1
|
Yang W, Liu C, Liu Y, Gao N, Huang B, Han Y, Wang X. Identification of a T-box transcription factor TBX2 and its negative regulatory role in melanin production in the Pacific oyster Crassostrea gigas. Int J Biol Macromol 2024; 282:136772. [PMID: 39447786 DOI: 10.1016/j.ijbiomac.2024.136772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 10/19/2024] [Indexed: 10/26/2024]
Abstract
Oyster shells exhibit varying color patterns-black, white, or black and white striations-attributable to differences in melanin content and distribution. In this study, we identified a new homolog of TBX2, a member of the T-box transcription factor family, in the Pacific oyster (Crassostrea gigas) named CgTBX2. The mRNA expression of CgTBX2 was higher in tissues from white-shelled oysters than in those from black-shelled oysters. Knockdown of CgTBX2 in C. gigas significantly upregulated the expression of two key genes involved in melanin synthesis, CgTYR and CgTYR2. The tissue expression profile revealed that CgTBX2 is highly expressed in gill and mantle. CgTBX2 protein is mainly localized in the nucleus and can combine with TBX-binding elements (TBEs) present in the CgOCA2 promoter. CgTBX2 repressed the activity of the CgOCA2 promoter, with a strong transcriptional inhibition effect on the -2000 to -878 and -211 to -1 regions. Furthermore, the combination of CgTBX2 with GTTGACACCTT sequence is responsible for the transcriptional inhibition on the -211 to -1 region of the CgOCA2 promoter. Our findings reveal that CgTBX2, a novel regulator of melanin pigmentation in C. gigas, negatively regulates melanin deposition by inhibiting tyrosinase genes expression and repressing the transcriptional activity of the CgOCA2 promoter.
Collapse
Affiliation(s)
- Wenhao Yang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Chen Liu
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Yaqiong Liu
- School of Fisheries, Ludong University, Yantai 264025, China.
| | - Nan Gao
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Baoyu Huang
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Yijing Han
- School of Fisheries, Ludong University, Yantai 264025, China
| | - Xiaotong Wang
- School of Fisheries, Ludong University, Yantai 264025, China.
| |
Collapse
|
2
|
Min Y, Yu H, Li Q. Transcriptional and post-translational regulation of MITF mediated by bHLH domain during the melanogenesis and melanocyte proliferation in Crassostrea gigas. Int J Biol Macromol 2024; 266:131138. [PMID: 38547943 DOI: 10.1016/j.ijbiomac.2024.131138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/07/2024] [Accepted: 03/23/2024] [Indexed: 04/06/2024]
Abstract
Melanocyte differentiation is orchestrated by the master regulator transcription factor MITF. However, its ability to discern distinct binding sites linked to effective gene regulation remains poorly understood. This study aims to assess how co-activator acetyltransferase interacts with MITF to modulate their related lysine action, thereby mediating downstream gene regulation, including DNA affinity, stability, transcriptional activity, particularly in the process of shell pigmentation. Here, we have demonstrated that the CgMITF protein can be acetylated, further enabling selective amplification of the melanocyte maturation program. Collaboration with transcriptional co-regulator p300 advances MITF dynamically interplay with downstream targeted gene promoters. We have established that MITF activation was partially dependent on the bHLH domain, which was well conserved across species. The bHLH domain contained conserved lysine residues, including K6 and K43, which interacted with the E-box motif of downstream targeted-genes. Mutations at K6 and K43 lead to a decrease in the binding affinity of the E-box motif. CgMITF protein bound to the E-box motif within the promoter regions of the tyrosinase-related genes, contributing to melanogenesis, and also interacted with the E-box motif within the TBX2 promoter regions, associated with melanocyte proliferation. We elucidated how the bHLH domain links the transcriptional regulation and acetylation modifications in the melanocyte development in C. gigas.
