1
|
Zhan J, Liu S, Meng Y, Yang Q, Wang Z, Zhang S, Ge L, Zhao L, Xu X, Zhao Y, Li X, Wang X. Systematic review of the mechanism and assessment of liver fibrosis in biliary atresia. Pediatr Surg Int 2024; 40:205. [PMID: 39033225 DOI: 10.1007/s00383-024-05778-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
PURPOSE This study systematically reviewed our team's research on the mechanism and assessment of liver fibrosis in BA, summarized our experience, and discussed the future development direction. METHODS In this study, Pubmed and Wanfang databases were searched to collect the literature published by our team on the mechanisms of liver fibrosis in BA and the assessment of liver fibrosis in BA, and the above research results were systematically reviewed. RESULTS A total of 58 articles were retrieved. Among the included articles, 25 articles related to the mechanism of liver fibrosis in BA, and five articles evaluated liver fibrosis in BA. This article introduces the key pathways and molecules of liver fibrosis in BA and proposes a new grading system for liver fibrosis in BA. CONCLUSIONS The new BA liver fibrosis grading method is expected to assess children's conditions, guide treatment, and improve prognosis more accurately. In addition, we believe that the TGF-β1 signaling pathway is the most important in the study of liver fibrosis in BA, and at the same time, the study of EMT occurrence in BA should also be deepened to resolve the controversy on this issue.
Collapse
Affiliation(s)
- Jianghua Zhan
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Shaowen Liu
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| | - Yu Meng
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| | - Qianhui Yang
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| | - Zhiru Wang
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| | - Shujian Zhang
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Liang Ge
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Li Zhao
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of Pathology, Tianjin Children's Hospital, Tianjin, China
| | - Xiaodan Xu
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| | - Yilin Zhao
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| | - Xin Li
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| | - Xueting Wang
- Tianjin Children's Hospital ("Children's Hospital, Tianjin University"), Tianjin, China
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, 238 Longyan Road, Beichen District, Tianjin, 300134, China
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
2
|
Xu C, Fang X, Lu B, Song Y, Shu W, Lu Z, Su R, Xiang Z, Xu X, Wei X. Human umbilical cord mesenchymal stem cells alleviate fatty liver ischemia-reperfusion injury by activating autophagy through upregulation of IFNγ. Cell Biochem Funct 2024; 42:e4040. [PMID: 38850132 DOI: 10.1002/cbf.4040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024]
Abstract
Liver ischemia-reperfusion injury (IRI) is an important factor affecting the prognosis of liver transplantation, and extended criteria donors (e.g., steatosis donor livers) are considered to be more sensitive to ischemia-reperfusion injury in liver transplantation. Currently, the application of human umbilical cord mesenchymal stem cells (hMSCs) has great promise in the treatment of various injuries in the liver. This study aimed to investigate the therapeutic role and mechanism of hMSCs in fatty liver IRI. After more than 8 weeks of high-fat chow feeding, we constructed a fatty liver mouse model and established ischemic injury of about 70% of the liver. Six hours after IRI, liver injury was significantly alleviated in hMSCs-treated mice, and the expression levels of liver enzyme, inflammatory factor TNF-α, and apoptotic proteins were significantly lower than those of the control group, which were also significant in pathological sections. Transcriptomics analysis showed that IFNγ was significantly upregulated in the hMSCs group. Mechanistically, IFNγ, which activates the MAPK pathway, is a potent agonist that promotes the occurrence of autophagy in hepatocytes to exert a protective function, which was confirmed by in vitro experiments. In summary, hMSCs treatment could slow down IRI in fatty liver by activating autophagy through upregulation of IFNγ, and this effect was partly direct.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou, China
| | - Bei Lu
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yisu Song
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Wenzhi Shu
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Zhengyang Lu
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Renyi Su
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Ze Xiang
- Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Koosha E, Brenna CTA, Ashique AM, Jain N, Ovens K, Koike T, Kitagawa H, Eames BF. Proteoglycan inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification. Development 2024; 151:dev201716. [PMID: 38117077 PMCID: PMC10820745 DOI: 10.1242/dev.201716] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023]
Abstract
During endochondral ossification, chondrocytes secrete a proteoglycan (PG)-rich extracellular matrix that can inhibit the process of cartilage maturation, including expression of Ihh and Col10a1. Because bone morphogenetic proteins (BMPs) can promote cartilage maturation, we hypothesized that cartilage PGs normally inhibit BMP signalling. Accordingly, BMP signalling was evaluated in chondrocytes of wild-type and PG mutant (fam20b-/-) zebrafish and inhibited with temporal control using the drug DMH1 or an inducible dominant-negative BMP receptor transgene (dnBMPR). Compared with wild type, phospho-Smad1/5/9, but not phospho-p38, was increased in fam20b-/- chondrocytes, but only after they secreted PGs. Phospho-Smad1/5/9 was decreased in DMH1-treated or dnBMPR-activated wild-type chondrocytes, and DMH1 also decreased phospho-p38 levels. ihha and col10a1a were decreased in DMH1-treated or dnBMPR-activated chondrocytes, and less perichondral bone formed. Finally, early ihha and col10a1a expression and early perichondral bone formation of fam20b mutants were rescued with DMH1 treatment or dnBMPR activation. Therefore, PG inhibition of canonical BMP-dependent cartilage maturation delays endochondral ossification, and these results offer hope for the development of growth factor therapies for skeletal defects of PG diseases.
