1
|
Ding X, Liu J, Sun Y, Chen X, Zhang X. Jianpi Qingre Tongluo Decoction exerted an anti-inflammatory effect on AS by inhibiting the NONHSAT227927.1/JAK2/STAT3 axis. Heliyon 2024; 10:e34634. [PMID: 39082011 PMCID: PMC11284430 DOI: 10.1016/j.heliyon.2024.e34634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
Purpose This study aims to determine whether Jianpi Qingre Tongluo Decoction (JQP) alleviates ankylosing spondylitis (AS) inflammation via the NONHSAT227927.1/JAK2/STAT3 axis. Methods The effect of JQP on immune-inflammatory indicators in AS patients was explored through a combination of data mining, association rule analysis, and random walk model evaluation. Subsequently, network pharmacology and molecular docking were performed to screen out the potential signaling pathway. ELISA, PCR and wb were used to evaluate the effect of JQP on AS-FLS activity and inflammatory factors. The role of NONHSAT227927.1/JAK2/STAT3 combination in inflammation was studied by editing NONHSAT227927.1 and adding the JAK2/STAT3 inhibitor AG490. Involvement of the JAK2/STAT3 pathway was detected by PCR, WB, or immunofluorescence analysis. Results Retrospective data mining results show that JQP can effectively reduce the immune inflammatory response in AS patients. Through network pharmacology and molecular docking, it is speculated that JQP exerts its effect on AS through the JAK2/STAT3 pathway. Overexpression of NONHSAT227927.1 activated the JAK2/STAT3 pathway and promoted the expression of inflammatory factors, while serum containing JQP reversed the effects of NONHSAT227927.1 overexpression. NONHSAT227927.1 silencing inhibits the proliferation of AS-FLSs, inhibits the levels of inflammatory factors, and reduces the expression of JAK2/STAT3 protein. After adding the pathway blocker AG490, it was observed that the cell viability of AS-FLSs was reduced by inflammatory factors and the levels of JAK2/STAT3 were inhibited. , and overexpression of NONHSAT227927.1 can reverse this trend. Conclusions JQP exerted an anti-inflammatory effect on AS by inhibiting the NONHSAT227927.1/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Xiang Ding
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
| | - Yanqiu Sun
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xiaolu Chen
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Xianheng Zhang
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
2
|
Hu Y, Lu Y, Fang Y, Zhang Q, Zheng Z, Zheng X, Ye X, Chen Y, Ding J, Yang J. Role of long non-coding RNA in inflammatory bowel disease. Front Immunol 2024; 15:1406538. [PMID: 38895124 PMCID: PMC11183289 DOI: 10.3389/fimmu.2024.1406538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a group of recurrent chronic inflammatory diseases, including Crohn's disease (CD) and ulcerative colitis (UC). Although IBD has been extensively studied for decades, its cause and pathogenesis remain unclear. Existing research suggests that IBD may be the result of an interaction between genetic factors, environmental factors and the gut microbiome. IBD is closely related to non-coding RNAs (ncRNAs). NcRNAs are composed of microRNA(miRNA), long non-coding RNA(lnc RNA) and circular RNA(circ RNA). Compared with miRNA, the role of lnc RNA in IBD has been little studied. Lnc RNA is an RNA molecule that regulates gene expression and regulates a variety of molecular pathways involved in the pathbiology of IBD. Targeting IBD-associated lnc RNAs may promote personalized treatment of IBD and have therapeutic value for IBD patients. Therefore, this review summarized the effects of lnc RNA on the intestinal epithelial barrier, inflammatory response and immune homeostasis in IBD, and summarized the potential of lnc RNA as a biomarker of IBD and as a predictor of therapeutic response to IBD in the future.
Collapse
Affiliation(s)
- Yufei Hu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yifan Lu
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yi Fang
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Qizhe Zhang
- Department of Geriatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Zhuoqun Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaojuan Zheng
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Xiaohua Ye
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Yanping Chen
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jin Ding
- Department of Gastroenterology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| |
Collapse
|
3
|
Kou J, Bie Y, Liu M, Wang L, Liu X, Sun Y, Zheng X. Identification and bioinformatics analysis of lncRNAs in serum of patients with ankylosing spondylitis. BMC Musculoskelet Disord 2024; 25:291. [PMID: 38622662 PMCID: PMC11017588 DOI: 10.1186/s12891-024-07396-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 03/29/2024] [Indexed: 04/17/2024] Open
Abstract
OBJECTIVES The aim of this study was to explore the long non-coding RNA (lncRNA) expression profiles in serum of patients with ankylosing spondylitis (AS). The role of these lncRNAs in this complex autoimmune situation needs to be evaluated. METHODS We used high-throughput whole-transcriptome sequencing to generate sequencing data from three patients with AS and three normal controls (NC). Then, we performed bioinformatics analyses to identify the functional and biological processes associated with differentially expressed lncRNAs (DElncRNAs). We confirmed the validity of our RNA-seq data by assessing the expression of eight lncRNAs via quantitative reverse transcription polymerase chain reaction (qRT-PCR) in 20 AS and 20 NC samples. We measured the correlation between the expression levels of lncRNAs and patient clinical index values using the Spearman correlation test. RESULTS We identified 72 significantly upregulated and 73 significantly downregulated lncRNAs in AS patients compared to NC. qRT-PCR was performed to validate the expression of selected DElncRNAs; the results demonstrated that the expression levels of MALAT1:24, NBR2:9, lnc-DLK1-35:13, lnc-LARP1-1:1, lnc-AIPL1-1:7, and lnc-SLC12A7-1:16 were consistent with the sequencing analysis results. Enrichment analysis showed that DElncRNAs mainly participated in the immune and inflammatory responses pathways, such as regulation of protein ubiquitination, major histocompatibility complex class I-mediated antigen processing and presentation, MAPkinase activation, and interleukin-17 signaling pathways. In addition, a competing endogenous RNA network was constructed to determine the interaction among the lncRNAs, microRNAs, and mRNAs based on the confirmed lncRNAs (MALAT1:24 and NBR2:9). We further found the expression of MALAT1:24 and NBR2:9 to be positively correlated with disease severity. CONCLUSION Taken together, our study presents a comprehensive overview of lncRNAs in the serum of AS patients, thereby contributing novel perspectives on the underlying pathogenic mechanisms of this condition. In addition, our study predicted MALAT1 has the potential to be deeply involved in the pathogenesis of AS.
