1
|
Beheshtkhoo N, Jadidi Kouhbanani MA, Daghighi SM, Shakouri Nikjeh M, Esmaeili Z, Khosravani M, Adabi M. Effect of oral resveratrol-loaded nanoliposomes on hyperlipidemia via toll-like receptor 3 and TIR domain-containing adaptor inducing interferon-β protein expression in an animal model. J Liposome Res 2025:1-27. [PMID: 40098438 DOI: 10.1080/08982104.2025.2476529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Accepted: 03/02/2025] [Indexed: 03/19/2025]
Abstract
Hyperlipidemia, a critical risk factor for various health conditions, necessitates innovative therapeutic strategies. Investigating the effectiveness of liposomal formulations in managing hyperlipidemia is essential. Resveratrol (RES)-loaded nanoliposomes present a promising new approach for hyperlipidemia treatment. In this study, we investigated the anti-hyperlipidemic potential of RES-loaded nanoliposomes in high-fat diet (HFD)-fed rats. The nanoliposomes were prepared using a thin-film hydration method. According to transmission electron microscopy (TEM) and dynamic light scattering (DLS) results, the mean size of prepared RES-loaded nanoliposomes were about 42 nm and 68 nm, respectively, with a zeta potential of -65.6 mV. The entrapment efficiency and loading content were 83.78% and 14.25%, respectively. Additionally, the RES-loaded nanoliposomes exhibited controlled release kinetics compared to the free RES form. Moreover, in a hyperlipidemic rat model induced by an HFD, orally administered RES-loaded nanoliposomes significantly reduced total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), very low-density lipoprotein cholesterol (VLDL-C), and triglycerides (TG), while concurrently increasing high-density lipoprotein cholesterol (HDL-C) levels. Additionally, liver damage induced by HFD was alleviated by RES-loaded nanoliposomes. The expression levels of Toll-like receptor 3 (TLR3) and TIR domain-containing adaptor-inducing interferon-β (TRIF) were assessed using fluorescence immunohistochemistry. Notably, RES-loaded nanoliposomes significantly reduced the expression of these protein. The effect of RES-loaded nanoliposomes was measured on body weight of HFD rats, demonstrting RES-loaded nanoliposomes hold promise for weight management. These findings underscore the potential of RES-loaded nanoliposomes as a safe and effective therapeutic option for hyperlipidemia.
Collapse
Affiliation(s)
- Nasrin Beheshtkhoo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Jadidi Kouhbanani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mojtaba Daghighi
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Shakouri Nikjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeili
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masood Khosravani
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Adabi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Ahmadzadeh AM, Aliabadi MM, Mirheidari SB, Hamedi-Asil M, Garousi S, Mottahedi M, Sahebkar A. Beneficial effects of resveratrol on diabetes mellitus and its complications: focus on mechanisms of action. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:2407-2442. [PMID: 39446148 DOI: 10.1007/s00210-024-03527-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Diabetes mellitus (DM) is a significant global health issue, associated with various microvascular and macrovascular complications that significantly impair patients' quality of life as well as healthspan and lifespan. Despite the availability of several anti-diabetic medications with different mechanisms of action, there remains no definite curative treatment. Hence, discovering new efficient complementary therapies is essential. Natural products have received significant attention due to their advantages in various pathological conditions. Resveratrol is a natural polyphenol that possesses antioxidant and anti-inflammatory properties, and its efficacy has been previously investigated in several diseases, including DM. Herein, we aimed to provide a holistic view of the signaling pathways and mechanisms of action through which resveratrol exerts its effects against DM and its complications.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | - Mahdie Hamedi-Asil
- School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Mehran Mottahedi
- Department of Surgical and Interventional Sciences, McGill University, Montreal, Quebec, Canada
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Katoch S, Patial V. Sirtuin 1 in regulating the p53/glutathione peroxidase 4/gasdermin D axis in acute liver failure. World J Gastroenterol 2024; 30:3850-3855. [PMID: 39350786 PMCID: PMC11438651 DOI: 10.3748/wjg.v30.i34.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024] Open
Abstract
In this editorial, we comment on the article by Zhou et al. The study reveals the connection between ferroptosis and pyroptosis and the effect of silent information regulator sirtuin 1 (SIRT1) activation in acute liver failure (ALF). ALF is characterized by a sudden and severe liver injury resulting in significant hepatocyte damage, often posing a high risk of mortality. The predominant form of hepatic cell death in ALF involves apoptosis, ferroptosis, autophagy, pyroptosis, and necroptosis. Glutathione peroxidase 4 (GPX4) inhibition sensitizes the cell to ferroptosis and triggers cell death, while Gasdermin D (GSDMD) is a mediator of pyroptosis. The study showed that ferroptosis and pyroptosis in ALF are regulated by blocking the p53/GPX4/GSDMD pathway, bridging the gap between the two processes. The inhibition of p53 elevates the levels of GPX4, reducing the levels of inflammatory and liver injury markers, ferroptotic events, and GSDMD-N protein levels. Reduced p53 expression and increased GPX4 on deletion of GSDMD indicated ferroptosis and pyroptosis interaction. SIRT1 is a NAD-dependent deacetylase, and its activation attenuates liver injury and inflammation, accompanied by reduced ferroptosis and pyroptosis-related proteins in ALF. SIRT1 activation also inhibits the p53/GPX4/GSDMD axis by inducing p53 acetylation, attenuating LPS/D-GalN-induced ALF.