Collapse
Affiliation(s)
- Elham Koosha
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Connor T. A. Brenna
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Amir M. Ashique
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Niteesh Jain
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Katie Ovens
- Department of Computer Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Toshiyasu Koike
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - Hiroshi Kitagawa
- Department of Biochemistry, Kobe Pharmaceutical University, Higashinada-ku, Kobe 658-0003, Japan
| | - B. Frank Eames
- Department of Anatomy, Physiology, and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| |
Collapse
|
4
|
Yang SR, Hung SC, Chu LJ, Hua KF, Wei CW, Tsai IL, Kao CC, Sung CC, Chu P, Wu CY, Chen A, Wu ATH, Liu FC, Huang HS, Ka SM. NSC828779 Alleviates Renal Tubulointerstitial Lesions Involving Interleukin-36 Signaling in Mice. Cells 2021; 10:3060. [PMID: 34831283 PMCID: PMC8623783 DOI: 10.3390/cells10113060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Renal tubulointerstitial lesions (TILs), a common pathologic hallmark of chronic kidney disease that evolves to end-stage renal disease, is characterized by progressive inflammation and pronounced fibrosis of the kidney. However, current therapeutic approaches to treat these lesions remain largely ineffectual. Previously, we demonstrated that elevated IL-36α levels in human renal tissue and urine are implicated in impaired renal function, and IL-36 signaling enhances activation of NLRP3 inflammasome in a mouse model of TILs. Recently, we synthesized NSC828779, a salicylanilide derivative (protected by U.S. patents with US 8975255 B2 and US 9162993 B2), which inhibits activation of NF-κB signaling with high immunomodulatory potency and low IC50, and we hypothesized that it would be a potential drug candidate for renal TILs. The current study validated the therapeutic effects of NSC828779 on TILs using a mouse model of unilateral ureteral obstruction (UUO) and relevant cell models, including renal tubular epithelial cells under mechanically induced constant pressure. Treatment with NSC828779 improved renal lesions, as demonstrated by dramatically reduced severity of renal inflammation and fibrosis and decreased urinary cytokine levels in UUO mice. This small molecule specifically inhibits the IL-36α/NLRP3 inflammasome pathway. Based on these results, the beneficial outcome represents synergistic suppression of both the IL-36α-activated MAPK/NLRP3 inflammasome and STAT3- and Smad2/3-dependent fibrogenic signaling. NSC828779 appears justified as a new drug candidate to treat renal progressive inflammation and fibrosis.
Collapse
Affiliation(s)
- Shin-Ruen Yang
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| | - Szu-Chun Hung
- Division of Nephrology, Taipei Tzu Chi Hospital, Taipei 23142, Taiwan;
| | - Lichieh Julie Chu
- Molecular Medicine Research Center, Chang Gung University, Taoyuan 33302, Taiwan;
- Liver Research Center, Chang Gung Memorial Hospital at Linkou, Gueishan, Taoyuan 33302, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan 260007, Taiwan;
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
| | - Chyou-Wei Wei
- Department of Nutrition, Master Program of Biomedical Nutrition, Hungkuang University, Taichung 433304, Taiwan;
| | - I-Lin Tsai
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Chih-Chin Kao
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan;
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-C.S.); (P.C.)
| | - Pauling Chu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (C.-C.S.); (P.C.)
| | - Chung-Yao Wu
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
| | - Ann Chen
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan; (S.-R.Y.); (C.-Y.W.); (A.C.)
