1
|
Zhang J, Sheng H, Zhang L, Li X, Guo Y, Wang Y, Guo H, Ding X. Bta-miR-206 and a Novel lncRNA-lncA2B1 Promote Myogenesis of Skeletal Muscle Satellite Cells via Common Binding Protein HNRNPA2B1. Cells 2023; 12:cells12071028. [PMID: 37048101 PMCID: PMC10093610 DOI: 10.3390/cells12071028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/05/2023] [Accepted: 03/22/2023] [Indexed: 03/30/2023] Open
Abstract
Skeletal muscle satellite cells (MuSCs) can proliferate, differentiate, and self-renew, and can also participate in muscle formation and muscle injury repair. Long noncoding RNAs (lncRNAs) can play an important role with the RNA binding protein and microRNAs (miRNAs) to regulate the myogenesis of bovine MuSCs, however, its molecular mechanism is still being explored. In this study, differentially expressed 301 lncRNAs were identified during the myogenic differentiation of cells based on an in vitro model of induced differentiation of bovine MuSCs using RNA sequencing (RNA-seq). Based on the ability of miR-206 to regulate myogenic cell differentiation, a new kind of lncRNA-lncA2B1 without protein-coding ability was found, which is expressed in the nucleus and cytoplasm. Subsequently, lncA2B1 inhibited cell proliferation by downregulating the expression of the proliferation marker Pax7 and promoted myogenic differentiation by upregulating the expression of the differentiation marker MyHC, whose regulatory function is closely related to miR-206. By RNA pulldown/LC-MS experiments, heterogeneous ribonucleoprotein A2/B1 (HNRNPA2B1), and DExH-Box Helicase 9 (DHX9) were identified as common binding proteins of lncA2B1 and miR-206. Overexpression of lncA2B1 and miR-206 significantly upregulated the expression level of HNRNPA2B1. Downregulation of HNRNPA2B1 expression significantly decreased the expression level of the differentiation marker MyHC, which indicates that miR-206 and lncA2B1 regulate myogenic differentiation of bovine MuSCs by acting on HNRNPA2B1. This study screened and identified a novel lncRNA-lncA2B1, which functions with miR-206 to regulate myogenesis via the common binding proteins HNRNPA2B1. The results of this study provide a new way to explore the molecular mechanisms by which lncRNAs and miRNAs regulate muscle growth and development.
Collapse
Affiliation(s)
- Junxing Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hui Sheng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Linlin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xin Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yiwen Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Yimin Wang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Hong Guo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
| | - Xiangbin Ding
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, Tianjin 300384, China
- College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300384, China
- Correspondence:
| |
Collapse
|
2
|
Abdurahman A, Aierken W, Zhang F, Obulkasim R, Aniwashi J, Sulayman A. miR-1306 induces cell apoptosis by targeting BMPR1B gene in the ovine granulosa cells. Front Genet 2022; 13:989912. [PMID: 36212145 PMCID: PMC9539929 DOI: 10.3389/fgene.2022.989912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Bone morphogenetic protein receptor type-1B (BMPR1B) is one of the major gene for sheep prolificacy. However, few studies investigated its regulatory region. In this study, we reported that miR-1306 is a direct inhibitor of BMPR1B gene in the ovine granulosa cells (ovine GCs). We detected a miRNA response element of miR-1306 in the 3’ untranslated region of the ovine BMPR1B gene. Luciferase assay showed that the ovine BMPR1B gene is a direct target of miR-1306. qPCR and western blotting revealed that miR-1306 reduces the expression of BMPR1B mRNA and protein in the ovine granulosa cells. Furthermore, miR-1306 promoted cell apoptosis by suppressing BMPR1B expression in the ovine granulosa cells. Overall, our results suggest that miR-1306 is an epigenetic regulator of BMPR1B, and may serve as a potential target to improve the fecundity of sheep.