Collapse
Affiliation(s)
- Swati Katoch
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Vikram Patial
- Division of Dietetics and Nutrition Technology, Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
4
|
Türkmen NB, Yüce H, Şahin Y, Taşlıdere AÇ, Özek DA, Ünüvar S, Çiftçi O. Protective effect of resveratrol against pembrolizumab-induced hepatotoxicity and neurotoxicity in male rats. J Biochem Mol Toxicol 2023; 37:e23263. [PMID: 36419233 DOI: 10.1002/jbt.23263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/25/2022]
Abstract
The present study investigates the effects of resveratrol (RSV) on brain and liver tissues in rats with pembrolizumab (PEMB)-induced toxicity. Obtained for the study were 28 male Sprague-Dawley rats (3-4 months old) which were divided into four groups: Group 1: Control. Group 2: Administered PEMB at 5 mg/kg/day i.p. for a week. Group 3: Administered RSV orally at the dose of 20 mg/kg/day for 30 days by gavage. Group 4: Administered PEMB and RSV at 20 and 5 mg/kg/day RSV, respectively, for 30 days. The results of this study revealed that PEMB leads to a significant increase in thiobarbituric acid reactive substance (TBARS) levels and a significant decrease in glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD) activities, and glutathione (GSH) levels in the liver and brain tissues. The decreased SOD, CAT, GPx activities, and GSH levels increased significantly following RSV treatment in Group 4. The PEMB treatment showed histopathological alterations associated with strong positive cysteinyl aspartic acid-protease-3 (caspase-3) immunoreactivity, while RSV treatment reduced both the expression of caspase-3 protein and the histopathological changes. RSV administration prevents the biochemical, immunological, and histological alterations induced by PEMB. It can be suggested that the lower caspase-3 immunoreactivity in the PEMB + RSV group than in the PEMB group led to an inhibition of RSV on apoptosis.
Collapse
Affiliation(s)
- Neşe B Türkmen
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Hande Yüce
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Yasemin Şahin
- Department of Medical Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Aslı Ç Taşlıdere
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Dilan A Özek
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Inonu University, Malatya, Turkey.,Department of Pharmacy Services, Kovancilar Vocational School, Firat University, Elazig, Turkey
| | - Songül Ünüvar
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Inonu University, Malatya, Turkey
| | - Osman Çiftçi
- Department of Medical Pharmacology, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| |
Collapse
|
5
|
Resveratrol thyro-protective role in fluorosis rat model (histo-morphometric, biochemical and ultrastructural study). Tissue Cell 2023; 80:101986. [PMID: 36470120 DOI: 10.1016/j.tice.2022.101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Thyroid gland affection by Fluorosis is documented in a number of previous studies. Resveratrol is a natural compound of plant origin. Its protective role was demonstrated previously in mice and rats against fluoride-induced hepatotoxicity and neurotoxicity. AIM to detect the thyro-protective role of Resveratrol in sodium fluoride rat model. MATERIAL AND METHODS Forty adult male albino rats were distributed equally into: Group I (control): given 5 ml distilled water; Group II (Resveratrol): received 30 mg/kg Resveratrol; Group III (Sodium fluoride): given 10 mg/kg of Sodium Fluoride dissolved in 2.5 ml distilled water; Group IV (Sodium fluoride + Resveratrol): received 10 mg/kg of Sodium Fluoride and 30 mg/kg of Resveratrol. All doses were administered once daily by intra-gastric intubation. By the end of the experiment, rats were sedated by intra-peritoneal injection of Sodium thiopental; blood samples were collected, and thyroid lobes were dissected then processed for examination. RESULTS In the control and Resveratrol groups, there were multiple variable follicles filled with homogenous eosinophilic colloid and lined with flat to cuboidal thyrocytes. Large pale-staining Para follicular cells. In the Sodium fluoride - treated group there were multiple dark stained nuclei of shrunken and exfoliated cells, areas of exudate and multiple layered follicular cells with high activity of Para follicular cells immuno-histochemically. Sodium fluoride+ Resveratrol - treated group appeared with almost preserved control appearance. Findings were confirmed using morphometric and electron microscopic studies. CONCLUSION Resveratrol supplementation with sodium fluoride restored almost all damaged appearance and functions of the thyroid cells to normal values. Further studies are necessary to examine the extended effect of Resveratrol with increased dosage or time of treatment.