| | - Alexander T. H. Wu
- The PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan;
| | - Feng-Cheng Liu
- Division of Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan;
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11301, Taiwan;
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei 11490, Taiwan
| |
Collapse
|
5
|
Nuclear P38: Roles in Physiological and Pathological Processes and Regulation of Nuclear Translocation. Int J Mol Sci 2020; 21:ijms21176102. [PMID: 32847129 PMCID: PMC7504396 DOI: 10.3390/ijms21176102] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 02/07/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK, termed here p38) cascade is a central signaling pathway that transmits stress and other signals to various intracellular targets in the cytoplasm and nucleus. More than 150 substrates of p38α/β have been identified, and this number is likely to increase. The phosphorylation of these substrates initiates or regulates a large number of cellular processes including transcription, translation, RNA processing and cell cycle progression, as well as degradation and the nuclear translocation of various proteins. Being such a central signaling cascade, its dysregulation is associated with many pathologies, particularly inflammation and cancer. One of the hallmarks of p38α/β signaling is its stimulated nuclear translocation, which occurs shortly after extracellular stimulation. Although p38α/β do not contain nuclear localization or nuclear export signals, they rapidly and robustly translocate to the nucleus, and they are exported back to the cytoplasm within minutes to hours. Here, we describe the physiological and pathological roles of p38α/β phosphorylation, concentrating mainly on the ill-reviewed regulation of p38α/β substrate degradation and nuclear translocation. In addition, we provide information on the p38α/β ’s substrates, concentrating mainly on the nuclear targets and their role in p38α/β functions. Finally, we also provide information on the mechanisms of nuclear p38α/β translocation and its use as a therapeutic target for p38α/β-dependent diseases.
Collapse
|
6
|
The p38 MAPK Signaling Activation in Colorectal Cancer upon Therapeutic Treatments. Int J Mol Sci 2020; 21:ijms21082773. [PMID: 32316313 PMCID: PMC7215415 DOI: 10.3390/ijms21082773] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023] Open
Abstract
Pharmacological treatment of colorectal carcinoma currently proceeds through the administration of a combination of different chemotherapeutic agents. In the case of rectal carcinoma, radiation therapy also represents a therapeutic strategy. In an attempt at translating much-needed new targeted therapy to the clinics, p38 mitogen activated protein kinase (MAPK) inhibitors have been tested in clinical trials involving colorectal carcinoma patients, especially in combination with chemotherapy; however, despite the high expectations raised by a clear involvement of the p38 MAPK pathway in the response to therapeutic treatments, poor results have been obtained so far. In this work, we review recent insights into the exact role of the p38 MAPK pathway in response to currently available therapies for colorectal carcinoma, depicting an intricate scenario in which the p38 MAPK node presents many opportunities, as well as many challenges, for its perspective exploitation for clinical purposes.
Collapse
|
7
|
Wu C, Chen W, Ding H, Li D, Wen G, Zhang C, Lu W, Chen M, Yang Y. Salvianolic acid B exerts anti-liver fibrosis effects via inhibition of MAPK-mediated phospho-Smad2/3 at linker regions in vivo and in vitro. Life Sci 2019; 239:116881. [PMID: 31678285 DOI: 10.1016/j.lfs.2019.116881] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
|
8
|
Penke LR, Peters-Golden M. Molecular determinants of mesenchymal cell activation in fibroproliferative diseases. Cell Mol Life Sci 2019; 76:4179-4201. [PMID: 31563998 PMCID: PMC6858579 DOI: 10.1007/s00018-019-03212-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/01/2019] [Accepted: 06/26/2019] [Indexed: 02/06/2023]
Abstract
Uncontrolled scarring, or fibrosis, can interfere with the normal function of virtually all tissues of the body, ultimately leading to organ failure and death. Fibrotic diseases represent a major cause of death in industrialized countries. Unfortunately, no curative treatments for these conditions are yet available, highlighting the critical need for a better fundamental understanding of molecular mechanisms that may be therapeutically tractable. The ultimate indispensable effector cells responsible for deposition of extracellular matrix proteins that comprise scars are mesenchymal cells, namely fibroblasts and myofibroblasts. In this review, we focus on the biology of these cells and the molecular mechanisms that regulate their pertinent functions. We discuss key pro-fibrotic mediators, signaling pathways, and transcription factors that dictate their activation and persistence. Because of their possible clinical and therapeutic relevance, we also consider potential brakes on mesenchymal cell activation and cellular processes that may facilitate myofibroblast clearance from fibrotic tissue-topics that have in general been understudied.