Collapse
Affiliation(s)
- Jianqiang Kou
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yongchen Bie
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Mingquan Liu
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Liqin Wang
- Department of Rheumatology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiangyun Liu
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Yuanliang Sun
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Xiujun Zheng
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China.
| |
Collapse
|
4
|
Miyano T, Mikkaichi T, Nakamura K, Yoshigae Y, Abernathy K, Ogura Y, Kiyosawa N. Circulating microRNA Profiles Identify a Patient Subgroup with High Inflammation and Severe Symptoms in Schizophrenia Experiencing Acute Psychosis. Int J Mol Sci 2024; 25:4291. [PMID: 38673876 PMCID: PMC11050142 DOI: 10.3390/ijms25084291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Schizophrenia is a complex and heterogenous psychiatric disorder. This study aimed to demonstrate the potential of circulating microRNAs (miRNAs) as a clinical biomarker to stratify schizophrenia patients and to enhance understandings of their heterogenous pathophysiology. We measured levels of 179 miRNA and 378 proteins in plasma samples of schizophrenia patients experiencing acute psychosis and obtained their Positive and Negative Syndrome Scale (PANSS) scores. The plasma miRNA profile revealed three subgroups of schizophrenia patients, where one subgroup tended to have higher scores of all the PANSS subscales compared to the other subgroups. The subgroup with high PANSS scores had four distinctively downregulated miRNAs, which enriched 'Immune Response' according to miRNA set enrichment analysis and were reported to negatively regulate IL-1β, IL-6, and TNFα. The same subgroup had 22 distinctively upregulated proteins, which enriched 'Cytokine-cytokine receptor interaction' according to protein set enrichment analysis, and all the mapped proteins were pro-inflammatory cytokines. Hence, the subgroup is inferred to have comparatively high inflammation within schizophrenia. In conclusion, miRNAs are a potential biomarker that reflects both disease symptoms and molecular pathophysiology, and identify a patient subgroup with high inflammation. These findings provide insights for the precision medicinal strategies for anti-inflammatory treatments in the high-inflammation subgroup of schizophrenia.
Collapse
Affiliation(s)
- Takuya Miyano
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Tsuyoshi Mikkaichi
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Kouichi Nakamura
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Yasushi Yoshigae
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| | - Kelly Abernathy
- Clinical Research Department, Sirtsei Pharmaceuticals, Inc., 3000 RDU Center Drive, Suite 130, Morrisville, NC 27560, USA;
| | - Yuji Ogura
- Translational Research Department, Daiichi Sankyo RD Novare Co., Ltd., 1-16-13 Kitakasai, Edogawa, Tokyo 134-8630, Japan;
| | - Naoki Kiyosawa
- Translational Science Department II, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa, Tokyo 140-8710, Japan; (T.M.); (K.N.); (Y.Y.); (N.K.)