Collapse
|
6
|
Xu F, Du H, Hou J, Liu J, Li N. Anti-inflammation properties of resveratrol in the detrusor smooth muscle of the diabetic rat. Int Urol Nephrol 2022; 54:2833-2843. [PMID: 35943662 DOI: 10.1007/s11255-022-03334-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Abstract
PURPOSE In this paper, we aimed to prove that resveratrol can inhibit inflammation in the detrusor smooth muscle of diabetic rats, which may provide a new direction for diabetic cystopathy (DCP) treatment. METHODS We induced a Sprague-Dawley (SD) rat model of type 1 diabetes by intraperitoneal injections of streptozotocin (STZ). Then, we separated the SD rats into four groups: (1) an excipient-treated control group; (2) a resveratrol-treated control group; (3) an excipient-treated streptozotocin (STZ)-injected group; and (4) a resveratrol-treated STZ-injected group. We administered the resveratrol or excipient by intragastric administration. After 12 weeks of diabetes induction, we measured the blood-sugar concentrations and bladder weights, and we took the bladder tissues of each group of rats for hematoxylin-eosin staining to observe the histological changes. We used real-time quantitative polymerase chain reaction (qPCR) and Western blotting to analyze the expression levels of tumor necrosis factor-alpha (TNF-α), nuclear factor kappa B (NF-κB), interleukin (IL)-6, and IL-1β. RESULTS The bodyweights of the diabetic rats were appreciably reduced, while the bladder weights and blood-glucose concentrations were substantially increased. Oral resveratrol could not improve the changes in the bodyweights and blood-glucose concentrations, but it had a certain effect on the bladder weights. In a macroscopic evaluation, the bladder walls of the STZ-induced diabetes rats were thickened, and, from the H&E staining, we could see that the bladder tissues of the diabetic rats had inflammatory cell infiltration, edema, and the capillary congestion of the mucosa and lamina propria. After resveratrol treatment, the bladder-wall thickening was reduced, and the tissue damage and inflammation were significantly ameliorated. We could associate all these changes with markedly heightened expressions of TNF-α, IL-1β, IL-6, and NF-κB in the detrusor smooth muscle (DSM) tissues of the diabetic rats. Oral treatment with resveratrol alleviated the expressivity of the inflammatory cytokines in the DSM tissues. CONCLUSIONS Resveratrol treatment ameliorated the histological changes in the bladder and inhibited the expressions of DSM-tissue inflammatory factors in diabetes rats. Resveratrol may provide a new direction of research for the treatment of diabetic cystopathy.
Collapse
Affiliation(s)
- Feihong Xu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Huifang Du
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Jun Hou
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Jingxuan Liu
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China
| | - Ning Li
- Department of Urology, Fourth Affiliated Hospital, China Medical University, 4 Chongshan East Road, Shenyang, Liaoning, China.
