1
|
Leal-Galvan B, Kumar D, Karim S, Saelao P, Thomas DB, Oliva Chavez A. A glimpse into the world of microRNAs and their putative roles in hard ticks. Front Cell Dev Biol 2024; 12:1460705. [PMID: 39376631 PMCID: PMC11456543 DOI: 10.3389/fcell.2024.1460705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Ticks are important blood feeding ectoparasites that transmit pathogens to wildlife, domestic animals, and humans. Hard ticks can feed for several days to weeks, nevertheless they often go undetected. This phenomenon can be explained by a tick's ability to release analgesics, immunosuppressives, anticoagulants, and vasodilators within their saliva. Several studies have identified extracellular vesicles (EVs) as carriers of some of these effector molecules. Further, EVs, and their contents, enhance pathogen transmission, modulate immune responses, and delay wound healing. EVs are double lipid-membrane vesicles that transport intracellular cargo, including microRNAs (miRNAs) to recipient cells. miRNAs are involved in regulating gene expression post-transcriptionally. Interestingly, tick-derived miRNAs have been shown to enhance pathogen transmission and affect vital biological processes such as oviposition, blood digestion, and molting. miRNAs have been found within tick salivary EVs. This review focuses on current knowledge of miRNA loading into EVs and homologies reported in ticks. We also describe findings in tick miRNA profiles, including miRNAs packed within tick salivary EVs. Although no functional studies have been done to investigate the role of EV-derived miRNAs in tick feeding, we discuss the functional characterization of miRNAs in tick biology and pathogen transmission. Lastly, we propose the possible uses of tick miRNAs to develop management tools for tick control and to prevent pathogen transmission. The identification and functional characterization of conserved and tick-specific salivary miRNAs targeting important molecular and immunological pathways within the host could lead to the discovery of new therapeutics for the treatment of tick-borne and non-tick-borne human diseases.
Collapse
Affiliation(s)
- Brenda Leal-Galvan
- Department of Entomology, Texas A&M University, College Station, TX, United States
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Deepak Kumar
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Perot Saelao
- USDA-ARS Veterinary Pest Research Unit, Kerrville, TX, United States
| | - Donald B. Thomas
- USDA-ARS Cattle Fever Tick Research Laboratory, Edinburg, TX, United States
| | - Adela Oliva Chavez
- Department of Entomology, University of Wisconsin—Madison, Madison, WI, United States
| |
Collapse
|
2
|
Cui Y, Yuan Q, Chen J, Jiang J, Guan H, Zhu R, Li N, Liu W, Wang C. Determination and characterization of molecular heterogeneity and precision medicine strategies of patients with pancreatic cancer and pancreatic neuroendocrine tumor based on oxidative stress and mitochondrial dysfunction-related genes. Front Endocrinol (Lausanne) 2023; 14:1127441. [PMID: 37223030 PMCID: PMC10200886 DOI: 10.3389/fendo.2023.1127441] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/15/2023] [Indexed: 05/25/2023] Open
Abstract
Background Mitochondria are significant both for cellular energy production and reactive oxygen/nitrogen species formation. However, the significant functions of mitochondrial genes related to oxidative stress (MTGs-OS) in pancreatic cancer (PC) and pancreatic neuroendocrine tumor (PNET) are yet to be investigated integrally. Therefore, in pan-cancer, particularly PC and PNET, a thorough assessment of the MTGs-OS is required. Methods Expression patterns, prognostic significance, mutation data, methylation rates, and pathway-regulation interactions were studied to comprehensively elucidate the involvement of MTGs-OS in pan-cancer. Next, we separated the 930 PC and 226 PNET patients into 3 clusters according to MTGs-OS expression and MTGs-OS scores. LASSO regression analysis was utilized to construct a novel prognostic model for PC. qRT-PCR(Quantitative real-time PCR) experiments were performed to verify the expression levels of model genes. Results The subtype associated with the poorest prognosis and lowerest MTGs-OS scores was Cluster 3, which could demonstrate the vital function of MTGs-OS for the pathophysiological processes of PC. The three clusters displayed distinct variations in the expression of conventional cancer-associated genes and the infiltration of immune cells. Similar molecular heterogeneity was observed in patients with PNET. PNET patients with S1 and S2 subtypes also showed distinct MTGs-OS scores. Given the important function of MTGs-OS in PC, a novel and robust MTGs-related prognostic signature (MTGs-RPS) was established and identified for predicting clinical outcomes for PC accurately. Patients with PC were separated into the training, internal validation, and external validation datasets at random; the expression profile of MTGs-OS was used to classify patients into high-risk (poor prognosis) or low-risk (good prognosis) categories. The variations in the tumor immune microenvironment may account for the better prognoses observed in high-risk individuals relative to low-risk ones. Conclusions Overall, our study for the first time identified and validated eleven MTGs-OS remarkably linked to the progression of PC and PNET, and elaborated the biological function and prognostic value of MTGs-OS. Most importantly, we established a novel protocol for the prognostic evaluation and individualized treatment for patients with PC.