| |
Collapse
|
5
|
Fang Y, Liu J, Xin L, Jiang H, Wen J, Li X, Wang F, He M, Han Q. Xinfeng capsule inhibits lncRNA NONHSAT227927.1/TRAF2 to alleviate NF-κB-p65-induced immuno-inflammation in ankylosing spondylitis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117677. [PMID: 38160870 DOI: 10.1016/j.jep.2023.117677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ankylosing spondylitis (AS) is a chronic rheumatic disease known for its insidious and refractory symptoms, primarily associated with immuno-inflammation in its early stages, that affects the self-perception of patients (SPP). The exploration of long noncoding RNA (lncRNA) in immuno-inflammation of AS has garnered considerable interest. Additionally, the effectiveness of traditional Chinese medicine Xinfeng Capsule (XFC) in mitigating immuno-inflammation in AS has also been observed. However, the specific mechanisms still need to be characterized. AIM OF THE STUDY This study elucidated the mechanism of the lncRNA NONHSAT227927.1/TRAF2/NF-κB axis in the immuno-inflammation of AS and XFC in AS treatment. METHODS LncRNA NONHSAT227927.1 and mRNA expression were assessed utilizing real-time fluorescence quantitative PCR. Protein level was determined using Western blot, and cytokine expression was measured using ELISA. Furthermore, mass spectrometry was used to analyze the binding proteins of lncRNA and rescue experiments were conducted to validate the findings. Inconsistencies in clinical baseline data were addressed using propensity score matching. The association between the XFC effect and indicator changes was evaluated using the Apriori algorithm. RESULTS The study revealed a substantial elevation in the expression of lncRNA NONHSAT227927.1 and tumor necrosis factor receptor-associated factor 2 (TRAF2) in AS-peripheral blood mononuclear cells. Its expression was also notably reduced after XFC treatment. In addition to this, there was a positive correlation between lncRNA NONHSAT227927.1 and TRAF2 with clinical immuno-inflammatory indicators. On the other hand, they showed a negative association with the SPP indicators. In vitro experiments have demonstrated that lncRNA NONHSAT227927.1 activated the nuclear factor (NF)-κB-p65 pathway by promoting TRAF2 expression. This activation resulted in enhanced IL-6 and TNF-α levels and reduced IL-10 and IL-4 levels. Conversely, XFC decreased the expression of lncRNA NONHSAT227927.1 and TRAF2, inhibiting the stimulation of the NF-κB-p65 cascade and restoring balance to the cytokines. The association rule analysis results indicated a strong association between XFC and decreased levels of C-reactive protein, erythrocyte sedimentation rate, and immunoglobulin A. Furthermore, XFC was strongly associated with improved SPP indicators, including general health, vitality, mental health, and role-emotional. CONCLUSIONS LncRNA NONHSAT227927.1 plays a pro-inflammatory role in AS. XFC treatment may reverse lncRNA NONHSAT227927.1 to suppress TRAF2-mediated NF-κB-p65 activation, which in turn suppresses immuno-inflammation and improves SPP, thereby making XFC a promising candidate for therapeutic applications in AS management.
Collapse
Affiliation(s)
- Yanyan Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Jian Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Ling Xin
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Hui Jiang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Jianting Wen
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Xu Li
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Fanfan Wang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Mingyu He
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| | - Qi Han
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230038, Anhui, China; Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, 230038, Anhui, China.
| |
Collapse
|
6
|
Wang H, Yang C, Li G, Wang B, Qi L, Wang Y. A review of long non-coding RNAs in ankylosing spondylitis: pathogenesis, clinical assessment, and therapeutic targets. Front Cell Dev Biol 2024; 12:1362476. [PMID: 38590778 PMCID: PMC10999594 DOI: 10.3389/fcell.2024.1362476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/06/2024] [Indexed: 04/10/2024] Open
Abstract
Ankylosing spondylitis (AS) is a chronic immune-mediated type of inflammatory arthritis characterized by inflammation, bone erosion, and stiffness of the spine and sacroiliac joints. Despite great efforts put into the investigation of the disease, the pathogenesis of AS remains unclear, posing challenges in identifying ideal targets for diagnosis and treatment. To enhance our understanding of AS, an increasing number of studies have been conducted. Some of these studies reveal that long non-coding RNAs (lncRNAs) play crucial roles in the etiology of AS. Some certain lncRNAs influence the development of AS by regulating inflammatory responses, autophagy, apoptosis, and adipogenesis, as well as the proliferation and differentiation of cells. Additionally, some lncRNAs demonstrate potential as biomarkers, aiding in monitoring disease progression and predicting prognosis. In this review, we summarize recent studies concerning lncRNAs in AS to elucidate the underlying mechanisms in which lncRNAs are involved and their potential values as biomarkers for disease assessment and druggable targets for therapy.
Collapse
Affiliation(s)
- Hanji Wang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Chengxian Yang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Ge Li
- Department of Endocrinology, Peking University First Hospital, Beijing, China
| | - Boning Wang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Longtao Qi
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| | - Yu Wang
- Department of Orthopaedics, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Ding X, Liu J, Sun Y, Chen X. Triptolide alleviates the development of inflammation in ankylosing spondylitis via the NONHSAT227927.1/JAK2/STAT3 pathway. Exp Ther Med 2024; 27:17. [PMID: 38223328 PMCID: PMC10785042 DOI: 10.3892/etm.2023.12305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/29/2023] [Indexed: 01/16/2024] Open
Abstract
Ankylosing spondylitis (AS) is a chronic inflammatory disease that can destroy the affected joints. Triptolide (TPL), a key active ingredient of the traditional Chinese medicine Tripterygium wilfordii exhibits promising efficacy in rheumatic immune disease with its anti-inflammatory effects. The present study aimed to elucidate the mechanism of TPL in treatment of AS by regulating the long non-coding RNA (lncRNA) NONHSAT227927.1. The role and underlying mechanisms of TPL in the development of inflammation in AS were assessed. In vivo, the expression of NONHSAT227927.1 in AS was detected by reverse transcription-quantitative (RT-q)PCR. Correlation analysis and binary logistic regression were performed between immune and inflammatory indicators, perception scale scores of patients and NONHSAT227927.1. In vitro, Cell Counting Kit-8 was used to evaluate the activity of AS-fibroblast-like synoviocytes (FLSs) following TPL exposure. AS-FLS inflammation was assessed by qPCR and ELISA. The interaction between TPL and JAK2 and STAT3 was verified by molecular docking and the JAK2/STAT3 pathway components were detected by western blotting. NONHSAT227927.1 was knocked down by small interfering RNA to determine its role. NONHSAT227927.1 was highly expressed in vivo and positively correlated with disease duration, disease duration, Body mass index (BMI), C-reactive protein (CRP), Visual analog scale (VAS), Visual analog scale (VAS), Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) and Bath Ankylosing Spondylitis Metrology Index, among which ESR and VAS and BASDAI score were risk factors for NONHSAT227927.1. TPL downregulated pro-inflammatory factors in AS-FLSs and inhibited the JAK2/STAT3 pathway via NONHSAT227927.1. TPL inhibited inflammatory factors in AS-FLSs and alleviated inflammatory responses via the NONHSAT227927.1/JAK2/STAT3 axis.