Collapse
Affiliation(s)
- Yue Min
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Hong Yu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Wang W, Li F, Wang J, Liu Z, Tian M, Wang Z, Li H, Qu J, Chen Y, Hou L. Disrupting Hedgehog signaling in melanocytes by SUFU knockout leads to ocular melanocytosis and anterior segment malformation. Dis Model Mech 2023; 16:dmm050210. [PMID: 37577930 PMCID: PMC10481947 DOI: 10.1242/dmm.050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Hedgehog (Hh) signaling is well known for its crucial role during development, but its specific role in individual cell lineages is less well characterized. Here, we disrupted Hh signaling specifically in melanocytes by using Cre-mediated cell-type-specific knockout of the Hh regulator suppressor of fused (Sufu). Interestingly, corresponding mice were fully pigmented and showed no developmental alterations in melanocyte numbers or distribution in skin and hair follicles. However, there were ectopic melanoblasts visible in the anterior chamber of the eye that eventually displayed severe malformation. Choroidal melanocytes remained unaltered. Surprisingly, the abnormal accumulation of anterior uveal melanoblasts was not the result of increased cell proliferation but of increased migration to ectopic locations such as the cornea. In melanoblasts in vitro, Sufu knockdown replicated the increase in cell migration without affecting proliferation and was mediated by an increased level of phosphorylated-ERK brought about by a reduction in the levels of the repressor form of GLI3. These results highlight the developmental divergence of distinct melanocyte subpopulations and may shed light on the pathogenesis of human ocular melanocytosis.
Collapse
Affiliation(s)
- Weizhuo Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Feiyang Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jing Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zuimeng Liu
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Meiyu Tian
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Zhenhang Wang
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Huirong Li
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Jia Qu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Yu Chen
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
4
|
Gurao A, Vasisth R, Singh R, Dige MS, Vohra V, Mukesh M, Kumar S, Kataria RS. Identification of differential methylome signatures of white pigmented skin patches in Nili Ravi buffalo of India. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:408-417. [PMID: 36239068 DOI: 10.1002/em.22511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
The DNA methylation events mark a major epigenetic change in the genome, reflecting non-genetic disease developments and varied phenotypes. The water buffalo is a dairy production animal with wide agro-climatic distribution in India. Breed-wise the coat color of water buffalo varies from ash-gray to jet black. A typical pigmentation pattern is found in one of the breeds of North India, Nili Ravi, with variedly distributed white patches. The DNA methylation pattern could potentially reveal the epigenetic factors responsible for the pigmentation patterns. To address this question, the DNA isolated from the skin tissues of Nili Ravi with varied white pigmentation and black Murrah buffaloes was subjected to reduced representation bisulfite sequencing. DNA methylation analysis revealed, 68.44%, 63.39%, and 47.94% of the promoter regions were hypermethylated in Nili Ravi over-white versus Murrah, Nili Ravi under-white versus Murrah, and Nili Ravi under-white versus Nili Ravi over-white, respectively. Major genes identified to be differentially methylated among over-white and under-white skin tissues in Nili Ravi included TBX2, SNAI2, HERC2, and CITED1. Overall the results have indicated differential methylation patterns to be potentially involved in hyper or hypopigmentation in Nili Ravi and Murrah buffaloes.