Collapse
Affiliation(s)
- Anwar Abdurahman
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | | | - Fei Zhang
- Animal Diseases Control and Prevention Centre of Xinjiang Uygur Autonomous Region, Urumqi, China
| | | | - Jueken Aniwashi
- College of Animal Science and Technology, Xinjiang Agricultural University, Urumqi, China
| | - Ablat Sulayman
- Institute of Animal Husbandry, Xinjiang Academy of Animal Science, Urumqi, China
- *Correspondence: Ablat Sulayman,
| |
Collapse
|
3
|
Tewari RS, Ala U, Accornero P, Baratta M, Miretti S. Circulating skeletal muscle related microRNAs profile in Piedmontese cattle during different age. Sci Rep 2021; 11:15815. [PMID: 34349188 PMCID: PMC8339070 DOI: 10.1038/s41598-021-95137-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/14/2021] [Indexed: 02/07/2023] Open
Abstract
Piedmontese cattle is known for double-muscle phenotype. MicroRNAs (miRNAs) play important role as regulators in skeletal muscle physiological processes, and we hypothesize that plasma miRNAs expression profiles could be affected by skeletal muscle growth status related to age. Plasma samples of cattle were collected during four different ages from first week of life until the time of commercial end of the fattening period before slaughter. Small-RNA sequencing data analysis revealed the presence of 40% of muscle-related miRNAs among the top 25 highly expressed miRNAs and, 19 miRNAs showed differential expression too. Using qRT-PCR, we validated in a larger bovine population, miRNAs involved in skeletal muscle physiology pathways. Comparing new-born with the other age groups, miR-10b, miR-126-5p, miR-143 and miR-146b were significantly up-regulated, whereas miR-21-5p, miR-221, miR-223 and miR-30b-5p were significantly down-regulated. High expression levels of miR-23a in all the groups were found. Myostatin, a negative regulator of skeletal muscle hypertrophy, was predicted as the target gene for miR-23a and miR-126-5p and we demonstrated their direct binding. Correlation analysis revealed association between miRNAs expression profiles and animals’ weights along the age. Circulating miRNAs could be promising for future studies on their biomarker potentialities to beef cattle selection.
Collapse
Affiliation(s)
- Rupal S Tewari
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Ugo Ala
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Mario Baratta
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
4
|
Shen X, Tang J, Ru W, Zhang X, Huang Y, Lei C, Cao H, Lan X, Chen H. CircINSR Regulates Fetal Bovine Muscle and Fat Development. Front Cell Dev Biol 2021; 8:615638. [PMID: 33490079 PMCID: PMC7815687 DOI: 10.3389/fcell.2020.615638] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023] Open
Abstract
The level of muscle development in livestock directly affects the production efficiency of livestock, and the contents of intramuscular fat (IMF) is an important factor that affects meat quality. However, the molecular mechanisms through which circular RNA (circRNA) affects muscle and IMF development remains largely unknown. In this study, we isolated myoblasts and intramuscular preadipocytes from fetal bovine skeletal muscle. Oil Red O and BODIPY staining were used to identify lipid droplets in preadipocytes, and anti-myosin heavy chain (MyHC) immunofluorescence was used to identify myotubes differentiated from myoblasts. Bioinformatics, a dual-fluorescence reporter system, RNA pull-down, and RNA-binding protein immunoprecipitation were used to determine the interactions between circINSR and the micro RNA (miR)-15/16 family. Molecular and biochemical assays were used to confirm the roles played by circINSR in myoblasts and intramuscular preadipocytes. We found that isolated myoblasts and preadipocytes were able to differentiate normally. CircINSR was found to serve as a sponge for the miR-15/16 family, which targets CCND1 and Bcl-2. CircINSR overexpression significantly promoted myoblast and preadipocyte proliferation and inhibited cell apoptosis. In addition, circINSR inhibited preadipocyte adipogenesis by alleviating the inhibition of miR-15/16 against the target genes FOXO1 and EPT1. Taken together, our study demonstrated that circINSR serves as a regulator of embryonic muscle and IMF development.