Collapse
Affiliation(s)
- Xiang Ding
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Jian Liu
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
- Institute of Rheumatology, Anhui University of Chinese Medicine, Hefei, Anhui 230012, P.R. China
| | - Yanqiu Sun
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| | - Xiaolu Chen
- First Clinical Medical College, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, P.R. China
- Department of Rheumatology and Immunology, First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230038, P.R. China
| |
Collapse
|
8
|
Luo Y, Wang H, Wang L, Wu W, Zhao J, Li X, Xiong R, Ding X, Yuan D, Yuan C. LncRNA MEG3: Targeting the Molecular Mechanisms and Pathogenic causes of Metabolic Diseases. Curr Med Chem 2024; 31:6140-6153. [PMID: 37855346 DOI: 10.2174/0109298673268051231009075027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/27/2023] [Accepted: 09/08/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Non-coding RNA is a type of RNA that does not encode proteins, distributed among rRNA, tRNA, snRNA, snoRNA, microRNA and other RNAs with identified functions, where the Long non-coding RNA (lncRNA) displays a nucleotide length over 200. LncRNAs enable multiple biological processes in the human body, including cancer cell invasion and metastasis, apoptosis, cell autophagy, inflammation, etc. Recently, a growing body of studies has demonstrated the association of lncRNAs with obesity and obesity-induced insulin resistance and NAFLD, where MEG3 is related to glucose metabolism, such as insulin resistance. In addition, MEG3 has been demonstrated in the pathological processes of various cancers, such as mediating inflammation, cardiovascular disease, liver disease and other metabolic diseases. OBJECTIVE To explore the regulatory role of lncRNA MEG3 in metabolic diseases. It provides new ideas for clinical treatment or experimental research. METHODS In this paper, in order to obtain enough data, we integrate and analyze the data in the PubMed database. RESULTS LncRNA MEG3 can regulate many metabolic diseases, such as insulin resistance, NAFLD, inflammation and so on. CONCLUSION LncRNA MEG3 has a regulatory role in a variety of metabolic diseases, which are currently difficult to be completely cured, and MEG3 is a potential target for the treatment of these diseases. Here, we review the role of lncRNA MEG3 in mechanisms of action and biological functions in human metabolic diseases.
Collapse
Affiliation(s)
- Yiyang Luo
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Hailin Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Lijun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Wei Wu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Jiale Zhao
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Xueqing Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Ruisi Xiong
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| | - Xueliang Ding
- Department of Clinical Laboratory, Affiliated Renhe Hospital of China Three Gorges University, Yichang, 443002, China
| | - Ding Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang, 443002, China
| | - Chengfu Yuan
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang, 443002, China
| |
Collapse
|
9
|
Zeng M, Zhang T, Lin Y, Lin Y, Wu Z. The Common LncRNAs of Neuroinflammation-Related Diseases. Mol Pharmacol 2023; 103:113-131. [PMID: 36456192 DOI: 10.1124/molpharm.122.000530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/24/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022] Open
Abstract
Spatio-temporal specific long noncoding RNAs (lncRNAs) play important regulatory roles not only in the growth and development of the brain but also in the occurrence and development of neurologic diseases. Generally, the occurrence of neurologic diseases is accompanied by neuroinflammation. Elucidation of the regulatory mechanisms of lncRNAs on neuroinflammation is helpful for the clinical treatment of neurologic diseases. This paper focuses on recent findings on the regulatory effect of lncRNAs on neuroinflammatory diseases and selects 10 lncRNAs that have been intensively studied to analyze their mechanism action. The clinical treatment status of lncRNAs as drug targets is also reviewed. SIGNIFICANCE STATEMENT: Gene therapies such as clustered regularly interspaced short palindrome repeats technology, antisense RNA technology, and RNAi technology are gradually applied in clinical treatment, and the development of technology is based on a large number of basic research investigations. This paper focuses on the mechanisms of lncRNAs regulation of neuroinflammation, elucidates the beneficial or harmful effects of lncRNAs in neurosystemic diseases, and provides theoretical bases for lncRNAs as drug targets.