Collapse
Affiliation(s)
- Loka R Penke
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA
| | - Marc Peters-Golden
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, 6301 MSRB III, 1150 W. Medical Center Drive, Ann Arbor, MI, 48109-5642, USA.
| |
Collapse
|
9
|
Huang H, Nie C, Qin X, Zhou J, Zhang L. Diosgenin inhibits the epithelial-mesenchymal transition initiation in osteosarcoma cells via the p38MAPK signaling pathway. Oncol Lett 2019; 18:4278-4287. [PMID: 31579425 DOI: 10.3892/ol.2019.10780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 06/13/2019] [Indexed: 01/01/2023] Open
Abstract
Diosgenin is an important basic raw material for the production of steroid hormone drugs. It can be isolated and purified from a variety of traditional Chinese medicines or plants. Modern molecular biological studies have shown that diosgenin inhibits various tumor cells migration and invasion ability to varying degrees in vitro and in vivo. The aim of the present study was to observe the inhibitory effects of diosgenin on the invasive and metastatic capabilities of osteosarcoma cells and to determine the association between the effects of diosgenin on the epithelial-mesenchymal transition (EMT). Wound healing and Transwell assays were used to observe the inhibitory effects of diosgenin on the invasion and migration of two osteosarcoma cell lines. Immunofluorescence was used to observe changes in transforming growth factor β1 (TGF-β1) protein expression levels in the osteosarcoma cells following drug administration. EMT-associated proteins, including TGFβ1, E-cadherin and vimentin were detected by western blotting, which demonstrated that the drug may inhibit the initiation of EMT in osteosarcoma cells. Western blot analysis of the expression of all the proteins in the mitogen-activated protein kinase (MAPK) pathway demonstrated that the drug inhibited the MAPK signaling pathway. The primary mechanism of action of diosgenin was the inhibition of the phosphorylated p38 (pP38) protein. Through a combination of inhibitors of the p38MAPK signaling pathway and detection of the downstream EMT marker protein E-cadherin by quantitative PCR, pP38 was confirmed to be a target of diosgenin in the inhibition of EMT in the osteosarcoma cells via the MAPK molecular signaling pathway. Diosgenin may exhibit utility as an auxiliary drug for the clinical reduction of metastasis in patients with osteosarcoma.
Collapse
Affiliation(s)
- Huaming Huang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China.,Department of Orthopedics, Xishan People's Hospital of Wuxi, Wuxi, Jiangsu 214015, P.R. China
| | - Chao Nie
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Xiaokang Qin
- Jiangsu KeyGEN BioTECH Co., Ltd., Nanjing, Jiangsu 211100, P.R. China
| | - Jie Zhou
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| | - Lei Zhang
- Department of Research Office, Jiangsu Health Vocational College, Nanjing, Jiangsu 211800, P.R. China
| |
Collapse
|
10
|
CUB domain-containing protein 1 (CDCP1) binds transforming growth factor beta family members and increase TGF-β1 signaling pathway. Exp Cell Res 2019; 383:111499. [PMID: 31302030 DOI: 10.1016/j.yexcr.2019.111499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/27/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022]
Abstract
CUB domains are most exclusively found in secreted proteins and in a few transmembrane proteins. These domains are approximately 110 amino acids long and have four conserved cysteines that form a β-sandwich fold. CUB domains proteins are involved in a wide range of biological functions. We have shown that CUB domains from Tolloid/BMP1 can bind BMP4 and block BMP signaling in the developing frog embryo. CUB domain-containing protein 1 (CDCP1) is one of the few transmembrane glycoprotein that contains three extracellular CUB domains and regulates anchorage-independent growth and cancer cell migration through activation of Src kinases. In the extracellular space, only a few proteins were found to interact with CDCP1 and at the moment no ligand was found. We demonstrate by using real time protein interaction on BIAcore chip that CDCP1 CUB domains bind directly to TGF-β1 and BMP4. CDCP1 enhances TGF-β1 signaling reporter activity and phosphorylated Smad2 levels but does not modulate BMP signaling pathway. CDCP1 actions on TGF-β/Smad2 signaling are dependent on Smad2 and TGFRI and do not require Src or PKCδ binding. Our findings uncover a new co-receptor for TGF-β1 and bring up new questions on whether CDCP1 cooperates with TGF-β1 to promote cancer progression.