Collapse
Affiliation(s)
- Xuemei Shen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jia Tang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Wenxiu Ru
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoyan Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yongzhen Huang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chuzhao Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hui Cao
- Shaanxi Kingbull Livestock Co., Ltd., Yangling, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Hong Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
bta-miR-23a Regulates the Myogenic Differentiation of Fetal Bovine Skeletal Muscle-Derived Progenitor Cells by Targeting MDFIC Gene. Genes (Basel) 2020; 11:genes11101232. [PMID: 33092227 PMCID: PMC7588927 DOI: 10.3390/genes11101232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/30/2020] [Accepted: 10/17/2020] [Indexed: 12/03/2022] Open
Abstract
miR-23a, a member of the miR-23a/24-2/27a cluster, has been demonstrated to play pivotal roles in many cellular activities. However, the mechanisms of how bta-miR-23a controls the myogenic differentiation (MD) of PDGFRα− bovine progenitor cells (bPCs) remain poorly understood. In the present work, bta-miR-23a expression was increased during the MD of PDGFRα− bPCs. Moreover, bta-miR-23a overexpression significantly promoted the MD of PDGFRα− bPCs. Luciferase reporter assays showed that the 3’-UTR region of MDFIC (MyoD family inhibitor domain containing) could be a promising target of bta-miR-23a, which resulted in its post-transcriptional down-regulation. Additionally, the knockdown of MDFIC by siRNA facilitated the MD of PDGFRα− bPCs, while the overexpression of MDFIC inhibited the activating effect of bta-miR-23a during MD. Of note, MDFIC might function through the interaction between MyoG transcription factor and MEF2C promoter. This study reveals that bta-miR-23a can promote the MD of PDGFRα− bPCs through post-transcriptional downregulation of MDFIC.
Collapse
|
6
|
Gonzalez ML, Busse NI, Waits CM, Johnson SE. Satellite cells and their regulation in livestock. J Anim Sci 2020; 98:5807489. [PMID: 32175577 DOI: 10.1093/jas/skaa081] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/10/2020] [Indexed: 12/12/2022] Open
Abstract
Satellite cells are the myogenic stem and progenitor population found in skeletal muscle. These cells typically reside in a quiescent state until called upon to support repair, regeneration, or muscle growth. The activities of satellite cells are orchestrated by systemic hormones, autocrine and paracrine growth factors, and the composition of the basal lamina of the muscle fiber. Several key intracellular signaling events are initiated in response to changes in the local environment causing exit from quiescence, proliferation, and differentiation. Signals emanating from Notch, wingless-type mouse mammary tumor virus integration site family members, and transforming growth factor-β proteins mediate the reversible exit from growth 0 phase while those initiated by members of the fibroblast growth factor and insulin-like growth factor families direct proliferation and differentiation. Many of these pathways impinge upon the myogenic regulatory factors (MRF), myogenic factor 5, myogenic differentiation factor D, myogenin and MRF4, and the lineage determinate, Paired box 7, to alter transcription and subsequent satellite cell decisions. In the recent past, insight into mouse transgenic models has led to a firm understanding of regulatory events that control satellite cell metabolism and myogenesis. Many of these niche-regulated functions offer subtle differences from their counterparts in livestock pointing to the existence of species-specific controls. The purpose of this review is to examine the mechanisms that mediate large animal satellite cell activity and their relationship to those present in rodents.
Collapse
Affiliation(s)
- Madison L Gonzalez
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | - Nicolas I Busse
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| | | | - Sally E Johnson
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA
| |
Collapse
|
7
|
Ben-Arye T, Levenberg S. Tissue Engineering for Clean Meat Production. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00046] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
8
|
