1
|
Lisboa MDO, Selenko AH, Hochuli AHD, Senegaglia AC, Fracaro L, Brofman PRS. The influence of fetal bovine serum concentration on stemness and neuronal differentiation markers in stem cells from human exfoliated deciduous teeth. Tissue Cell 2024; 91:102571. [PMID: 39353229 DOI: 10.1016/j.tice.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Dental Stem Cells (DSCs) from discarded teeth are a non-invasive and ethically favorable source with the potential for neurogenesis due to their ectodermal origin. Stem cells from human exfoliated deciduous teeth (SHED) are particularly promising due to their high differentiation potential and relative immaturity compared to other Mesenchymal Stromal Cells (MSCs). Markers like CD56 and CD271 are critical in identifying MSC subpopulations for therapeutic applications because of their roles in neurodevelopment and maintaining stemness. This study investigates how fetal bovine serum (FBS) concentrations affect the expression of CD56 and CD271 in SHED, influencing their stemness and neuronal differentiation potential. SHEDs were isolated from various donors, cultured, and characterized for MSC traits using markers such as CD14, CD19, CD29, CD34, CD45, CD73, CD90, CD105, CD56, and CD271. Culturing SHED in different FBS conditions (standard 15 %, reduced 1 % and 5 %, and FBS-free) showed that lower FBS concentrations increase CD271 and CD56 expression while maintaining the standard MSC immunophenotype. Importantly, the enhanced expression of these markers can be induced even after SHEDs have been expanded in standard FBS concentrations. These findings suggest that FBS concentration can optimize SHED culture conditions, enhancing their suitability for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Ana Helena Selenko
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Agner Henrique Dorigo Hochuli
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| |
Collapse
|
2
|
Mao L, Wang L, Xu J, Zou J. The role of integrin family in bone metabolism and tumor bone metastasis. Cell Death Discov 2023; 9:119. [PMID: 37037822 PMCID: PMC10086008 DOI: 10.1038/s41420-023-01417-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023] Open
Abstract
Integrins have been the research focus of cell-extracellular matrix adhesion (ECM) and cytokine receptor signal transduction. They are involved in the regulation of bone metabolism of bone precursor cells, mesenchymal stem cells (MSCs), osteoblasts (OBs), osteoclasts (OCs), and osteocytes. Recent studies expanded and updated the role of integrin in bone metabolism, and a large number of novel cytokines were found to activate bone metabolism pathways through interaction with integrin receptors. Integrins act as transducers that mediate the regulation of bone-related cells by mechanical stress, fluid shear stress (FSS), microgravity, hypergravity, extracellular pressure, and a variety of physical factors. Integrins mediate bone metastasis of breast, prostate, and lung cancer by promoting cancer cell adhesion, migration, and survival. Integrin-mediated targeted therapy showed promising prospects in bone metabolic diseases. This review emphasizes the latest research results of integrins in bone metabolism and bone metastasis and provides a vision for treatment strategies.
Collapse
Affiliation(s)
- Liwei Mao
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Lian Wang
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, WA, 6009, Perth, Australia
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, 200438, Shanghai, China.
| |
Collapse
|
3
|
Fu M, Barlow-Anacker AJ, Kuruvilla KP, Bowlin GL, Seidel CW, Trainor PA, Gosain A. 37/67-laminin receptor facilitates neural crest cell migration during enteric nervous system development. FASEB J 2020; 34:10931-10947. [PMID: 32592286 DOI: 10.1096/fj.202000699r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022]
Abstract
Enteric nervous system (ENS) development is governed by interactions between neural crest cells (NCC) and the extracellular matrix (ECM). Hirschsprung disease (HSCR) results from incomplete NCC migration and failure to form an appropriate ENS. Prior studies implicate abnormal ECM in NCC migration failure. We performed a comparative microarray of the embryonic distal hindgut of wild-type and EdnrBNCC-/- mice that model HSCR and identified laminin-β1 as upregulated in EdnrBNCC-/- colon. We identified decreased expression of 37/67 kDa laminin receptor (LAMR), which binds laminin-β1, in human HSCR myenteric plexus and EdnrBNCC-/- NCC. Using a combination of in vitro gut slice cultures and ex vivo organ cultures, we determined the mechanistic role of LAMR in NCC migration. We found that enteric NCC express LAMR, which is downregulated in human and murine HSCR. Binding of LAMR by the laminin-β1 analog YIGSR promotes NCC migration. Silencing of LAMR abrogated these effects. Finally, applying YIGSR to E13.5 EdnrBNCC-/- colon explants resulted in 80%-100% colonization of the hindgut. This study adds LAMR to the large list of receptors through which NCC interact with their environment during ENS development. These results should be used to inform ongoing integrative, regenerative medicine approaches to HSCR.
Collapse
Affiliation(s)
- Ming Fu
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Amanda J Barlow-Anacker
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Korah P Kuruvilla
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Gary L Bowlin
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA
| | | | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, University of Tennessee Health Sciences Center, Memphis, TN, USA.,Children's Foundation Research Institute, Le Bonheur Children's Hospital, Memphis, TN, USA
| |
Collapse
|
4
|
Li J, Yang R, Yang H, Chen S, Wang L, Li M, Yang S, Feng Z, Bi J. NCAM regulates the proliferation, apoptosis, autophagy, EMT, and migration of human melanoma cells via the Src/Akt/mTOR/cofilin signaling pathway. J Cell Biochem 2019; 121:1192-1204. [DOI: 10.1002/jcb.29353] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Jing Li
- School of Life Sciences and Technology Xinxiang Medical University Xinxiang Henan China
| | - Rui Yang
- School of Life Sciences and Technology Xinxiang Medical University Xinxiang Henan China
| | - Haijie Yang
- School of Life Sciences and Technology Xinxiang Medical University Xinxiang Henan China
| | - Sujuan Chen
- School of Life Sciences and Technology Xinxiang Medical University Xinxiang Henan China
| | - Lei Wang
- School of Life Sciences and Technology Xinxiang Medical University Xinxiang Henan China
| | - Man Li
- School of Life Sciences and Technology Xinxiang Medical University Xinxiang Henan China
| | - Shaokui Yang
- School of Life Sciences and Technology Xinxiang Medical University Xinxiang Henan China
| | - Zhiwei Feng
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan China
| | - Jiajia Bi
- School of Life Sciences and Technology Xinxiang Medical University Xinxiang Henan China
| |
Collapse
|