Collapse
Affiliation(s)
- Yougang Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Qihang Yuan
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Junhong Chen
- Department of Hepatobiliary and Pancreatic Surgery II, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jian Jiang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hewen Guan
- Department of Dermatology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ruiping Zhu
- Department of Pathology, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Ning Li
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of General Surgery, Wafangdian Central Hospital, Dalian, Liaoning, China
| | - Wenzhi Liu
- Department of Gastrointestinal Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China
| | - Changmiao Wang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
3
|
Morais KLP, Ciccone L, Stura E, Alvarez-Flores MP, Mourier G, Driessche MV, Sciani JM, Iqbal A, Kalil SP, Pereira GJ, Marques-Porto R, Cunegundes P, Juliano L, Servent D, Chudzinski-Tavassi AM. Structural and functional properties of the Kunitz-type and C-terminal domains of Amblyomin-X supporting its antitumor activity. Front Mol Biosci 2023; 10:1072751. [PMID: 36845546 PMCID: PMC9948614 DOI: 10.3389/fmolb.2023.1072751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Amblyomin-X is a Kunitz-type FXa inhibitor identified through the transcriptome analysis of the salivary gland from Amblyomma sculptum tick. This protein consists of two domains of equivalent size, triggers apoptosis in different tumor cell lines, and promotes regression of tumor growth, and reduction of metastasis. To study the structural properties and functional roles of the N-terminal (N-ter) and C-terminal (C-ter) domains of Amblyomin-X, we synthesized them by solid-phase peptide synthesis, solved the X-Ray crystallographic structure of the N-ter domain, confirming its Kunitz-type signature, and studied their biological properties. We show here that the C-ter domain is responsible for the uptake of Amblyomin-X by tumor cells and highlight the ability of this domain to deliver intracellular cargo by the strong enhancement of the intracellular detection of molecules with low cellular-uptake efficiency (p15) after their coupling with the C-ter domain. In contrast, the N-ter Kunitz domain of Amblyomin-X is not capable of crossing through the cell membrane but is associated with tumor cell cytotoxicity when it is microinjected into the cells or fused to TAT cell-penetrating peptide. Additionally, we identify the minimum length C-terminal domain named F2C able to enter in the SK-MEL-28 cells and induces dynein chains gene expression modulation, a molecular motor that plays a role in the uptake and intracellular trafficking of Amblyomin-X.
Collapse
Affiliation(s)
- K. L. P. Morais
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Ciccone
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,Department of Pharmacy, University of Pisa, Pisa, Italy
| | - E. Stura
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. P. Alvarez-Flores
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. Mourier
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - M. Vanden Driessche
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France
| | - J. M. Sciani
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - A. Iqbal
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - S. P. Kalil
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil
| | - G. J. Pereira
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - R. Marques-Porto
- Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil
| | - P. Cunegundes
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - L. Juliano
- Department of Biophysics, Federal University of São Paulo, São Paulo, Brazil
| | - D. Servent
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA SIMoS, Gif-sur-Yvette, France,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| | - A. M. Chudzinski-Tavassi
- Center of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, Brazil,Laboratory of Development and Innovation, Butantan Institute, São Paulo, Brazil,*Correspondence: D. Servent, ; A. M. Chudzinski-Tavassi,
| |
Collapse
|
4
|
Lobba ARM, Alvarez-Flores MP, Fessel MR, Buri MV, Oliveira DS, Gomes RN, Cunegundes PS, DeOcesano-Pereira C, Cinel VD, Chudzinski-Tavassi AM. A Kunitz-type inhibitor from tick salivary glands: A promising novel antitumor drug candidate. Front Mol Biosci 2022; 9:936107. [PMID: 36052162 PMCID: PMC9424826 DOI: 10.3389/fmolb.2022.936107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Salivary glands are vital structures responsible for successful tick feeding. The saliva of ticks contains numerous active molecules that participate in several physiological processes. A Kunitz-type factor Xa (FXa) inhibitor, similar to the tissue factor pathway inhibitor (TFPI) precursor, was identified in the salivary gland transcriptome of Amblyomma sculptum ticks. The recombinant mature form of this Kunitz-type inhibitor, named Amblyomin-X, displayed anticoagulant, antiangiogenic, and antitumor properties. Amblyomin-X is a protein that inhibits FXa in the blood coagulation cascade and acts via non-hemostatic mechanisms, such as proteasome inhibition. Amblyomin-X selectively induces apoptosis in cancer cells and promotes tumor regression through these mechanisms. Notably, the cytotoxicity of Amblyomin-X seems to be restricted to tumor cells and does not affect non-tumorigenic cells, tissues, and organs, making this recombinant protein an attractive molecule for anticancer therapy. The cytotoxic activity of Amblyomin-X on tumor cells has led to vast exploration into this protein. Here, we summarize the function, action mechanisms, structural features, pharmacokinetics, and biodistribution of this tick Kunitz-type inhibitor recombinant protein as a promising novel antitumor drug candidate.