Breed-dependent microRNA expression in the primary culture of skeletal muscle cells subjected to myogenic differentiation. BMC Genomics 2018; 19:109. [PMID: 29390965 PMCID: PMC5793348 DOI: 10.1186/s12864-018-4492-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 01/23/2018] [Indexed: 02/07/2023] Open
Abstract
Background Skeletal muscle in livestock develops into meat, an important source of protein and other nutrients for human consumption. The muscle is largely composed of a fixed number of multinucleated myofibers determined during late gestation and remains constant postnatally. A population of postnatal muscle stem cells, called satellite cells, gives rise to myoblast cells that can fuse with the existing myofibers, thus increasing their size. This requires a delicate balance of transcription and growth factors and specific microRNA (miRNA) expressed by satellite cells and their supporting cells from the muscle stem cell niche. The role of transcription and growth factors in bovine myogenesis is well-characterized; however, very little is known about the miRNA activity during this process. We have hypothesized that the expression of miRNA can vary between primary cultures of skeletal muscle cells isolated from the semitendinosus muscles of different cattle breeds and subjected to myogenic differentiation. Results After a 6-day myogenic differentiation of cells isolated from the muscles of the examined cattle breeds, we found statistically significant differences in the number of myotubes between Hereford (HER)/Limousine (LIM) beef breeds and the Holstein-Friesian (HF) dairy breed (p ≤ 0.001). The microarray analysis revealed differences in the expression of 23 miRNA among the aforementioned primary cultures. On the basis of a functional analysis, we assigned 9 miRNA as molecules responsible for differentiation progression (miR-1, -128a, -133a, -133b, -139, -206, -222, -486, and -503). The target gene prediction and functional analysis revealed 59 miRNA-related genes belonging to the muscle organ development process. Conclusion The number of myotubes and the miRNA expression in the primary cultures of skeletal muscle cells derived from the semitendinosus muscles of the HER/LIM beef cattle breeds and the HF dairy breed vary when cells are subjected to myogenic differentiation. The net effect of the identified miRNA and their target gene action should be considered the result of the breed-dependent activity of satellite cells and muscle stem cell niche cells and their mutual interactions, which putatively can be engaged in the formation of a larger number of myotubes in beef cattle-related cells (HER/LIM) during in vitro myogenesis. Electronic supplementary material The online version of this article (10.1186/s12864-018-4492-5) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Wang J, Gao Y, Duan L, Wei S, Liu J, Tian L, Quan J, Zhang Q, Liu J, Yang J. Metformin ameliorates skeletal muscle insulin resistance by inhibiting miR-21 expression in a high-fat dietary rat model. Oncotarget 2017; 8:98029-98039. [PMID: 29228671 PMCID: PMC5716711 DOI: 10.18632/oncotarget.20442] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 07/25/2017] [Indexed: 12/19/2022] Open
Abstract
Insulin resistance (IR) plays a major role in the pathogenesis of abdominal obesity, hypertension, coronary heart disease, atherosclerosis and diabetes. miR-21 and TGF-β/smads is closely related to IR. However, it remained elusive whether metformin improved skeletal muscle insulin resistance (IRSM) by regulating miR-21 and its target signal TGF-β1/smads expression. In this study, high-fat diet rats with IR model and IR-skeletal muscle L6 cells (L6-SMCs) model were established, insulin sensitive index (ISI) and Homeostasis model assessment of IR (HOMA-IR) were applied, miR-21 and TGF-β1/smads mRNA expression were examined by RT-PCR, smad3 and smad7 protein were detected by western-blotting and laser scanning confocal microscopy (LSCM), the valid target of miR-21 was detected by luciferase reporter gene assay. Here, we found that metformin dose-dependently decreased miR-21 expression, accompanied by the decrease of HOMA-IR and the increase of HOMA-ISI. Luciferase report gene assay showed that smad7 was an effective target of miR-21. miR-21 overexpression directly downregulated smad7 and indirectly upregulated smad3 expression. Interestingly, miR-21 expression positively correlated with HOMA-IR and negatively correlated with HOMA-ISI. In conclusion, our results demonstrated that metformin improved IRSM by inhibiting miR-21 expression, and that miR-21 may be one of the therapeutic targets for IR.
