaDu, K562, and A549 cell lines by targeting enzymes involved in the carcinogenesis process. The existence of one hydroxyl group at the para position of carvacrol could be responsible for the anti-proliferative activity. Thus, carvacrol could be used as a pharmacophore to develop a safe and effective multi-targeted anti-cancer medicament.
Collapse
Affiliation(s)
- Kaneez Fatima
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Suaib Luqman
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- *Correspondence: Suaib Luqman
| | - Abha Meena
- Bioprospection and Product Development Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
9
|
Sampaio LA, Pina LTS, Serafini MR, Tavares DDS, Guimarães AG. Antitumor Effects of Carvacrol and Thymol: A Systematic Review. Front Pharmacol 2021; 12:702487. [PMID: 34305611 PMCID: PMC8293693 DOI: 10.3389/fphar.2021.702487] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Background: It is estimated that one in five people worldwide faces a diagnosis of a malignant neoplasm during their lifetime. Carvacrol and its isomer, thymol, are natural compounds that act against several diseases, including cancer. Thus, this systematic review aimed to examine and synthesize the knowledge on the antitumor effects of carvacrol and thymol. Methods: A systematic literature search was carried out in the PubMed, Web of Science, Scopus and Lilacs databases in April 2020 (updated in March 2021) based on the PRISMA 2020 guidelines. The following combination of health descriptors, MeSH terms and their synonyms were used: carvacrol, thymol, antitumor, antineoplastic, anticancer, cytotoxicity, apoptosis, cell proliferation, in vitro and in vivo. To assess the risk of bias in in vivo studies, the SYRCLE Risk of Bias tool was used, and for in vitro studies, a modified version was used. Results: A total of 1,170 records were identified, with 77 meeting the established criteria. The studies were published between 2003 and 2021, with 69 being in vitro and 10 in vivo. Forty-three used carvacrol, 19 thymol, and 15 studies tested both monoterpenes. It was attested that carvacrol and thymol induced apoptosis, cytotoxicity, cell cycle arrest, antimetastatic activity, and also displayed different antiproliferative effects and inhibition of signaling pathways (MAPKs and PI3K/AKT/mTOR). Conclusions: Carvacrol and thymol exhibited antitumor and antiproliferative activity through several signaling pathways. In vitro, carvacrol appears to be more potent than thymol. However, further in vivo studies with robust methodology are required to define a standard and safe dose, determine their toxic or side effects, and clarify its exact mechanisms of action. This systematic review was registered in the PROSPERO database (CRD42020176736) and the protocol is available at https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=176736.
Collapse
Affiliation(s)
- Laeza Alves Sampaio
- Graduate Program of Applied Sciences to Health, Federal University of Sergipe, Lagarto, Brazil
| | | | | | | | | |
Collapse
|
10
|
Krishnan P, Sundaram J, Salam S, Subramaniam N, Mari A, Balaraman G, Thiruvengadam D. Citral inhibits N-nitrosodiethylamine-induced hepatocellular carcinoma via modulation of antioxidants and xenobiotic-metabolizing enzymes. ENVIRONMENTAL TOXICOLOGY 2020; 35:971-981. [PMID: 32302048 DOI: 10.1002/tox.22933] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Hepatocellular carcinoma (HCC) ranks the sixth position among various cancers worldwide. Recent research shows that natural and dietary compounds possess many therapeutic effects. Citral is a monoterpene aldehyde that contains geranial and neral. The present study was considered to study the role of citral against N-nitrosodiethylamine (NDEA)-induced HCC via modulation of antioxidants and xenobiotic-metabolizing enzymes in vivo. NDEA-alone-administered group II animals profoundly showed increased tumor incidence, reactive oxygen species, liver marker enzyme levels, serum bilirubin levels, tumor markers of carcinoembryonic antigen, α-fetoprotein, proliferative markers of argyrophilic nucleolar organizing regions, proliferating cell nuclear antigen (PCNA) expressions, phase I xenobiotic-metabolic enzymes and simultaneously decreased antioxidants, and phase II enzymes levels. Citral (100 mg/kg b.w.) treatment significantly reverted the levels in group III cancer-bearing animals when compared to group II cancer-bearing animals. In group IV animals, citral-alone administration did not produce any adverse effect during the experimental condition. Based on the results, citral significantly inhibits the hepatocellular carcinogenesis through restoring the antioxidants and phase II xenobiotic-enzyme levels; thereby, it strongly proves as an antiproliferative agent against rat HCC.