Collapse
Affiliation(s)
- Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Rashi Vasisth
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Ravinder Singh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Mahesh S Dige
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Vikas Vohra
- ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| | - Sanjay Kumar
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Ranjit S Kataria
- ICAR-National Bureau of Animal Genetic Resources, Karnal, Haryana, India
| |
Collapse
|
5
|
García-Añoveros J, Clancy JC, Foo CZ, García-Gómez I, Zhou Y, Homma K, Cheatham MA, Duggan A. Tbx2 is a master regulator of inner versus outer hair cell differentiation. Nature 2022; 605:298-303. [PMID: 35508658 PMCID: PMC9803360 DOI: 10.1038/s41586-022-04668-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023]
Abstract
The cochlea uses two types of mechanosensory cell to detect sounds. A single row of inner hair cells (IHCs) synapse onto neurons to transmit sensory information to the brain, and three rows of outer hair cells (OHCs) selectively amplify auditory inputs1. So far, two transcription factors have been implicated in the specific differentiation of OHCs, whereas, to our knowledge, none has been identified in the differentiation of IHCs2-4. One such transcription factor for OHCs, INSM1, acts during a crucial embryonic period to consolidate the OHC fate, preventing OHCs from transdifferentiating into IHCs2. In the absence of INSM1, embryonic OHCs misexpress a core set of IHC-specific genes, which we predict are involved in IHC differentiation. Here we find that one of these genes, Tbx2, is a master regulator of IHC versus OHC differentiation in mice. Ablation of Tbx2 in embryonic IHCs results in their development as OHCs, expressing early OHC markers such as Insm1 and eventually becoming completely mature OHCs in the position of IHCs. Furthermore, Tbx2 is epistatic to Insm1: in the absence of both genes, cochleae generate only OHCs, which suggests that TBX2 is necessary for the abnormal transdifferentiation of INSM1-deficient OHCs into IHCs, as well as for normal IHC differentiation. Ablation of Tbx2 in postnatal, largely differentiated IHCs makes them transdifferentiate directly into OHCs, replacing IHC features with those of mature and not embryonic OHCs. Finally, ectopic expression of Tbx2 in OHCs results in their transdifferentiation into IHCs. Hence, Tbx2 is both necessary and sufficient to make IHCs distinct from OHCs and maintain this difference throughout development.
Collapse
Affiliation(s)
- Jaime García-Añoveros
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders, Northwestern University, Chicago, IL, USA.,These authors jointly supervised this work: Jaime García-Añoveros, Anne Duggan.,Correspondence and requests for materials should be addressed to Jaime García-Añoveros or Anne Duggan. ;
| | - John C. Clancy
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Chuan Zhi Foo
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Ignacio García-Gómez
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yingjie Zhou
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Kazuaki Homma
- Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders, Northwestern University, Chicago, IL, USA.,Department of Otolaryngology–Head and Neck Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Mary Ann Cheatham
- Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders, Northwestern University, Chicago, IL, USA.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Anne Duggan
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,These authors jointly supervised this work: Jaime García-Añoveros, Anne Duggan.,Correspondence and requests for materials should be addressed to Jaime García-Añoveros or Anne Duggan. ;
| |
Collapse
|
6
|
Meierjohann S. Effect of stress-induced polyploidy on melanoma reprogramming and therapy resistance. Semin Cancer Biol 2021; 81:232-240. [PMID: 33610722 DOI: 10.1016/j.semcancer.2021.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Melanomas and their precursors, the melanocytes, are frequently exposed to UV due to their anatomic location, leading to DNA damage and reactive oxygen stress related harm. Such damage can result in multinucleation or polyploidy, in particularly in presence of mitotic or cell division failure. As a consequence, the cell encounters either of two fates: mitotic catastrophe, resulting in cell death, or survival and recovery, the latter occurring less frequently. However, when cells manage to recover in an polyploid state, they have often acquired new features, which allow them to tolerate and adapt to oncogene- or therapy induced stress. This review focuses on polyploidy inducers in melanoma and their effects on transcriptional reprogramming and phenotypic adaptation as well as the relevance of polyploid melanoma cells for therapy resistance.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Institute of Pathology, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
7
|