Collapse
Affiliation(s)
- Aline R. M. Lobba
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Miryam Paola Alvarez-Flores
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Melissa Regina Fessel
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Marcus Vinicius Buri
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Douglas S. Oliveira
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Renata N. Gomes
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Priscila S. Cunegundes
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Carlos DeOcesano-Pereira
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
| | - Victor D. Cinel
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
| | - Ana M. Chudzinski-Tavassi
- Centre of Excellence in New Target Discovery-CENTD, Butantan Institute, São Paulo, Brazil
- Development and Innovation Centre, Butantan Institute, Butantan Institute, São Paulo, Brazil
- Biochemistry Department, Federal University of São Paulo, São Paulo, Brazil
- *Correspondence: Ana M. Chudzinski-Tavassi,
| |
Collapse
|
5
|
Colella F, Scillitani G, Pierri CL. Sweet as honey, bitter as bile: Mitochondriotoxic peptides and other therapeutic proteins isolated from animal tissues, for dealing with mitochondrial apoptosis. Toxicology 2020; 447:152612. [PMID: 33171268 DOI: 10.1016/j.tox.2020.152612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria are subcellular organelles involved in cell metabolism and cell life-cycle. Their role in apoptosis regulation makes them an interesting target of new drugs for dealing with cancer or rare diseases. Several peptides and proteins isolated from animal and plant sources are known for their therapeutic properties and have been tested on cancer cell-lines and xenograft murine models, highlighting their ability in inducing cell-death by triggering mitochondrial apoptosis. Some of those molecules have been even approved as drugs. Conversely, many other bioactive compounds are still under investigation for their proapoptotic properties. In this review we report about a group of peptides, isolated from animal venoms, with potential therapeutic properties related to their ability in triggering mitochondrial apoptosis. This class of compounds is known with different names, such as mitochondriotoxins or mitocans.
Collapse
Affiliation(s)
- Francesco Colella
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy
| | | | - Ciro Leonardo Pierri
- Laboratory of Biochemistry, Molecular and Structural Biology, Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125, Bari, Italy; BROWSer S.r.l. (https://browser-bioinf.com/) c/o Department of Biosciences, Biotechnologies, Biopharmaceutics, University "Aldo Moro" of Bari, Via E. Orabona, 4, 70126, Bari, Italy.