Collapse
Affiliation(s)
- Meixing Zeng
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Ting Zhang
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Yongluan Lin
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| | - Zhuomin Wu
- The First Affiliated Hospital of Shantou University Medical College (M.Z., Y.L., Z.W.) and The Second Affiliated Hospital of Shantou University Medical College (Y.L.), Shantou, Guangdong, China, and The Seventh Affiliated Hospital of Southern Medical University, Foshan, Guangdong, China(T.Z.)
| |
Collapse
|
10
|
Yarani R, Palasca O, Doncheva NT, Anthon C, Pilecki B, Svane CAS, Mirza AH, Litman T, Holmskov U, Bang-Berthelsen CH, Vilien M, Jensen LJ, Gorodkin J, Pociot F. Cross-species high-resolution transcriptome profiling suggests biomarkers and therapeutic targets for ulcerative colitis. Front Mol Biosci 2023; 9:1081176. [PMID: 36685283 PMCID: PMC9850088 DOI: 10.3389/fmolb.2022.1081176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 01/07/2023] Open
Abstract
Background: Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates. Methods: To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse. By combining this with public human Ulcerative colitis data, we investigated conserved gene expression signatures and pathways/biological processes through which these genes may contribute to disease development/progression. Results: Cross-species integration of human and mouse Ulcerative colitis data resulted in the identification of 1442 genes that were significantly differentially regulated in the same direction in the colon and 157 in blood. Of these, 51 genes showed consistent differential regulation in the colon and blood. Less known genes with importance in disease pathogenesis, including SPI1, FPR2, TYROBP, CKAP4, MCEMP1, ADGRG3, SLC11A1, and SELPLG, were identified through network centrality ranking and validated in independent human and mouse cohorts. Conclusion: The identified Ulcerative colitis conserved transcriptional signatures aid in the disease phenotyping and future treatment decisions, drug discovery, and clinical trial design.
Collapse
Affiliation(s)
- Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark,*Correspondence: Reza Yarani, ; Flemming Pociot,
| | - Oana Palasca
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda T. Doncheva
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian Anthon
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bartosz Pilecki
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Cecilie A. S. Svane
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Aashiq H. Mirza
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, United States
| | - Thomas Litman
- Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Uffe Holmskov
- Department of Cancer and Inflammation Research, Institute of Molecular Medicine, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Claus H. Bang-Berthelsen
- Research Group for Microbial Biotechnology and Biorefining, National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark,Department of Gastroenterology, North Zealand Hillerød Hospital, Hillerød, Denmark
| | - Mogens Vilien
- Department of Surgery, North Zealand Hospital, Hillerød, Denmark
| | - Lars J. Jensen
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark,Center for non-coding RNA in Technology and Health, University of Copenhagen, Copenhagen, Denmark,Copenhagen Diabetes Research Center, Department of Pediatrics, Herlev University Hospital, Herlev, Denmark,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark,*Correspondence: Reza Yarani, ; Flemming Pociot,
| |
Collapse
|
11
|
Fang Y, Liu J. Novel regulatory role of non-coding RNAs in ankylosing spondylitis. Front Immunol 2023; 14:1131355. [PMID: 36911689 PMCID: PMC9998703 DOI: 10.3389/fimmu.2023.1131355] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Ankylosing spondylitis (AS) is a type of arthritis that primarily affects the spine and involves disorders of the immune and skeletal systems. However, the exact pathogenesis of AS is not fully understood. Non-coding RNAs (ncRNAs), particularly, long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and micro RNAs (miRNAs) and their interactions have been shown to influence many biological processes such as inflammatory responses, osteogenic differentiation and apoptosis, pyroptosis, and proliferation. In addition, ncRNAs reflect the disease activity of AS. In this review, we discuss the regulatory roles of ncRNAs in AS cell functions (inflammatory responses, cellular osteogenic differentiation and apoptosis, pyroptosis, and proliferation) and their potential applications in AS diagnosis and treatment. Understanding the role of ncRNAs in the pathogenesis of AS will lay the foundation for exploring potential new therapeutic approaches for AS.
Collapse
Affiliation(s)
- Yanyan Fang
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China.,Key Laboratory of Xin'an Medicine of the Ministry of Education, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, China
| | - Jian Liu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China.,Anhui Province Key Laboratory of Modern Chinese Medicine Department of Internal Medicine Application Foundation Research and Development, Hefei, China.,Institute of Rheumatology, Anhui Academy of Chinese Medicine, Hefei, China
| |
Collapse
|
12
|
Xu J, Wang X, Zhu C, Wang K. A review of current evidence about lncRNA MEG3: A tumor suppressor in multiple cancers. Front Cell Dev Biol 2022; 10:997633. [PMID: 36544907 PMCID: PMC9760833 DOI: 10.3389/fcell.2022.997633] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNA (lncRNA) maternally expressed gene 3 (MEG3) is a lncRNA located at the DLK1-MEG3 site of human chromosome 14q32.3. The expression of MEG3 in various tumors is substantially lower than that in normal adjacent tissues, and deletion of MEG3 expression is involved in the occurrence of many tumors. The high expression of MEG3 could inhibit the occurrence and development of tumors through several mechanisms, which has become a research hotspot in recent years. As a member of tumor suppressor lncRNAs, MEG3 is expected to be a new target for tumor diagnosis and treatment. This review discusses the molecular mechanisms of MEG3 in different tumors and future challenges for the diagnosis and treatment of cancers through MEG3.