Collapse
Affiliation(s)
- Jinyang Wang
- Department of Endocrinology, Gansu Provincial People's hospital, Lanzhou, China.,Gansu Provincial Key Laboratory of Endocrine and metabolism, Lanzhou, China
| | - Yanbin Gao
- School of Traditional Chinese medical, Capital Medical University, Beijing, China.,Beijing Key Laboratory of TCM Collateral Disease Theory Research, Beijing, China
| | - Lijun Duan
- Department of Gynecology and Obstetrics, Gansu Provincial People's Hospital, Lanzhou, China
| | - Suhong Wei
- Department of Endocrinology, Gansu Provincial People's hospital, Lanzhou, China.,Gansu Provincial Key Laboratory of Endocrine and metabolism, Lanzhou, China
| | - Jing Liu
- Department of Endocrinology, Gansu Provincial People's hospital, Lanzhou, China.,Gansu Provincial Key Laboratory of Endocrine and metabolism, Lanzhou, China
| | - Liming Tian
- Department of Endocrinology, Gansu Provincial People's hospital, Lanzhou, China.,Gansu Provincial Key Laboratory of Endocrine and metabolism, Lanzhou, China
| | - Jinxing Quan
- Department of Endocrinology, Gansu Provincial People's hospital, Lanzhou, China.,Gansu Provincial Key Laboratory of Endocrine and metabolism, Lanzhou, China
| | - Qi Zhang
- Department of Endocrinology, Gansu Provincial People's hospital, Lanzhou, China.,Gansu Provincial Key Laboratory of Endocrine and metabolism, Lanzhou, China
| | - Juxiang Liu
- Department of Endocrinology, Gansu Provincial People's hospital, Lanzhou, China.,Gansu Provincial Key Laboratory of Endocrine and metabolism, Lanzhou, China
| | - Jinkui Yang
- Department of Endocrinology, Beijing Tongren hospital of Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Velleman S, Harding R. Regulation of turkey myogenic satellite cell migration by MicroRNAs miR-128 and miR-24. Poult Sci 2017; 96:1910-1917. [DOI: 10.3382/ps/pew434] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022] Open
|
11
|
miR-143 regulates proliferation and differentiation of bovine skeletal muscle satellite cells by targeting IGFBP5. In Vitro Cell Dev Biol Anim 2016; 53:265-271. [PMID: 27800570 DOI: 10.1007/s11626-016-0109-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/12/2016] [Indexed: 12/21/2022]
Abstract
Development of skeletal muscle is a complicated biological process regulated by various regulation factors and signal pathways. MicroRNAs (miRNAs) are novel gene regulators that control muscle cell development. microRNA-143 (miR-143) is highly expressed in skeletal muscle, and we found that miR-143 level is significantly increased during bovine skeletal muscle satellite cells (MSCs) differentiation process through microarray analysis and qRT-PCR detection. However, the function of miR-143 in bovine muscle development remained unclear. In our work, the functions of miR-143 in bovine MSCs myogenic differentiation were investigated. We discovered that IGFBP5 is directly regulated by miR-143 using a dual-luciferase reporter assay. Overexpression of miR-143 led to decreased level of IGFBP5 protein and restrained cell proliferation and differentiation, while downregulation of miR-143 resulted in increased levels of IGFBP5 protein and restrained cell proliferation but improved differentiation. IGFBP5, an important component of IGF signaling pathway, contributes greatly to bovine muscle cell development. A mechanism that miR-143 can regulate the proliferation and differentiation of bovine MSCs through changing expression of IGFBP5 was elucidated by our study.
Collapse
|
12
|
Temporal correlation between differentiation factor expression and microRNAs in Holstein bovine skeletal muscle. Animal 2016; 11:227-235. [PMID: 27406318 DOI: 10.1017/s1751731116001488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Satellite cells are adult stem cells located between the basal lamina and sarcolemma of muscle fibers. Under physiological conditions, satellite cells are quiescent, but they maintain a strong proliferative potential and propensity to differentiate, which underlies their critical role in muscle preservation and growth. MicroRNAs (miRNAs) play essential roles during animal development as well as in stem cell self-renewal and differentiation regulation. MiRNA-1, miRNA-133a and miRNA-206 are closely related muscle-specific miRNAs, and are thus defined myomiRNAs. MyomiRNAs are integrated into myogenic regulatory networks. Their expression is under the transcriptional and post-transcriptional control of myogenic factors and, in turn, they exhibit widespread control of muscle gene expression. Very little information is available about the regulation and behavior of satellite cells in large farm animals, in particular during satellite cell differentiation. Here, we study bovine satellite cells (BoSCs) undergoing a differentiation process and report the expression pattern of selected genes and miRNAs involved. Muscle samples of longissimus thoracis from Holstein adult male animals were selected for the collection of satellite cells. All satellite cell preparations demonstrated myotube differentiation. To characterize the dynamics of several transcription factors expressed in BoSCs, we performed real-time PCR on complementary DNA generated from the total RNA extracted from BoSCs cultivated in growth medium (GM) or in differentiation medium (DM) for 4 days. In the GM condition, BoSCs expressed the satellite cell lineage markers as well as transcripts for the myogenic regulatory factors. At the time of isolation from muscle, PAX7 was expressed in nearly 100% of BoSCs; however, its messenger RNA (mRNA) levels dramatically decreased between 3 and 6 days post isolation (P<0.01). MyoD mRNA levels increased during the 1st day of cultivation in DM (day 7; P<0.02), showing a gradual activation of the myogenic gene program. During the subsequent 4 days of culture in DM, several tested genes, including MRF4, MYOG, MEF2C, TMEM8C, DES and MYH1, showed increased expression (P<0.05), and these levels remained high throughout the culture period investigated. Meanwhile, the expression of genes involved in the differentiation process also miRNA-1, miRNA-133a and miRNA-206 were strongly up-regulated on the 1st day in DM (day 7; P<0.05). Analysis revealed highly significant correlations between myomiRNAs expression and MEF2C, MRF4, TMEM8C, DES and MYH1 gene expression (P<0.001). Knowledge about the transcriptional changes correlating with the growth and differentiation of skeletal muscle fibers could be helpful for developing strategies to improve production performance in livestock.