| |
Collapse
|
6
|
Lichtenstein F, Iqbal A, de Lima Will SEA, Bosch RV, DeOcesano-Pereira C, Goldfeder MB, Chammas R, Trufen CEM, Morais KLP, de Souza JG, Natalino RJM, de Azevedo IJ, Nishiyama Junior MY, Oliveira U, Alves FIA, Araujo JM, Lobba ARM, Chudzinski-Tavassi AM. Modulation of stress and immune response by Amblyomin-X results in tumor cell death in a horse melanoma model. Sci Rep 2020; 10:6388. [PMID: 32286411 PMCID: PMC7156751 DOI: 10.1038/s41598-020-63275-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
We have investigated Amblyomin-X-treated horse melanomas to better understand its mode of action through transcriptome analysis and the in vivo model. Amblyomin-X is a Kunitz-type homologous protein that selectively leads to the death of tumor cells via ER stress and apoptosis, currently under investigation as a new drug candidate for cancer treatment. Melanomas are immunogenic tumors, and a better understanding of the immune responses is warranted. Equine melanomas are spontaneous and not so aggressive as human melanomas are, as this study shows that the in vivo treatment of encapsulated horse melanoma tumors led to a significant reduction in the tumor size or even the complete disappearance of the tumor mass through intratumoral injections of Amblyomin-X. Transcriptome analysis identified ER- and mitochondria-stress, modulation of the innate immune system, apoptosis, and possibly immunogenic cell death activation. Interactome analysis showed that Amblyomin-X potentially interacts with key elements found in transcriptomics. Taken together, Amblyomin-X modulated the tumor immune microenvironment in different ways, at least contributing to induce tumor cell death.
Collapse
Affiliation(s)
- Flavio Lichtenstein
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Asif Iqbal
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Sonia Elisabete Alves de Lima Will
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Rosemary Viola Bosch
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Carlos DeOcesano-Pereira
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Mauricio Barbugiani Goldfeder
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Roger Chammas
- ICESP, Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Carlos Eduardo Madureira Trufen
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Katia Luciano Pereira Morais
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Jean Gabriel de Souza
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Renato Jose Mendonça Natalino
- ICESP, Center for Translational Research in Oncology, Instituto do Câncer do Estado de São Paulo, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Ursula Oliveira
- Laboratório Especial de Toxinologia Aplicada - CeTICS, Butantan Institute, São Paulo, Brazil
| | - Francisco Ivanio Arruda Alves
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Jaqueline Mayara Araujo
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Aline Ramos Maia Lobba
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil.,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil. .,CENTD, Centre of Excellence in New Target Discovery, Butantan Institute, São Paulo, Brazil.
| |
Collapse
|
7
|
Ji T, Zhang X, Xin Z, Xu B, Jin Z, Wu J, Hu W, Yang Y. Does perturbation in the mitochondrial protein folding pave the way for neurodegeneration diseases? Ageing Res Rev 2020; 57:100997. [PMID: 31816444 DOI: 10.1016/j.arr.2019.100997] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 11/03/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022]
Abstract
Mitochondria, which are cell compartments that are widely present in eukaryotic cells, have been shown to be involved in a variety of synthetic, metabolic, and signaling processes, thereby playing a vital role in cells. The mitochondrial unfolded protein response (mtUPR) is a response in which mitochondria reverse the signal to the nucleus and maintain mitochondrial protein homeostasis when unfolded and misfolded proteins continue to accumulate. Multiple neurodegeneration diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and familial amyotrophic lateral sclerosis (fALS), are public health challenges. Every year, countless efforts are expended trying to clarify the pathogenesis and treatment of neurological disorders, which are associated with mitochondrial dysfunction to some extent. Numerous studies have shown that mtUPR is involved in and plays an important role in the pathogenesis of neurological disorders, but the exact mechanism of the disorders is still unclear. Further study of the process of mtUPR in neurological disorders can help us more accurately understand their pathogenesis in order to provide new therapeutic targets. In this paper, we briefly review mtUPR signaling in Caenorhabditis elegans (C. elegans) and mammals and summarize the role of mtUPR in neurodegeneration diseases, including AD, PD and fALS.