Collapse
Affiliation(s)
- Palanisamy Krishnan
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Jagan Sundaram
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Sharmila Salam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Nirmala Subramaniam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | - Ashok Mari
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| | | | - Devaki Thiruvengadam
- Molecular Oncology Lab, Department of Biochemistry, University of Madras, Chennai, India
| |
Collapse
|
11
|
Khan I, Bhardwaj M, Shukla S, Min SH, Choi DK, Bajpai VK, Huh YS, Kang SC. Carvacrol inhibits cytochrome P450 and protects against binge alcohol-induced liver toxicity. Food Chem Toxicol 2019; 131:110582. [DOI: 10.1016/j.fct.2019.110582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/09/2019] [Accepted: 06/12/2019] [Indexed: 02/07/2023]
|
12
|
Krishnan G, Subramaniyan J, Chengalvarayan Subramani P, Muralidharan B, Thiruvengadam D. Hesperetin conjugated PEGylated gold nanoparticles exploring the potential role in anti-inflammation and anti-proliferation during diethylnitrosamine-induced hepatocarcinogenesis in rats. Asian J Pharm Sci 2017; 12:442-455. [PMID: 32104357 PMCID: PMC7032104 DOI: 10.1016/j.ajps.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/03/2017] [Indexed: 12/13/2022] Open
Abstract
Liver cancer is the fifth most common cancer and one of the leading causes of death in the world, and second most common cause of death in men. Natural products emerge as the most enduring approaches in the development of anticancer targeting drug. Hesperetin (HP), one of the abundant flavonoids found naturally in citrus fruits, has received considerable attention in anti-cancer promotion and progression. The present study was conducted to decipher the role of 0.5 ml hesperetin conjugated gold nanoparticles (Au-mPEG(5000)-S-HP NPs) during diethylnitrosamine (DEN)-induced hepatocarcinogenesis in male Wistar albino rats and shows the better antioxidant that possesses anti-inflammatory, anti-proliferation and anticarcinogenic properties and may modulate signaling pathways. The confirmation of polymer functionalized gold nanoparticles and drug loaded polymer gold nanoparticles were characterized by HR-TEM with EDAX, and DLS with Zeta potential techniques. The drug encapsulation efficiency and release properties were carried out in PBS at pH 7.4 for Au- mPEG(5000)-S-HP and compared with the control pure hesperetin (HP). Here, we review the role of mast cell counts, tumor necrosis factor alpha (TNF-α), transcription factor nuclear factor-κB (NF-κB), levels of glycoconjugates, proliferating cell nuclear antigen (PCNA) and argyrophilic nucleolar organizing regions, are the master regulator of inflammation and proliferation, in the development of hepatocellular injury, liver fibrosis and HCC. DEN-administered animals showed increased mast cell counts, tumor necrosis factor alpha, transcription factor nuclear factor-κB, glycoconjugates, proliferating cell nuclear antigen, and argyrophilic nucleolar organizing regions. Whereas Au-mPEG(5000)-S-HP NPs supplementation considerably suppressed all the above abnormalities. These results suggest that the Au-mPEG(5000)-S-HP NPs exhibited the better potential anticancer activity by inhibiting cell inflammation and proliferation in DEN-induced hepatocellular carcinogenesis.
Collapse
Affiliation(s)
- Gokuladhas Krishnan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | - Jayakumar Subramaniyan
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| | | | | | - Devaki Thiruvengadam
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600 025, Tamilnadu, India
| |
Collapse
|
13
|
Hussein J, El-Banna M, Mahmoud KF, Morsy S, Abdel Latif Y, Medhat D, Refaat E, Farrag AR, El-Daly SM. The therapeutic effect of nano-encapsulated and nano-emulsion forms of carvacrol on experimental liver fibrosis. Biomed Pharmacother 2017; 90:880-887. [PMID: 28437891 DOI: 10.1016/j.biopha.2017.04.020] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/29/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE The present study aimed to compare the therapeutic efficiency of nano-encapsulated and nano-emulsion carvacrol administration on liver injury in thioacetamide (TAA) treated rats. METHODS To fulfill our target, we used sixty male albino rats classified into six groups as follow: control, nano-encapsulated carvacrol, nano-emulsion carvacrol, thioacetamide, treated nano-encapsulated carvacrol and treated nano-emulsion carvacrol groups. Blood samples were collected from all groups and the separated serum was used for analysis of the following biochemical parameters; aspartate aminotransferase (AST), alanine aminotransferase (ALT), S100 B protein, alpha fetoprotein (AFP) and caspase-3. The levels of malondialdehyde (MDA), reduced glutathione (GSH), nitric oxide (NO), monocyte chemoattractant protein-1(MCP-1) and hydroxyproline content were all evaluated in liver tissue homogenate. Histopathological examinations for liver tissues were also performed. RESULTS Thioacetamide induced hepatic damage in rats as revealed by the significant increase in the levels of serum ALT, AST and produced oxidative stress as displayed by the significant elevation in the levels of hepatic MDA and NO concomitant with a significant decrease in GSH. In addition, thioacetamide significantly increased serum S100B protein, alpha fetoprotein and caspase-3 along with hepatic MCP-1 and hydroxyproline; these results were confirmed by the histopathological investigation. In contrast, nano-encapsulated and nano-emulsion carvacrol were able to ameliorate these negative changes in the thioacetamide injected rats. However, the effect of the nano-encapsulated form of carvacrol was more prominent than the nano-emulsion form. CONCLUSION Nano-encapsulated and nano-emulsion carvacrol can ameliorate thioacetamide induced liver injury. These results could be attributed to the potential anti-inflammatory, antioxidant, and anti-apoptotic activities of carvacrol in addition to the effectiveness of the encapsulation technique that can protect carvacrol structure and increase its efficiency and stability. Moreover, nano-encapsulation of carvacrol is more efficient than nano-emulsion.