Wang J, Liu Y, Su Z, Pan L, Lu F, Qu J, Hou L. The T-Box Transcription Factor TBX2 Regulates Cell Proliferation in the Retinal Pigment Epithelium. Curr Eye Res 2017; 42:1537-1544. [PMID: 28910203 DOI: 10.1080/02713683.2017.1338351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE Vertebrate eye development and function critically depend on the regulation of proliferation of retinal pigment epithelium (RPE) cells. Hence, a thorough analysis of the molecular parameters controlling RPE cell proliferation is crucial for our understanding of the physiology of this cell type both in health and in disease. The T-box transcription factor TBX2 is an important cell cycle regulator in development and oncogenesis, but its specific role in RPE cell proliferation is far from clear. The purpose of the present study is to investigate whether TBX2 plays any role in regulating RPE cell proliferation. MATERIALS AND METHODS The expression of TBX2 in RPE cells was analyzed in wildtype mice and ARPE-19 cells by co-staining for RPE-specific markers and cell proliferation. In vitro, the role of TBX2 was studied by manipulating its levels using RNAi and analyzing the effects on DNA synthesis and cell growth and on gene expression at the RNA and protein levels. RESULTS Here, we find that TBX2 is expressed in RPE cells both in vivo and in vitro. Specific knockdown of TBX2 in the human RPE cell line ARPE-19 leads to an accumulation of cells at G1. This cell cycle arrest is accompanied by changes in the levels of known cell cycle regulators and, in particular, by an increase in the levels of the tumor-suppressor gene CCAAT/enhancer-binding protein delta (CEBPD). In fact, simultaneous knockdown of both TBX2 and CEBPD interferes with the reduction in cell proliferation brought about by TBX2 reduction alone. CONCLUSIONS Our results provide novel insights into the regulatory mechanisms of cell proliferation in the RPE and may contribute to our understanding of normal RPE maintenance and its pathology in degenerative and proliferative disorders of the eye.
Collapse
Affiliation(s)
- Jing Wang
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Yin Liu
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Zhongyuan Su
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Li Pan
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Fan Lu
- b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Jia Qu
- b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| | - Ling Hou
- a Laboratory of Developmental Cell Biology and Disease , School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University , Wenzhou , Zhejiang , China.,b State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology , Wenzhou Medical University , Wenzhou , Zhejiang , China
| |
Collapse
|
8
|
Li H, Fan L, Zhu S, Shin MK, Lu F, Qu J, Hou L. Epilation induces hair and skin pigmentation through an EDN3/EDNRB-dependent regenerative response of melanocyte stem cells. Sci Rep 2017; 7:7272. [PMID: 28779103 PMCID: PMC5544680 DOI: 10.1038/s41598-017-07683-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/03/2017] [Indexed: 11/21/2022] Open
Abstract
In response to various types of injury, melanocyte stem cells (McSCs) located in the bulge of hair follicles can regenerate mature melanocytes for hair and skin pigmentation. How McSCs respond to injury, however, remains largely unknown. Here we show that after epilation of mice, McSCs regenerate follicular and epidermal melanocytes, resulting in skin and hair hyperpigmentation. We further show that epilation leads to endogenous EDN3 upregulation in the dermal papilla, the secondary hair germ cells, and the epidermis. Genetic and pharmacological disruption of the EDN3 receptor EDNRB in vivo significantly blocks the effect of epilation on follicular and epidermal melanocyte regeneration as well as skin and hair hyperpigmentation. Taken together, these results indicate that epilation induces McSCs activation through EDN3/EDNRB signaling and in turn leads to skin and hair hyperpigmentation. The findings suggest that EDN/EDNRB signaling may serve as a potential therapeutic target to promote repigmentation in hypopigmentation disorders.
Collapse
Affiliation(s)
- Huirong Li
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
- State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou, 325003, China
| | - Lilv Fan
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shanpu Zhu
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Myung K Shin
- Genetically Engineered Models Department, Merck Research Laboratories, Rahway, NJ, 07065, USA
| | - Fan Lu
- State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou, 325003, China
| | - Jia Qu
- State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou, 325003, China
| | - Ling Hou
- Laboratory of Developmental Cell Biology and Disease, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.
- State Key Laboratory and Key Laboratory of Vision Science of Ministry of Health and Zhejiang Provincial Key Laboratory of Ophthalmology, Wenzhou, 325003, China.
| |
Collapse
|