Collapse
|
8
|
Pavon LF, Capper D, Sibov TT, de Toledo SRC, Thomale UW, de Souza JG, Cabral FR, Berra CM, Silva da Costa MD, Mendonça Niçacio J, Dastoli PA, de Oliveira DM, Malheiros SMF, da Cruz EF, Malheiros JM, de Oliveira SM, Silva NS, Petrilli AS, Cappellano AM, Brunialti MC, Salomão R, de Paiva Neto MA, Chudzinski-Tavassi AM, Cavalheiro S. New therapeutic target for pediatric anaplastic ependymoma control: study of anti-tumor activity by a Kunitz-type molecule, Amblyomin-X. Sci Rep 2019; 9:9973. [PMID: 31292491 PMCID: PMC6620274 DOI: 10.1038/s41598-019-45799-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 05/30/2019] [Indexed: 11/08/2022] Open
Abstract
EPNs comprise a heterogeneous group of neuroepithelial tumors, accounting for about 10% of all intracranial tumors in children and up to 30% of brain tumors in those younger than 3 years. Actually, the pattern therapy for low-grade EPNs includes complete surgical resection followed by radiation therapy. Total surgical excision is often not possible due to tumor location. The aim of this study was to evaluate, for the first time, the anti-tumor activity of Amblyomin-X in 4 primary cultures derived from pediatric anaplastic posterior fossa EPN, Group A (anaplastic, WHO grade III) and one primary culture of a high grade neuroepithelial tumor with MN1 alteration, which was initially misdiagnosed as EPN: i) by in vitro assays: comparisons of temozolomide and cisplatin; ii) by intracranial xenograft model. Amblyomin-X was able to induce cell death in EPN cells in a more significant percentage compared to cisplatin. The cytotoxic effects of Amblyomin-X were not detected on hFSCs used as control, as opposed to cisplatin-treatment, which promoted a substantial effect in the hAFSCs viability. TEM analysis showed ultrastructural alterations related to the process of cell death: mitochondrial degeneration, autophagosomes and aggregate-like structures. MRI and histopathological analyzes demonstrated significant tumor mass regression. Our results suggest that Amblyomin-X has a selective effect on tumor cells by inducing apoptotic cell death and may be a therapeutic option for Group AEPNs.
Collapse
Affiliation(s)
- Lorena Favaro Pavon
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil.
| | - David Capper
- Charité -Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universitätzu Berlin, and Berlin Institute of Health, Department of Neuropathology, Berlin, Germany
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tatiana Tais Sibov
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada de Toledo
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ulrich-W Thomale
- Pediatric Neurosurgery, Campus Virchow Klinikum, Charité Universitätsmedizin, Berlin, Germany
| | - Jean Gabriel de Souza
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, São Paulo, Brazil
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, São Paulo, Brazil
| | | | - Carolina Maria Berra
- Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Marcos Devanir Silva da Costa
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jardel Mendonça Niçacio
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Patrícia Alessandra Dastoli
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Suzana M F Malheiros
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | | | | | | | - Nasjla Saba Silva
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Antonio Sérgio Petrilli
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea Maria Cappellano
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Milena Colò Brunialti
- Laboratory of Immunology and Infectology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Reinaldo Salomão
- Laboratory of Immunology and Infectology, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Manoel A de Paiva Neto
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, São Paulo, Brazil.
- Centre of Excellence in New Target Discovery (CENTD), Butantan Institute, São Paulo, São Paulo, Brazil.
| | - Sérgio Cavalheiro
- Discipline of Neurosurgery, Federal University of São Paulo, São Paulo, São Paulo, Brazil
- Pediatric Oncology Institute, Grupo de Apoio ao Adolescente e à Criança com Câncer (GRAACC), Federal University of São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Boufleur P, Sciani JM, Goldfeder M, Faria F, Branco V, Chudzinski-Tavassi AM. Biodistribution and Pharmacokinetics of Amblyomin-X, a Novel Antitumour Protein Drug in Healthy Mice. Eur J Drug Metab Pharmacokinet 2019; 44:111-120. [PMID: 30132264 DOI: 10.1007/s13318-018-0500-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
BACKGROUND Amblyomin-X is a recombinant protein under development for cancer treatment owing to its selective cytotoxic activity over several tumour cell lines and tumour regression in mice models. The aim of this study was to examine the distribution and pharmacokinetics of amblyomin-X in healthy female mice. METHODS Amblyomin-X was injected intravenously into the healthy animals and at controlled times plasma and organs were removed and analysed for identification and quantification of the protein. Alternatively, the labelled protein was injected into mice and tracked in an in vivo imaging system. RESULTS Amblyomin-X was rapidly eliminated from plasma, probably because of its inability to bind to plasma albumin. After 10 min, the protein was found in the thymus and lungs, and later in the heart, liver and kidneys. In the liver, the protein was found until 24 h after a single injection. The in vivo analysis showed the same kinetics profile, besides the identification of amblyomin-X in the bladder region, indicating its elimination via urine. Only fragments of amblyomin-X were observed in the urine. CONCLUSIONS These findings suggest that amblyomin-X is rapidly distributed to the tissues, metabolized by the liver or even kidneys, and eliminated in urine in healthy mice. There is no accumulation in any organ.