Collapse
|
11
|
Sommerova L, Ondrouskova E, Vojtesek B, Hrstka R. Suppression of AGR2 in a TGF-β-induced Smad regulatory pathway mediates epithelial-mesenchymal transition. BMC Cancer 2017; 17:546. [PMID: 28810836 PMCID: PMC5557473 DOI: 10.1186/s12885-017-3537-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background During cancer progression, epithelial cancer cells can be reprogrammed into mesenchymal-like cells with increased migratory potential through the process of epithelial-mesenchymal transition (EMT), representing an essential step of tumor progression towards metastatic state. AGR2 protein was shown to regulate several cancer-associated processes including cellular proliferation, survival and drug resistance. Methods The expression of AGR2 was analyzed in cancer cell lines exposed to TGF-β alone or to combined treatment with TGF-β and the Erk1/2 inhibitor PD98059 or the TGF-β receptor specific inhibitor SB431542. The impact of AGR2 silencing by specific siRNAs or CRISPR/Cas9 technology on EMT was investigated by western blot analysis, quantitative PCR, immunofluorescence analysis, real-time invasion assay and adhesion assay. Results Induction of EMT was associated with decreased AGR2 along with changes in cellular morphology, actin reorganization, inhibition of E-cadherin and induction of the mesenchymal markers vimentin and N-cadherin in various cancer cell lines. Conversely, induction of AGR2 caused reversion of the mesenchymal phenotype back to the epithelial phenotype and re-acquisition of epithelial markers. Activated Smad and Erk signaling cascades were identified as mutually complementary pathways responsible for TGF-β-mediated inhibition of AGR2. Conclusion Taken together our results highlight a crucial role for AGR2 in maintaining the epithelial phenotype by preventing the activation of key factors involved in the process of EMT. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3537-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucia Sommerova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Eva Ondrouskova
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Borivoj Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic
| | - Roman Hrstka
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53, Brno, Czech Republic.
| |
Collapse
|
12
|
Zhu Y, Gu J, Zhu T, Jin C, Hu X, Wang X. Crosstalk between Smad2/3 and specific isoforms of ERK in TGF-β1-induced TIMP-3 expression in rat chondrocytes. J Cell Mol Med 2017; 21:1781-1790. [PMID: 28230313 PMCID: PMC5571561 DOI: 10.1111/jcmm.13099] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
This study investigated the roles of ERK1 and ERK2 in transforming growth factor‐β1 (TGF‐β1)‐induced tissue inhibitor of metalloproteinases‐3 (TIMP‐3) expression in rat chondrocytes, and the specific roles of ERK1 and ERK2 in crosstalk with Smad2/3 were investigated to demonstrate the molecular mechanism of ERK1/2 regulation of TGF‐β1 signalling. To examine the interaction of specific isoforms of ERK and the Smad2/3 signalling pathway, chondrocytes were infected with LV expressing either ERK1 or ERK2 siRNA and stimulated with or without TGF‐β1. At indicated time‐points, TIMP‐3 expression was determined by real‐time PCR and Western blotting; p‐Smad3, nuclear p‐Smad3, Smad2/3, p‐ERK1/2 and ERK1/2 levels were assessed. And then, aggrecan, type II collagen and the intensity of matrix were examined. TGF‐β1‐induced TIMP‐3 expression was significantly inhibited by ERK1 knock‐down, and the decrease in TIMP‐3 expression was accompanied by a reduction of p‐Smad3 in ERK1 knock‐down cells. Knock‐down of ERK2 had no effect on neither TGF‐β1‐induced TIMP‐3 expression nor the quantity of p‐Smad3. Moreover, aggrecan, type II collagen expression and the intensity of matrix were significantly suppressed by ERK1 knock‐down instead of ERK2 knock‐down. Taken together, ERK1 and ERK2 have different roles in TGF‐β1‐induced TIMP‐3 expression in rat chondrocytes. ERK1 instead of ERK2 can regulate TGF‐β/Smad signalling, which may be the mechanism through which ERK1 regulates TGF‐β1‐induced TIMP‐3 expression.