Collapse
Affiliation(s)
- Jie Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China,*Correspondence: Chunming Zhu, ; Kefeng Wang,
| |
Collapse
|
13
|
Li Z, Gao J, Sun D, Jiao Q, Ma J, Cui W, Lou Y, Xu F, Li S, Li H. LncRNA MEG3: Potential stock for precision treatment of cardiovascular diseases. Front Pharmacol 2022; 13:1045501. [PMID: 36523500 PMCID: PMC9744949 DOI: 10.3389/fphar.2022.1045501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/11/2022] [Indexed: 10/13/2023] Open
Abstract
The prevalence and mortality rates of cardiovascular diseases are increasing, and new treatment strategies are urgently needed. From the perspective of basic pathogenesis, the occurrence and development of cardiovascular diseases are related to inflammation, apoptosis, fibrosis and autophagy of cardiomyocytes, endothelial cells and other related cells. The involvement of maternally expressed gene 3 (MEG3) in human disease processes has been increasingly reported. P53 and PI3K/Akt are important pathways by which MEG3 participates in regulating cell apoptosis. MEG3 directly or competitively binds with miRNA to participate in apoptosis, inflammation, oxidative stress, endoplasmic reticulum stress, EMT and other processes. LncRNA MEG3 is mainly involved in malignant tumors, metabolic diseases, immune system diseases, cardiovascular and cerebrovascular diseases, etc., LncRNA MEG3 has a variety of pathological effects in cardiomyocytes, fibroblasts and endothelial cells and has great clinical application potential in the prevention and treatment of AS, MIRI, hypertension and HF. This paper will review the research progress of MEG3 in the aspects of mechanism of action, other systemic diseases and cardiovascular diseases, and point out its great potential in the prevention and treatment of cardiovascular diseases. lncRNAs also play a role in endothelial cells. In addition, lncRNA MEG3 has shown biomarker value, prognostic value and therapeutic response measurement in tumor diseases. We boldly speculate that MEG3 will play a role in the emerging discipline of tumor heart disease.
Collapse
Affiliation(s)
- Zining Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jialiang Gao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Deputy Chief Physician, Beijing, China
| | - Di Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Qian Jiao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Jing Ma
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Weilu Cui
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Yuqing Lou
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Fan Xu
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Shanshan Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Master’s Degree Student, Beijing, China
- Cardiovascular Division, Beijing, China
| | - Haixia Li
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Cardiovascular Division, Beijing, China
- Chief Physician, Beijing, China
| |
Collapse
|
14
|
Han D, Ouyang G, Pan P, Yuan Y. Upregulated lncRNA-NEF predicts recurrence and poor treatment outcomes of ankylosing spondylitis. Immun Inflamm Dis 2022; 10:e627. [PMID: 35894706 PMCID: PMC9274798 DOI: 10.1002/iid3.627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Osteoporosis is related to lncRNA-neighboring enhancer of FOXA2 (NEF) and inversely correlated to ankylosing spondylitis (AS), implying that lncRNA-NEF might also relate to AS. Thus, the study was carried out to investigate the involvement of lncRNA-NEF in AS. METHODS The study included 60 AS patients and 60 healthy controls. LncRNA-NEF expression in synovial fluid samples was analyzed by reverse transcription quantitative real-time polymerase chain reaction. Disease activity of the 60 AS patients was determined using the Ankylosing Spondylitis Disease Activity Score (ASDAS) 1-4 and Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). Western blot was carried out to investigate the effects of lncRNA-NEF on inflammatory factors in human fibroblast-like synovial (HFLS) cells. A 3-year follow-up was performed to analyze the role of lncRNA-NEF in the prediction of the recurrence of AS. RESULTS Our study observed that lncRNA-NEF expression was upregulated in synovial fluid of AS patients and significantly correlated with the ASDAS 1-4, BASDAI, erythrocyte sedimentation rate (ESR), and C-reactive protein level (p < .05). Treatment with nonsteroidal anti-inflammatory drugs significantly downregulated lncRNA-NEF expression (p < .01). A 3-year follow-up showed that patients with high lncRNA-NEF levels had a high recurrence rate (hazard ratio = 2.266). In addition, lncRNA-NEF was found to regulate the expression of inflammatory factors in HFLS cells. CONCLUSIONS Therefore, lncRNA-NEF upregulation can predict recurrence and poor treatment outcomes of AS and has a great potential to serve as a predictive biomarker factor for the recurrent AS.
Collapse
Affiliation(s)
- Dapeng Han
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrated Traditional Chinese and Western MedicineShanghaiChina
| | - Guilin Ouyang
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrated Traditional Chinese and Western MedicineShanghaiChina
| | - Peijun Pan
- Department of OrthopaedicsShanghai Guanghua Hospital of Integrated Traditional Chinese and Western MedicineShanghaiChina
| | - Yuan Yuan
- Department of the Health and NursingShanghai Nanhu Vocational and Technical CollegeShanghaiChina
| |
Collapse
|
15
|
Liu L, Zhang H, Lu X, Li L, Wang T, Li S, Wang X, Xu S, Li L, Li Q, Yi T, Wu T, Chen Z, Gao H, Wang J, Wang L. LncRNA LINC00680 Acts as a Competing Endogenous RNA and Is Associated With the Severity of Myasthennia Gravis. Front Neurol 2022; 13:833062. [PMID: 35800083 PMCID: PMC9253289 DOI: 10.3389/fneur.2022.833062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Background and Purpose Myasthenia gravis (MG) is a T cell-dependent antibody-mediated autoimmune disorder that can seriously affect patients' quality of life. However, few studies have focused on the severity of MG. Moreover, existing therapeutic efforts, including those targeting biomarkers for MG, remain unsatisfactory. Therefore, it is vital that we investigate the pathogenesis of MG and identify new biomarkers that can not only evaluate the severity of the disease but also serve as potential therapeutic targets. Long noncoding RNA LINC00680 has been found to be associated with the progression of a variety of diseases as a competing endogenous RNA (ceRNA). However, the specific role of LINC00680 in MG has yet to be clarified. Here, we aimed to investigate the association between LINC00680 and the severity of MG. Methods Bioinformatics tools, quantitative real-time PCR, Western blotting, and luciferase assays were selected to investigate key signaling pathways and RNA expression in patients with MG. The Quantitative MG Score scale and the MG Composite scale were used to evaluate the severity of MG in the included patients. Cell viability assays and flow cytometry analysis were selected to analyze cell proliferation and apoptosis. Results Compared with control subjects, the expression levels of LINC00680 and mitogen-activated protein kinase 1 (MAPK1) in peripheral blood mononuclear cells of patients with MG were both upregulated; the levels of miR-320a were downregulated. A positive correlation was detected between LINC00680 expression and the severity of MG. Luciferase reporter assays identified that LINC00680 acts as a target for miR-320a. The in vitro analysis confirmed that LINC00680 regulates the expression of MAPK1 by sponging miR-320a. Finally, the functional analysis indicated that LINC00680 promoted Jurkat cell proliferation and inhibited cellular apoptosis by sponging miR-320a. Conclusion LINC00680 may be associated with the severity of MG as a ceRNA by sponging miR-320a to upregulate MAPK1. These findings suggest that LINC00680 may represent a potential biomarker which evaluates the severity of MG and may serve as a therapeutic target.