| |
Collapse
|
7
|
Yan C, An F, Wang J, Shi Y, Yuan L, Lv D, Zhao Y, Liu Y, Wang Y. Zhongfeng Capsules protects against cerebral ischemia-reperfusion injury via mediating the phosphoinositide 3-kinase/Akt and toll-like receptor 4/nuclear factor kappa B signaling pathways by regulating neuronal apoptosis and inflammation. Apoptosis 2022; 27:561-576. [PMID: 35674851 DOI: 10.1007/s10495-022-01739-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 11/30/2022]
Abstract
Inflammatory reaction and neuronal apoptosis are the major pathophysiological mechanisms involved in cerebral ischemia-reperfusion injury (CI/RI). It has been reported that Zhongfeng Capsules (ZFCs), which contain Panax notoginseng, Hirudo, Red ginseng, Eupolyphaga sinensis, Pangolin scales, Rhubarb, and Radix Salvia miltiorrhizae, have a definite therapeutic effect on CI/RI. However, the specific molecular mechanisms of ZFCs are unclear. In this study, the effects of ZFCs on middle cerebral artery occlusion were investigated in rats. Our results showed that neurological impairment and neuronal apoptosis were alleviated in ZFC-treated rats. Additionally, infarct volume and cerebral edema decreased and there was an improvement in histopathological features. Furthermore, the expression levels of IL-1β, IL-6, and TNF-α were downregulated in ZFC-treated rats. TLR 4, NF-κB, Bax, and Caspase-3 expression also tended to decrease, whereas the expression of Bcl-2, p-PI3K, p-Akt, and I-κBα increased. The results indicate that the ZFCs effectively protected the rats against CI/RI possibly via the TLR4/NF-κB signaling pathway. Additionally, the formulation regulated the transcriptional activity of NF-κB, secretion of downstream inflammatory factors, and the expression of Bcl-2-Bax proteins in the PI3K/Akt pathway. Our findings suggest that ZFCs suppress neuronal apoptosis and inflammatory reaction via the PI3K/Akt and TLR4/NF-κB signaling pathways, respectively. Moreover, activation of the PI3K/Akt pathway may result in the inhibition of proinflammatory cytokine secretion, which may be another mechanism by which ZFCs alleviate CI/RI.
Collapse
Affiliation(s)
- Chunlu Yan
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| | - Fangyu An
- Teaching Experiment Training Center, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Jiayu Wang
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yao Shi
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Lingqing Yuan
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Donghui Lv
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yanzhen Zhao
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yongqi Liu
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China
| | - Yongfeng Wang
- School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
8
|
Anapali M, Kaya-Dagistanli F, Akdemir AS, Aydemir D, Ulusu NN, Ulutin T, Uysal O, Tanriverdi G, Ozturk M. Combined resveratrol and vitamin D treatment ameliorate inflammation-related liver fibrosis, ER stress, and apoptosis in a high-fructose diet/streptozotocin-induced T2DM model. Histochem Cell Biol 2022; 158:279-296. [PMID: 35849204 DOI: 10.1007/s00418-022-02131-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
Abstract
A high fructose diet is a major cause of diabetes and various metabolic disorders, including fatty liver. In this study, we investigated the effects of resveratrol and vitamin D (VitD) treatments on endoplasmic reticulum (ER) stress, oxidative stress, inflammation, apoptosis, and liver regeneration in a rat model of type 2 diabetes mellitus, namely, T2DM Sprague-Dawley rats. This T2DM rat model was created through a combination treatment of a 10% fructose diet and 40 mg/kg streptozotocin (STZ). Resveratrol (1 mg/kg/day) and VitD (170/IU/week) were administered alone and in combination to both the diabetic and control groups. Immunohistochemical staining was performed to evaluate PCNA, NF-κB, TNF-α, IL-6, IL-1β, GRP78, and active caspase-3 in liver tissue. The TUNEL method and Sirius red staining were used to determine apoptosis and fibrosis, respectively. G6PD, 6-PGD, GR, and GST activities were measured to determine oxidative stress status. We found that the expressions of cytokines (TNF-α, IL-6, and IL-1β) correlated with NF-κB activation and were significantly increased in the T2DM rats. Increased GRP78 expression, indicating ER stress, increased in apoptotic cells, enhanced caspase-3 activation, and collagen accumulation surrounding the central vein were observed in the T2DM group compared with the other groups. The combination VitD + resveratrol treatment improved antioxidant defense via increasing G6PD, 6-PGD, GR, and GST activities compared to the diabetic groups. We concluded that the combined administration of resveratrol with VitD ameliorates the adverse effects of T2DM by regulating blood glucose levels, increasing antioxidant defense mechanisms, controlling ER stress, enhancing tissue regeneration, improving inflammation, and reducing apoptosis in liver cells. In conclusion, this study indicates that the combination treatment of resveratrol + VitD can be a beneficial option for preventing liver damage in fructose-induced T2DM.