Collapse
|
13
|
Huang QK, Qiao HY, Fu MH, Li G, Li WB, Chen Z, Wei J, Liang BS. MiR-206 Attenuates Denervation-Induced Skeletal Muscle Atrophy in Rats Through Regulation of Satellite Cell Differentiation via TGF-β1, Smad3, and HDAC4 Signaling. Med Sci Monit 2016; 22:1161-70. [PMID: 27054781 PMCID: PMC4829125 DOI: 10.12659/msm.897909] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background Denervation-induced skeletal muscle atrophy results in significant biochemical and physiological changes potentially leading to devastating outcomes including increased mortality. Effective treatments for skeletal muscle diseases are currently not available. Muscle-specific miRNAs, such as miR-206, play an important role in the regulation of muscle regeneration. The aim of the present study was to examine the beneficial effects of miR-206 treatment during the early changes in skeletal muscle atrophy, and to study the underlying signaling pathways in a rat skeletal muscle atrophy model. Material/Methods The rat denervation-induced skeletal muscle atrophy model was established. miRNA-206 was overexpressed with or without TGF-β1 inhibitor in the rats. The mRNA and protein expression of HDAC4, TGF-β1, and Smad3 was determined by real-time PCR and western blot. The gastrocnemius muscle cross-sectional area and relative muscle mass were measured. MyoD1, TGF-β1, and Pax7 were determined by immunohistochemical staining. Results After sciatic nerve surgical transection, basic muscle characteristics, such as relative muscle weight, deteriorated continuously during a 2-week period. Injection of miR-206 (30 μg/rat) attenuated morphological and physiological deterioration of muscle characteristics, prevented fibrosis effectively, and inhibited the expression of TGF-β1 and HDAC4 as assessed 2 weeks after denervation. Moreover, miR-206 treatment increased the number of differentiating (MyoD1+/Pax7+) satellite cells, thereby protecting denervated muscles from atrophy. Interestingly, the ability of miR-206 to govern HDAC4 expression and to attenuate muscle atrophy was weakened after pharmacological blockage of the TGF-β1/Smad3 axis. Conclusions TGF-β1/Smad3 signaling pathway is one of the crucial signaling pathways by which miR-206 counteracts skeletal muscle atrophy by affecting proliferation and differentiation of satellite cells. miR-206 may be a potential target for development of a new strategy for treatment of patients with early denervation-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Qiang Kai Huang
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Hu-Yuan Qiao
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Ming-Huan Fu
- Division of Cardiovascular Disease, Department of Gerontology, Hospital of University of Electronic Science and Technology of China and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China (mainland)
| | - Gang Li
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Wen-Bin Li
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Zhi Chen
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Jian Wei
- Department of Orthopedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| | - Bing-Sheng Liang
- Department of Orthopaedics, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, Shanxi, China (mainland)
| |
Collapse
|
14
|
MicroRNA-128 regulates the proliferation and differentiation of bovine skeletal muscle satellite cells by repressing Sp1. Mol Cell Biochem 2016; 414:37-46. [PMID: 26833195 DOI: 10.1007/s11010-016-2656-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/23/2016] [Indexed: 01/23/2023]
Abstract