Collapse
Affiliation(s)
- Li Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Department of Neurology, Heilongjiang Provincial Hospital, Harbin, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lei Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tingting Yi
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tao Wu
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhimin Chen
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Gao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
16
|
Jia L, Wang J, Luoreng Z, Wang X, Wei D, Yang J, Hu Q, Ma Y. Progress in Expression Pattern and Molecular Regulation Mechanism of LncRNA in Bovine Mastitis. Animals (Basel) 2022; 12:ani12091059. [PMID: 35565486 PMCID: PMC9105470 DOI: 10.3390/ani12091059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Bovine mastitis is an inflammatory disease of the mammary glands that causes serious harm to cow health and huge economic losses. Susceptibility or resistance to mastitis in individual cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long non-coding RNAs (lncRNAs) are non-coding RNA molecules with a length of more than 200 nucleotides (nt) that have recently been discovered. They can regulate a variety of diseases of humans and animals, especially the immune response and inflammatory disease process. This paper reviews the role of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of lncRNA expression and the molecular regulatory mechanism in bovine mastitis, and looks forward to the research and application prospect of lncRNA in bovine mastitis, intending to provide a reference for scientific researchers to systematically understand this research field. Abstract Bovine mastitis is an inflammatory disease caused by pathogenic microbial infection, trauma, or other factors. Its morbidity is high, and it is difficult to cure, causing great harm to the health of cows and the safety of dairy products. Susceptibility or resistance to mastitis in individual cows is mainly determined by genetic factors, including coding genes and non-coding genes. Long non-coding RNAs (lncRNAs) are a class of endogenous non-coding RNA molecules with a length of more than 200 nucleotides (nt) that have recently been discovered. They can regulate the immune response of humans and animals on three levels (transcription, epigenetic modification, and post-transcription), and are widely involved in the pathological process of inflammatory diseases. Over the past few years, extensive findings revealed basic roles of lncRNAs in inflammation, especially bovine mastitis. This paper reviews the expression pattern and mechanism of long non-coding RNA (lncRNA) in inflammatory diseases, emphasizes on the latest research progress of the lncRNA expression pattern and molecular regulatory mechanism in bovine mastitis, analyzes the molecular regulatory network of differentially expressed lncRNAs, and looks forward to the research and application prospect of lncRNA in bovine mastitis, laying a foundation for molecular breeding and the biological therapy of bovine mastitis.
Collapse
Affiliation(s)
- Li Jia
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jinpeng Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Zhuoma Luoreng
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Xingping Wang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
- Correspondence: (Z.L.); (X.W.)
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Jian Yang
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qichao Hu
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Yun Ma
- School of Agriculture, Ningxia University, Yinchuan 750021, China; (L.J.); (J.W.); (D.W.); (J.Y.); (Q.H.); (Y.M.)