Collapse
Affiliation(s)
- Merve Anapali
- Department of Medical Biology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Fatma Kaya-Dagistanli
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| | - Ayse Seda Akdemir
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Duygu Aydemir
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Nuriye Nuray Ulusu
- Department of Medical Biochemistry, School of Medicine, Koc University, Istanbul, Turkey.,Koc University Research Center for Translational Medicine (KUTTAM), Istanbul, Turkey
| | - Turgut Ulutin
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Omer Uysal
- Department of Biostatistics, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Melek Ozturk
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey.
| |
Collapse
|
9
|
Resveratrol Inhibited ADAM10 Mediated CXCL16-Cleavage and T-Cells Recruitment to Pancreatic β-Cells in Type 1 Diabetes Mellitus in Mice. Pharmaceutics 2022; 14:pharmaceutics14030594. [PMID: 35335970 PMCID: PMC8955623 DOI: 10.3390/pharmaceutics14030594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Background: CXCL16 attracts T-cells to the site of inflammation after cleaving by A Disintegrin and Metalloproteinase (ADAM10). Aim: The current study explored the role of ADAM10/CXCL16/T-cell/NF-κB in the initiation of type 1 diabetes (T1D) with special reference to the potential protecting role of resveratrol (RES). Methods: Four sets of Balb/c mice were created: a diabetes mellitus (DM) group (streptozotocin (STZ) 55 mg/kg, i.p.], a control group administered buffer, a RES group [RES, 50 mg/kg, i.p.), and a DM + RES group (RES (50 mg/kg, i.p.) and STZ (55 mg/kg, i.p.) administered daily for 12 days commencing from the fourth day of STZ injection). Histopathological changes, fasting blood insulin (FBI), glucose (FBG), serum and pancreatic ADAM10, CXCL16, NF-κB, T-cells pancreatic expression, inflammatory, and apoptotic markers were analyzed. Results: FBG, inflammatory and apoptotic markers, serum TNF-α, cellular CXCL16 and ADAM10 protein expression, pancreatic T-cell migration and NF-κB were significantly increased in diabetic mice compared to normal mice. RES significantly improved the biochemical and inflammatory parameters distorted in STZ-treated mice. Conclusions: ADAM10 promotes the cleaved form of CXCL16 driving T-cells into the islets of the pancreatic in T1D. RES successfully prevented the deleterious effect caused by STZ. ADAM10 and CXCL16 may serve as novel therapeutic targets for T1D.
Collapse
|
10
|
The Effect of Resveratrol on Sphingosine-1 and Oxidative/ Nitrosative Stress in an Experimental Heart Ischemia Reperfusion Model. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2021-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Objectives: Resveratrol (RSV) is a natural polyphenolic compound showing significant antioxidant effects. In this study, we aimed to investigate the effects of resveratrol on the sphingosine-1-phosphate (S1P) and oxidative stress biomarkers in hearth ischemia-reperfusion (I/R).
Materials and Methods: The biochemical and histopathological effects of RSV on cardiac ischemia-reperfusion injury were investigated through ELISA- and light microscope.
Results: We observed statistically significant differences between the treatment group and the control group in terms of malondialdehyde (MDA) level, catalase (CAT) and superoxide dismutase (SOD) activities (p<0.05). Histopathologically, we also observed decreased Polymorphonuclear Leucocyte (PMNL) infiltration, myocardial edema, miyositolysis in the treatment group compared to the I/R and sham groups.
Conclusion: Resveratrol may play an important role in cardiac I/R injury through its anti-inflammatory and antioxidant effects which were biochemically and histopathologically confirmed in the present study.