Collapse
Affiliation(s)
- Pamela Boufleur
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil
| | - Juliana Mozer Sciani
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil. .,Laboratório Multidisciplinar de Pesquisa, Universidade São Francisco, Av. Francisco de Assis, 218 Cidade Universitária, Bragança Paulista, SP, 12916-900, Brazil.
| | - Mauricio Goldfeder
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil
| | - Fernanda Faria
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil
| | - Vânia Branco
- Laboratory of Molecular Biology, Butantan Institute, São Paulo, SP, Brazil
| | | |
Collapse
|
10
|
Schmidt MCB, Morais KLP, Almeida MESD, Iqbal A, Goldfeder MB, Chudzinski-Tavassi AM. Amblyomin-X, a recombinant Kunitz-type inhibitor, regulates cell adhesion and migration of human tumor cells. Cell Adh Migr 2018; 14:129-138. [PMID: 30238848 PMCID: PMC7527229 DOI: 10.1080/19336918.2018.1516982] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
In a tumor microenvironment, endothelial cell migration and angiogenesis allow cancer to spread to other organs causing metastasis. Indeed, a number of molecules that are involved in cytoskeleton re-organization and intracellular signaling have been investigated for their effects on tumor cell growth and metastasis. Alongside that, Amblyomin-X, a recombinant Kunitz-type protein, has been shown to reduce metastasis and tumor growth in in vivo experiments. In the present report, we provide a mechanistic insight to these antitumor effects, this is, Amblyomin-X modulates Rho-GTPases and uPAR signaling, and reduces the release of MMPs, leading to disruption of the actin cytoskeleton and decreased cell migration of tumor cell lines. Altogether, our data support a role for Amblyomin-X as a novel potential antitumor drug. ABBREVIATIONS Amb-X: Amblyomin-X; ECGF: endotelial cell growth factor; ECM: extracellular matrix; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HUVEC: human umbilical vein endothelial cell; LRP1: low-density lipoprotein receptor-related protein; MMP: matrix metalloproteinase; HPI-4: hedgehog pathway inhibitor 4; PAI-1: plasminogen activator inhibitor 1; PMA: phorbol 12-myristate-13-acetate; TFPI: tissue factor pathway inhibitor; uPA: urokinase plasminogen activator; uPAR: uPA receptor.
Collapse
Affiliation(s)
- Mariana Costa Braga Schmidt
- Laboratory of Molecular Biology, Butantan Institute , São Paulo, SP, Brazil.,Departament of Biochemistry, Federal University of São Paulo , São Paulo, SP, Brazil
| | - Katia L P Morais
- Laboratory of Molecular Biology, Butantan Institute , São Paulo, SP, Brazil.,Departament of Biochemistry, Federal University of São Paulo , São Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute , São Paulo, SP, Brazil
| | - Maíra Estanislau Soares de Almeida
- Laboratory of Molecular Biology, Butantan Institute , São Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute , São Paulo, SP, Brazil
| | - Asif Iqbal
- Laboratory of Molecular Biology, Butantan Institute , São Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute , São Paulo, SP, Brazil
| | - Mauricio Barbugiani Goldfeder
- Laboratory of Molecular Biology, Butantan Institute , São Paulo, SP, Brazil.,Centre of Excellence in New Target Discovery, Butantan Institute , São Paulo, SP, Brazil
| | - Ana Marisa Chudzinski-Tavassi
- Laboratory of Molecular Biology, Butantan Institute , São Paulo, SP, Brazil.,Departament of Biochemistry, Federal University of São Paulo , São Paulo, SP, Brazil
| |
Collapse
|
11
|
Parizi LF, Ali A, Tirloni L, Oldiges DP, Sabadin GA, Coutinho ML, Seixas A, Logullo C, Termignoni C, DA Silva Vaz I. Peptidase inhibitors in tick physiology. MEDICAL AND VETERINARY ENTOMOLOGY 2018; 32:129-144. [PMID: 29111611 DOI: 10.1111/mve.12276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 06/23/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Peptidase inhibitors regulate a wide range of physiological processes involved in the interaction between hematophagous parasites and their hosts, including tissue remodeling, the immune response and blood coagulation. In tick physiology, peptidase inhibitors have a crucial role in adaptation to improve parasitism mechanisms, facilitating blood feeding by interfering with defense-related host peptidases. Recently, a larger number of studies on this topic led to the description of several new tick inhibitors displaying interesting novel features, for example a role in pathogen transmission to the host. A comprehensive review discussing these emerging concepts can therefore shed light on peptidase inhibitor functions, their relevance to tick physiology and their potential applications. Here, we summarize and examine the general characteristics, functional diversity and action of tick peptidase inhibitors with known physiological roles in the tick-host-pathogen interaction.