Collapse
Affiliation(s)
- Yanhui Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianhua Gu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Tong Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chen Jin
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiaopeng Hu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Xiang Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
13
|
Wang X, Liu C, Wang J, Fan Y, Wang Z, Wang Y. Oxymatrine inhibits the migration of human colorectal carcinoma RKO cells via inhibition of PAI-1 and the TGF-β1/Smad signaling pathway. Oncol Rep 2016; 37:747-753. [PMID: 27959430 PMCID: PMC5355745 DOI: 10.3892/or.2016.5292] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 07/28/2016] [Indexed: 12/28/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) signaling has been shown to play a critical role in the development of epithelial-mesenchymal transition (EMT). PAI-1 is one of the most important target genes in the TGF-β/Smad signaling pathway, which can hinder the degradation of ECM composition and may promote cell invasion and migration. Oxymatrine (OM) is an alkaloid extracted from the Chinese herb Sophora flavescens Ait and has been demonstrated to inhibit the growth of various types of cancer cells including colorectal cancer. However, the anticancer effect of OM in colorectal cancer remains unclear. In the present study, we detected the expression of E-cadherin, α-SMA, FN, TGF-β1, PAI-1, Smad4, pP38 and pSmad2 in FHC, RKO and OM-treated RKO cells. We also detected pSmad2 and PAI-1 in RKO cells following the addition of SB203580 (a p38 MAPK inhibitor). The results showed that E-cadherin expression in RKO cells was significantly decreased, while PAI-1, TGF-β1, α-SMA, FN, Smad4, pSmad2 and pP38 expression levels were significantly increased in the RKO cells compared to levels in the FHC cells, which was almost completely reversed by OM. OM alleviated EMT induced in colorectal cancer via inhibition of TGF-β1/Smad signaling pathway activation by reducing P38-dependent increased expression of PAI-1. Hence, OM could be a novel therapeutic agent for colorectal cancer.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Biochemistry, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110001, P.R. China
| | - Chun Liu
- Department of Biochemistry, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110001, P.R. China
| | - Jiaqi Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yue Fan
- Department of Human Resources, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Zhenghua Wang
- Department of Oncology (Third Ward), The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| | - Yuanyuan Wang
- Department of Oncology (Third Ward), The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 121001, P.R. China
| |
Collapse
|
14
|
Pan R, Zhang Y, Zang B, Tan L, Jin M. Hydroxysafflor yellow A inhibits TGF-β1-induced activation of human fetal lung fibroblasts in vitro. J Pharm Pharmacol 2016; 68:1320-30. [PMID: 27457091 DOI: 10.1111/jphp.12596] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/10/2016] [Indexed: 12/11/2022]
Abstract
Abstract
Objective
Hydroxysafflor yellow A (HSYA) is one of the chemical component isolated from Chinese medicine Carthamus tinctorius L. Our preliminary study confirmed that HSYA attenuated bleomycin-induced pulmonary fibrosis in mice. In this study, we evaluated the effect of HSYA on TGF-β1-induced activation of human fetal lung fibroblasts (MRC-5) and explored the underlying mechanisms of its activity.
Method
MRC-5 cells activated by TGF-β1 were incubated with HSYA and/or the TGF-β type I receptor inhibitor, SB431542. TGF-β1-induced cell proliferation, α-smooth muscle actin, collagen I alpha 1 and fibronectin expression, Smad, mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase/Akt signalling pathway activation were observed.
Key findings
Hydroxysafflor yellow A significantly inhibited TGF-β1-induced cell proliferation and the expression, both mRNA and protein, of α-smooth muscle actin, collagen I alpha 1 and fibronectin. HSYA also suppressed TGF-β1 activation of Smad signal transduction via inhibition of Smad2 and Smad3 phosphorylation, their nuclear translocation and the binding activity of Smad3 to type I collagen promoter in MRC-5 cells. In addition, HSYA inhibited TGF-β1-induced phosphorylation of extracellular signal-regulated kinase (ERK). The inhibitory effects of HSYA were similar to SB431542.
Conclusion
These findings suggest that HSYA inhibits TGF-β1-induced activation of MRC-5 cells associated with TGF-β1/Smad and ERK/MAPK signalling pathways.
Collapse
Affiliation(s)
- Ruiyan Pan
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang district, Beijing, 100029, China
| | - Yadan Zhang
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang district, Beijing, 100029, China
| | - Baoxia Zang
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang district, Beijing, 100029, China
| | - Li Tan
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang district, Beijing, 100029, China
| | - Ming Jin
- Department of Pharmacology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Diseases, No. 2 Anzhen Road, Chaoyang district, Beijing, 100029, China
| |
Collapse
|
15
|
TGF-β in Hepatic Stellate Cell Activation and Liver Fibrogenesis: Updated. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0089-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|