Collapse
|
11
|
Bilen A, Mercantepe F, Tümkaya L, Yilmaz A, Batcik Ş. The hepatoprotective potential of resveratrol in an experimental model of ruptured abdominal aortic aneurysm via oxidative stress and apoptosis. J Biochem Mol Toxicol 2021; 35:e22836. [PMID: 34075649 DOI: 10.1002/jbt.22836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022]
Abstract
The mortality rate in ruptured abdominal aortic aneurysms can today be reduced through cardiovascular surgery. However, ischemia and reperfusion-induced tissue damage develop due to aortic cross-clamping applied during surgery. The present study aimed to reduce oxidative stress-induced hepatic damage resulting from ischemia and reperfusion due to aortic cross-clamping during surgery by means of resveratrol administration. Forty male Sprague-Dawley rats were randomly assigned into four groups: control (healthy), glycerol+ischemia/reperfusion (I/R) (sham), I/R, and I/R + Resveratrol. In all groups scheduled for I/R, 60 min of shock was followed by 60 min of ischemia. In the I/R + Resveratrol group, 10 mg/kg of resveratrol was administered 15 min before ischemia and immediately before reperfusion via the intraperitoneal route. In addition, 120 min of reperfusion was applied under anesthesia after ischemia in all groups. Intralobar and interlobar necrosis, vascular congestion, and edematous fields resulting from aortic occlusion were present. Liver tissue malondialdehyde (MDA) levels and cleaved caspase-3 positivity increased, while glutathione (GSH) levels decreased. However, resveratrol administration reduced intralobular and interlobar necrosis, vascular congestion and edematous fields, cleaved caspase-3 positivity, and MDA levels, and increased GSH levels. Our findings suggest that resveratrol is effective against aortic occlusion-induced liver injury by reducing oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Arzu Bilen
- Department of Endocrinology and metabolism diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Filiz Mercantepe
- Department of Endocrinology and metabolism diseases, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - Levent Tümkaya
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Adnan Yilmaz
- Department of Biochemistry, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| | - Şule Batcik
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Recep Tayyip Erdogan University, Rize, Turkey
| |
Collapse
|
12
|
Cheng K, Jia P, Ji S, Song Z, Zhang H, Zhang L, Wang T. Improvement of the hepatic lipid status in intrauterine growth retarded pigs by resveratrol is related to the inhibition of mitochondrial dysfunction, oxidative stress and inflammation. Food Funct 2020; 12:278-290. [PMID: 33300526 DOI: 10.1039/d0fo01459a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial dysfunction, oxidative stress and inflammation are crucial contributors to liver damage and nonalcoholic fatty liver disease (NAFLD) in adulthood in offspring affected by intrauterine growth retardation (IUGR). Resveratrol (RSV) has been reported to treat and/or prevent hepatic diseases under various pathological conditions. However, the therapeutic and/or preventive effects of RSV on hepatic abnormality in IUGR adults have not been investigated until now. The effects of IUGR and RSV on the hepatic metabolic status, mitochondrial function, redox homeostasis and inflammation in pigs in adulthood were investigated. A total of 36 pairs of IUGR and normal birth weight piglets were orally fed with 80 mg RSV per kg body weight per d or vehicle (0.5% carboxymethylcellulose) for 7-21 d after birth. And then the offspring were fed with a basal diet supplemented with 300 mg RSV per kg feed or a basal diet from weaning to slaughter at 150 d. The plasma and liver samples were collected for subsequent analysis. RSV exerted beneficial effects on hepatic injury and metabolic alterations in IUGR pigs, which may be due to improved mitochondrial function and fatty acid oxidation by intensified mitochondrial biogenesis, enhanced antioxidant levels such as glutathione reductase and total superoxide dismutase activities, increased interleukin 10 gene expression and repolarization of macrophages. RSV alleviated hepatic lipid accumulation in IUGR pigs by improving mitochondrial function, redox status and inflammation, implying that it is a potential candidate for further development as an effective clinical treatment for NAFLD associated with IUGR.
Collapse
Affiliation(s)
- Kang Cheng
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Peilu Jia
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Shuli Ji
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Zhihua Song
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Hao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Lili Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Heimesaat MM, Mousavi S, Escher U, Lobo de Sá FD, Peh E, Schulzke JD, Kittler S, Bücker R, Bereswill S. Resveratrol Alleviates Acute Campylobacter jejuni Induced Enterocolitis in a Preclinical Murine Intervention Study. Microorganisms 2020; 8:microorganisms8121858. [PMID: 33255723 PMCID: PMC7760181 DOI: 10.3390/microorganisms8121858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/13/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
The polyphenolic compound resveratrol has been shown to exert health-beneficial properties. Given globally emerging Campylobacter infections in humans, we addressed potential anti-pathogenic, immuno-modulatory and intestinal epithelial barrier preserving properties of synthetic resveratrol in the present preclinical intervention study applying a murine acute campylobacteriosis model. Two days following peroral C. jejuni infection, secondary abiotic IL-10−/− mice were either subjected to resveratrol or placebo via the drinking water. Whereas placebo mice suffered from acute enterocolitis at day 6 post-infection, resveratrol treatment did not only lead to improved clinical conditions, but also to less pronounced colonic epithelial apoptosis as compared to placebo application. Furthermore, C. jejuni induced innate and adaptive immune cell responses were dampened in the large intestines upon resveratrol challenge and accompanied by less colonic nitric oxide secretion in the resveratrol versus the placebo cohort. Functional analyses revealed that resveratrol treatment could effectively rescue colonic epithelial barrier function in C. jejuni infected mice. Strikingly, the disease-alleviating effects of resveratrol could additionally be found in extra-intestinal and also systemic compartments at day 6 post-infection. For the first time, our current preclinical intervention study provides evidence that peroral resveratrol treatment exerts potent disease-alleviating effects during acute experimental campylobacteriosis.