MicroRNAs (miRNAs) play essential roles in muscle cell proliferation and differentiation. The muscle-specific miRNAs miR-1 and miR-206 have been shown to regulate muscle development and promote myogenic differentiation; however, it is likely that a number of other miRNAs play important roles in regulating myogenesis as well. microRNA-128 (miR-128) has been reported to be highly expressed in brain and skeletal muscle, and we found that miR-128 is also up-regulated during bovine skeletal muscle satellite cell differentiation using microarray analysis and qRT-PCR. However, little is known about the functions of miR-128 in bovine skeletal muscle satellite cell development. In this study, we investigated the biological functions of miR-128 in bovine skeletal muscle cell development. Using a dual-luciferase reporter assay, we confirmed that miR-128 regulates the Sp1 gene. Over-expression of miR-128 reduced Sp1 protein levels and inhibited muscle satellite cell proliferation and differentiation. Inhibition of miR-128 increased Sp1 protein levels and promoted muscle satellite cell differentiation but also suppressed proliferation. Changes in miR-128 and Sp1 expression levels also affected the protein levels of MyoD and CDKN1A. Sp1, an activator of MyoD and a suppressor of CDKN1A, plays an important role in bovine muscle cell proliferation and differentiation. The results of our study reveal a mechanism by which miR-128 regulates bovine skeletal muscle satellite cell proliferation and myogenic differentiation via Sp1.
Collapse
|
15
|
Dai Y, Wang YM, Zhang WR, Liu XF, Li X, Ding XB, Guo H. The role of microRNA-1 and microRNA-206 in the proliferation and differentiation of bovine skeletal muscle satellite cells. In Vitro Cell Dev Biol Anim 2015; 52:27-34. [DOI: 10.1007/s11626-015-9953-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 08/20/2015] [Indexed: 02/07/2023]
|
16
|
Zhang WW, Tong HL, Sun XF, Hu Q, Yang Y, Li SF, Yan YQ, Li GP. Identification of miR-2400 gene as a novel regulator in skeletal muscle satellite cells proliferation by targeting MYOG gene. Biochem Biophys Res Commun 2015; 463:624-31. [PMID: 26047700 DOI: 10.1016/j.bbrc.2015.05.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 12/17/2022]
Abstract
MicroRNAs play critical roles in skeletal muscle development as well as in regulation of muscle cell proliferation and differentiation. Previous study in our laboratory showed that the expression level of miR-2400, a novel and unique miRNA from bovine, had significantly changed in skeletal muscle-derived satellite cells (MDSCs) during differentiation, however, the function and expression pattern for miR-2400 in MDSCs has not been fully understood. In this report, we firstly identified that the expression levels of miR-2400 were down-regulated during MDSCs differentiation by stem-loop RT-PCR. Over-expression and inhibition studies demonstrated that miR-2400 promoted MDSCs proliferation by EdU (5-ethynyl-2' deoxyuridine) incorporation assay and immunofluorescence staining of Proliferating cell nuclear antigen (PCNA). Luciferase reporter assays showed that miR-2400 directly targeted the 3' untranslated regions (UTRs) of myogenin (MYOG) mRNA. These data suggested that miR-2400 could promote MDSCs proliferation through targeting MYOG. Furthermore, we found that miR-2400, which was located within the eighth intron of the Wolf-Hirschhorn syndrome candidate 1-like 1 (WHSC1L1) gene, was down-regulated in MDSCs in a direct correlation with the WHSC1L1 transcript by Clustered regularly interspaced palindromic repeats interference (CRISPRi). In addition, these observations not only provided supporting evidence for the codependent expression of intronic miRNAs and their host genes in vitro, but also gave insight into the role of miR-2400 in MDSCs proliferation.
Collapse
Affiliation(s)
- Wei Wei Zhang
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; College of Life Sciences and Agriculture & Forestry, Qiqihar University, Qiqihar, Heilongjiang 161006, China
| | - Hui Li Tong
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiao Feng Sun
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qian Hu
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yu Yang
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Shu Feng Li
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yun Qin Yan
- The Laboratory of Cell and Development, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Guang Peng Li
- The Key Laboratory of Mammal Reproductive Biology and Biotechnology Ministry of Education, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|