Collapse
Affiliation(s)
- L F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Ali
- Department of Zoology, Abdul Wali Khan University, Mardan, Pakistan
- Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - L Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - D P Oldiges
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - G A Sabadin
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - M L Coutinho
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - A Seixas
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Logullo
- Laboratório de Química e Função de Proteínas e Peptídeos-CBB and Unidade de Experimentação Animal, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - C Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Porto Alegre, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| | - I DA Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Sousa ACP, Oliveira CJF, Szabó MPJ, Silva MJB. Anti-neoplastic activity of Amblyomma sculptum, Amblyomma parvum and Rhipicephalus sanguineus tick saliva on breast tumor cell lines. Toxicon 2018; 148:165-171. [DOI: 10.1016/j.toxicon.2018.04.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 11/26/2022]
|
13
|
Morris G, Puri BK, Walder K, Berk M, Stubbs B, Maes M, Carvalho AF. The Endoplasmic Reticulum Stress Response in Neuroprogressive Diseases: Emerging Pathophysiological Role and Translational Implications. Mol Neurobiol 2018; 55:8765-8787. [PMID: 29594942 PMCID: PMC6208857 DOI: 10.1007/s12035-018-1028-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023]
Abstract
The endoplasmic reticulum (ER) is the main cellular organelle involved in protein synthesis, assembly and secretion. Accumulating evidence shows that across several neurodegenerative and neuroprogressive diseases, ER stress ensues, which is accompanied by over-activation of the unfolded protein response (UPR). Although the UPR could initially serve adaptive purposes in conditions associated with higher cellular demands and after exposure to a range of pathophysiological insults, over time the UPR may become detrimental, thus contributing to neuroprogression. Herein, we propose that immune-inflammatory, neuro-oxidative, neuro-nitrosative, as well as mitochondrial pathways may reciprocally interact with aberrations in UPR pathways. Furthermore, ER stress may contribute to a deregulation in calcium homoeostasis. The common denominator of these pathways is a decrease in neuronal resilience, synaptic dysfunction and even cell death. This review also discusses how mechanisms related to ER stress could be explored as a source for novel therapeutic targets for neurodegenerative and neuroprogressive diseases. The design of randomised controlled trials testing compounds that target aberrant UPR-related pathways within the emerging framework of precision psychiatry is warranted.
Collapse
Affiliation(s)
- Gerwyn Morris
- Tir Na Nog, Bryn Road seaside 87, Llanelli, Wales, SA15 2LW, UK
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
| | - Basant K Puri
- Department of Medicine, Imperial College London, Hammersmith Hospital, London, England, W12 0HS, UK.
| | - Ken Walder
- The Centre for Molecular and Medical Research, School of Medicine, Deakin University, P.O. Box 291, Geelong, 3220, Australia
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, University of Melbourne, Melbourne, Australia
- Orygen, the National Centre of Excellence in Youth Mental Health, Parkville, Australia
- Centre for Youth Mental Health, University of Melbourne, Melbourne, Australia
- Florey Institute for Neuroscience and Mental Health, Melbourne, Australia
| | - Brendon Stubbs
- Physiotherapy Department, South London and Maudsley NHS Foundation Trust, London, UK
- Health Service and Population Research Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Faculty of Health, Social Care and Education, Anglia Ruskin University, Chelmsford, UK
| | - Michael Maes
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Australia
- Department of Psychiatry, Chulalongkorn University, Bangkok, Thailand
| | - André F Carvalho
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Centre for Addiction & Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
14
|
Blisnick AA, Foulon T, Bonnet SI. Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol 2017; 7:199. [PMID: 28589099 PMCID: PMC5438962 DOI: 10.3389/fcimb.2017.00199] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/04/2017] [Indexed: 01/01/2023] Open
Abstract
New tick and tick-borne pathogen control approaches that are both environmentally sustainable and which provide broad protection are urgently needed. Their development, however, will rely on a greater understanding of tick biology, tick-pathogen, and tick-host interactions. The recent advances in new generation technologies to study genomes, transcriptomes, and proteomes has resulted in a plethora of tick biomacromolecular studies. Among these, many enzyme inhibitors have been described, notably serine protease inhibitors (SPIs), whose importance in various tick biological processes is only just beginning to be fully appreciated. Among the multiple active substances secreted during tick feeding, SPIs have been shown to be directly involved in regulation of inflammation, blood clotting, wound healing, vasoconstriction and the modulation of host defense mechanisms. In light of these activities, several SPIs were examined and were experimentally confirmed to facilitate tick pathogen transmission. In addition, to prevent coagulation of the ingested blood meal within the tick alimentary canal, SPIs are also involved in blood digestion and nutrient extraction from the meal. The presence of SPIs in tick hemocytes and their involvement in tick innate immune defenses have also been demonstrated, as well as their implication in hemolymph coagulation and egg development. Considering the involvement of SPIs in multiple crucial aspects of tick-host-pathogen interactions, as well as in various aspects of the tick parasitic lifestyle, these molecules represent highly suitable and attractive targets for the development of effective tick control strategies. Here we review the current knowledge regarding this class of inhibitors in tick biology and tick-borne pathogen transmission, and their potential as targets for future tick control trials.