Collapse
Affiliation(s)
- Markus M. Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
- Correspondence: ; Tel.: +49-30-450524318
| | - Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| | - Ulrike Escher
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| | - Fábia Daniela Lobo de Sá
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Elisa Peh
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (E.P.); (S.K.)
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, 30559 Hannover, Germany; (E.P.); (S.K.)
| | - Roland Bücker
- Institute of Clinical Physiology, Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (F.D.L.d.S.); (J.-D.S.); (R.B.)
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Charité—University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 12203 Berlin, Germany; (S.M.); (U.E.); (S.B.)
| |
Collapse
|
14
|
Ashrafizadeh M, Zarrabi A, Najafi M, Samarghandian S, Mohammadinejad R, Ahn KS. Resveratrol targeting tau proteins, amyloid-beta aggregations, and their adverse effects: An updated review. Phytother Res 2020; 34:2867-2888. [PMID: 32491273 DOI: 10.1002/ptr.6732] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/12/2022]
Abstract
Resveratrol (Res) is a non-flavonoid compound with pharmacological actions such as antioxidant, antiinflammatory, hepatoprotective, antidiabetes, and antitumor. This plant-derived chemical has a long history usage in treatment of diseases. The excellent therapeutic impacts of Res and its capability in penetration into blood-brain barrier have made it an appropriate candidate in the treatment of neurological disorders (NDs). Tau protein aggregations and amyloid-beta (Aβ) deposits are responsible for the induction of NDs. A variety of studies have elucidated the role of these aggregations in NDs and the underlying molecular pathways in their development. In the present review, based on the recently published articles, we describe that how Res administration could inhibit amyloidogenic pathway and stimulate processes such as autophagy to degrade Aβ aggregations. Besides, we demonstrate that Res supplementation is beneficial in dephosphorylation of tau proteins and suppressing their aggregations. Then, we discuss molecular pathways and relate them to the treatment of NDs.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Turkey
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Kwang Seok Ahn
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Huang DD, Shi G, Jiang Y, Yao C, Zhu C. A review on the potential of Resveratrol in prevention and therapy of diabetes and diabetic complications. Biomed Pharmacother 2020; 125:109767. [PMID: 32058210 DOI: 10.1016/j.biopha.2019.109767] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/18/2019] [Accepted: 11/29/2019] [Indexed: 02/08/2023] Open
Abstract
Diabetes mellitus (DM) is a major world health problem and one of the most studied diseases, which are highly prevalent in the whole world, it is frequently associated with severe clinical complications, such as diabetic cardiomyopathy, nephropathy, retinopathy, neuropathy etc. Scientific research is continuously casting about for new monomer molecules from Chinese herbal medicine that could be invoked as candidate drugs for fighting against diabetes and its complications. Resveratrol (RES), a polyphenol phytoalexin, possesses diverse biochemical and physiological actions, including antiplatelet, estrogenic, and anti-inflammatory properties. It is recently gaining scientific interest for RES in controlling blood sugar and fighting against diabetes and its complications properties in various types of diabetic models. These beneficial effects seem to be due to the multiple actions of RES on cellular functions, which make RES become a promising molecule for the treatment of diabetes and diabetic complications. Here, we review the mechanism of action and potential therapeutic use of RES in prevention and mitigation of these diseases in recent ten years to provide a reference for further research and development of RES.
Collapse
Affiliation(s)
- Dan-Dan Huang
- Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Fujian, 362000, China
| | - Guangjiang Shi
- School of pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yaping Jiang
- School of Pharmacology, Ningxia Hui Medicine Modern Engineering Research Center and Collaborative Innovation Center, Ningxia Medical University, Yinchuan, 750004, China
| | - Chao Yao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Disease, Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Chuanlin Zhu
- Department of Laboratory Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, 400021, China.
| |
Collapse
|