Collapse
Affiliation(s)
- Jihan Hussein
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt(1)
| | - Mona El-Banna
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt(1)
| | - Khaled F Mahmoud
- Technology Dept., National Research Centre (NRC), Dokki, Giza, Egypt
| | - Safaa Morsy
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt(1)
| | - Yasmin Abdel Latif
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt(1)
| | - Dalia Medhat
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt(1)
| | - Eman Refaat
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt(1)
| | | | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Division, National Research Centre, Dokki, Giza, Egypt(1).
| |
Collapse
|
14
|
Dai W, Sun C, Huang S, Zhou Q. Carvacrol suppresses proliferation and invasion in human oral squamous cell carcinoma. Onco Targets Ther 2016; 9:2297-304. [PMID: 27143925 PMCID: PMC4846059 DOI: 10.2147/ott.s98875] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Carvacrol, a component of thyme oil, as a novel antitumor agent, has been implicated in several types of cancer cells. However, the mechanisms underlying the effect of carvacrol in human oral squamous cell carcinoma (OSCC) remain unclear. Here, we report that carvacrol significantly inhibits tumor cell proliferation, metastasis and invasion, and induces apoptosis in OSCC. Our results demonstrated that the molecular mechanisms of the effect of carvacrol in Tca-8113 induces G1/S cell cycle arrest through downregulation of CDK regulator CCND1 and CDK4, and upregulation of CDK inhibitor P21. Further analysis demonstrated that carvacrol also inhibited Tca-8113 cells’ clone formation in clonogenic cell survival assay. Student’s t-test (two-tailed) was used to compare differences between groups, and the significance level was P<0.01. Then, treatment of Tca-8113 cells with carvacrol resulted in downregulation of Bcl-2, Cox2, and upregulation of Bax. Carvacrol significantly inhibited the migration and invasion of human OSCC cells by blocking the phosphorylation of FAK and MMP-9 and MMP-2, transcription factor ZEB1, and β-catenin proteins’ expression. Taken together, these results provide novel insights into the mechanism of carvacrol and suggest potential therapeutic strategies for human OSCC.
Collapse
Affiliation(s)
- Wei Dai
- Department of Oromaxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Changfu Sun
- Department of Oromaxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Shaohui Huang
- Department of Oromaxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| | - Qing Zhou
- Department of Oromaxillofacial-Head and Neck Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China; Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Shenyang, Liaoning, People's Republic of China
| |
Collapse
|
15
|
Rajan B, Ravikumar R, Premkumar T, Devaki T. Carvacrol attenuates N-nitrosodiethylamine induced liver injury in experimental Wistar rats. FOOD SCIENCE AND HUMAN WELLNESS 2015. [DOI: 10.1016/j.fshw.2015.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Carvacrol exhibits anti-oxidant and anti-inflammatory effects against 1, 2-dimethyl hydrazine plus dextran sodium sulfate induced inflammation associated carcinogenicity in the colon of Fischer 344 rats. Biochem Biophys Res Commun 2015; 461:314-20. [PMID: 25881504 DOI: 10.1016/j.bbrc.2015.04.030] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/06/2015] [Indexed: 01/14/2023]
Abstract
Chronic inflammation is one of the remarkable etiologic factors for various human ailments including cancer. The well known hypothesis is that persistent inflammation in colon can increase the risk of colorectal cancer (CRC). In this study, a pharmacological evaluation of carvacrol, a phenolic monoterpene constituent of essential oils produced from aromatic plant Oreganum vulgarea sp. on colitis associated colon cancer (CACC) induced by 1,2 Dimethylhydrazine (DMH) and dextran sodium sulfate (DSS) in male Fischer 344 rat model was studied. F344 rats were given three subcutaneous injections of DMH (40 mg/kg body wt) in the first week and were given free access to drinking water containing 1% DSS for the next one week followed by 7-14 days of water as three cycles. Carvacrol was administrated before and after tumor induction at a concentration of 50 mg/kg body weight (o.p). Carvacrol treated groups promotes the endogenous antioxidant system and suppress the inflammation in DMH/DSS induced animals. An increased antioxidant status and restoration of histological lesions in the inflamed colonic mucosa was observed in carvacrol treated rats. This effect was confirmed biochemically by reducing free-radical accumulation and suppressing expression of pro-inflammatory mediators. In this study, Carvacrol significantly increased the anti-oxidant enzymes such as superoxide dismutase (SOD), catalase (CAT) glutathione (GSH) levels and reduced lipid peroxides (LPO), myeloperoxidase (MPO) and nitric oxide (NO) as compared to DMH/DSS induced rats. These dramatic changes facilitate the suppression of pro-inflammatory mediators such as inducible nitric oxide synthase (iNOS), and interleukin-1 beta (IL-1β) in CACC induced rats. Taken together, these findings suggest that Carvacrol may play a beneficial role in DMH/DSS induced experimental rat model and serve as an excellent dietary antioxidant as well as anti-inflammatory agent. It may represent novel therapeutic interventions against colon cancer triggered by chronic inflammation.
Collapse
|