Collapse
Affiliation(s)
| | - Thierry Foulon
- Centre National de la Recherche Scientifique, Institut de Biologie Paris-Seine, Biogenèse des Signaux Peptidiques, Sorbonne Universités, UPMC Univ. Paris 06Paris, France
| | | |
Collapse
|
15
|
de Souza JG, Morais KL, Anglés-Cano E, Boufleur P, de Mello ES, Maria DA, Origassa CST, Zampolli HDC, Câmara NOS, Berra CM, Bosch RV, Chudzinski-Tavassi AM. Promising pharmacological profile of a Kunitz-type inhibitor in murine renal cell carcinoma model. Oncotarget 2016; 7:62255-62266. [PMID: 27566592 PMCID: PMC5308724 DOI: 10.18632/oncotarget.11555] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/13/2016] [Indexed: 12/20/2022] Open
Abstract
Renal cell carcinoma (RCC), also called kidney cancer or renal adenocarcinoma, is highly resistant to current treatments. It has been previously reported that a Kunitz-type inhibitor domain-containing protein, isolated from the salivary glands of the Amblyomma cajennense tick, triggers apoptosis in murine renal adenocarcinoma cells (Renca) by inhibiting the proteasome and endoplasmic reticulum stress. Of note, Amblyomin-X is the corresponding recombinant protein identified in the cDNA library from A. cajennense salivary glands. Herein, using orthotopic kidney tumors in mice, we demonstrate that Amblyomin-X is able to drastically reduce the incidence of lung metastases by inducing cell cycle arrest and apoptosis. The in vitro assays show that Amblyomin-X is capable of reducing the proliferation rate of Renca cells, promoting cell cycle arrest, and down-regulating the expression of crucial proteins (cyclin D1, Ki67 and Pgp) involved in the aggressiveness and resistance of RCC. Regarding non-tumor cells (NIH3T3), Amblyomin-X produced minor effects in the cyclin D1 levels. Interestingly, observing the image assays, the fluorescence-labelled Amblyomin-X was indeed detected in the tumor stroma whereas in healthy animals it was rapidly metabolized and excreted. Taken the findings together, Amblyomin-X can be considered as a potential anti-RCC drug candidate.
Collapse
Affiliation(s)
- Jean Gabriel de Souza
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
- Department of Biochemistry, Federal University of São Paulo, SP, Brazil
- CENTD- Center of Excellence in New Target Discovery, Butantan Institute, SP, Brazil
| | - Katia L.P. Morais
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
- CENTD- Center of Excellence in New Target Discovery, Butantan Institute, SP, Brazil
| | - Eduardo Anglés-Cano
- INSERM UMR_S 1140-Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pamela Boufleur
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
- Department of Biochemistry, Federal University of São Paulo, SP, Brazil
| | | | | | - Clarice Silvia Taemi Origassa
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
| | | | - Niels Olsen Saraiva Câmara
- Laboratory of Transplantation Immunobiology, Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo, SP, Brazil
- Nephrology Division, Federal University of São Paulo, SP, Brazil
| | | | | | - Ana Marisa Chudzinski-Tavassi
- Biochemistry and Biophysics Laboratory, Butantan Institute, SP, Brazil
- CENTD- Center of Excellence in New Target Discovery, Butantan Institute, SP, Brazil
| |
Collapse
|