- Key Laboratory of Ruminant Molecular Cell Breeding, Ningxia Hui Autonomous Region, Yinchuan 750021, China
| |
Collapse
|
17
|
Wang XJ, Li XY, Guo XC, Liu L, Jin YY, Lu YQ, Cao YJN, Long JY, Wu HG, Zhang D, Yang G, Hong J, Yang YT, Ma XP. LncRNA-miRNA-mRNA Network Analysis Reveals the Potential Biomarkers in Crohn's Disease Rats Treated with Herb-Partitioned Moxibustion. J Inflamm Res 2022; 15:1699-1716. [PMID: 35282268 PMCID: PMC8906857 DOI: 10.2147/jir.s351672] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/19/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Long noncoding RNA (lncRNA) is receiving growing attention in Crohn's disease (CD). However, the mechanism by which herb-partitioned moxibustion (HPM) regulates the expression and functions of lncRNAs in CD rats is still unclear. The aim of our study is to identify lncRNA-miRNA-mRNA network potential biological functions in CD. METHODS RNA sequencing and microRNA (miRNA) sequencing were carried out to analyze lncRNA, miRNA and mRNA expression profiles among the CD rats, normal control rats, and CD rats after HPM treatment and constructed the potential related lncRNA-miRNA-mRNA competing endogenous RNA (ceRNA) networks. Then, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, protein-protein interaction (PPI) analysis and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to explore potentially important genes in ceRNA networks. RESULTS A total of 189 lncRNAs, 32 miRNAs and 463 mRNAs were determined as differentially expressed (DE) genes in CD rats compared to normal control rats, and 161 lncRNAs, 12 miRNAs and 130 mRNAs were identified as remarkably DE genes in CD rats after HPM treatment compared to CD rats. GO analysis indicated that the target genes were most enriched in cAMP and in KEGG pathway analysis the main pathways included adipocytokine, PPAR, AMPK, FoxO and PI3K-Akt signaling pathway. Finally, qRT-PCR results confirmed that lncRNA LOC102550026 sponged miRNA-34c-5p to regulate the intestinal immune inflammatory response by targeting Pck1. CONCLUSION By constructing a ceRNA network with lncRNA-miRNA-mRNA, PCR verification, and KEGG analysis, we revealed that LOC102550026/miRNA-34c-5p/Pck1 axis and adipocytokine, PPAR, AMPK, FoxO, and PI3K-Akt signaling pathways might regulate the intestinal immune-inflammatory response, and HPM may regulate the lncRNA LOC102550026/miR-34c-5p/Pck1 axis and adipocytokine, PPAR, AMPK, FoxO, and PI3K-Akt signaling pathways, thus improving intestinal inflammation in CD. These findings may be novel potential targets in CD.
Collapse
Affiliation(s)
- Xue-Jun Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Ying Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiao-Cong Guo
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Li Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - You-You Jin
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yun-Qiong Lu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yao-Jia-Ni Cao
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jun-Yi Long
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Huan-Gan Wu
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Dan Zhang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Guang Yang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Jue Hong
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Yan-Ting Yang
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| | - Xiao-Peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Key Laboratory of Acupuncture-Moxibustion and Immunology, Shanghai Research Institute of Acupuncture and Meridian, Shanghai, People’s Republic of China
| |
Collapse
|
18
|
Sun R, Wang X, Sun X, Zhao B, Zhang X, Gong X, Wong SH, Chan MTV, Wu WKK. Emerging Roles of Long Non-Coding RNAs in Ankylosing Spondylitis. Front Immunol 2022; 13:790924. [PMID: 35222376 PMCID: PMC8866863 DOI: 10.3389/fimmu.2022.790924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/19/2022] [Indexed: 12/16/2022] Open
Abstract
Ankylosing spondylitis (AS) is a chronic systemic autoimmune disease characterized by inflammation, bone erosion, spur formation of the spine and the sacroiliac joints. However, the etiology and molecular pathogenesis of AS remain largely unclear. Recently, a growing number of studies showed that long non-coding RNAs (lncRNAs) played critical roles in the development and progression of autoimmune and orthopedic conditions, including AS. Studies demonstrated that a myriad of lncRNAs (e.g. H19, MEG3, LOC645166) pertinent to regulation of inflammatory signals were deregulated in AS. A number of lncRNAs might also serve as new biomarkers for the diagnosis and predicting the outcomes of AS. In this review, we summarize lncRNA profiling studies on AS and the functional roles and mechanism of key lncRNAs relevant to AS pathogenesis. We also discuss their potential values as biomarkers and druggable targets for this potentially disabling condition.
Collapse
Affiliation(s)
- Ruifu Sun
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Xuesong Wang
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Xiaohong Sun
- Department Obstetrics and Gynecology of Qingdao Hospital Central, Central Qingdao Hospital, Qingdao, China
| | - Bing Zhao
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Xiugong Zhang
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Xiaojin Gong
- Department Spinal of Qingdao Hospital Central, Qingdao Hospital Central, Qingdao, China
| | - Sunny Hei Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Matthew Tak Vai Chan
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - William Ka Kei Wu
- State Key Laboratory of Digestive Disease and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Anaesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
19
|
Li C, Qu W, Yang X. Comprehensive lncRNA and mRNA profiles in peripheral blood mononuclear cells derived from ankylosing spondylitis patients by RNA-sequencing analysis. Medicine (Baltimore) 2022; 101:e27477. [PMID: 35089186 PMCID: PMC8797511 DOI: 10.1097/md.0000000000027477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 09/13/2021] [Indexed: 01/05/2023] Open
Abstract
The present study aimed to investigate the comprehensive expression profiles of long non-coding RNA (lncRNA) in ankylosing spondylitis (AS).The peripheral blood samples were collected from 6 AS patients and 6 age- and gender-matched healthy controls (HCs), and separated for peripheral blood mononuclear cells, followed by RNA-sequencing. Further bioinformatics analyses were performed to explore the significantly enriched biological processes, signaling pathways of differentially expressed lncRNAs (DElncRNAs) (based on cis-target and trans-target genes) and differentially expressed mRNAs (DEmRNAs).Principal component analysis plots indicated that both lncRNA and mRNA expression profiles could distinguish AS patients from HCs; heatmap diagram exhibited a relatively good consistency and tendency of lncRNA and mRNA expression profiles in AS patients and HCs, respectively; volcano plots exhibited 114 upregulated and 45 downregulated DElncRNAs, 284 upregulated and 435 downregulated DEmRNAs in AS patients compared with HCs; Gene ontology enrichment analyses indicated that DElncRNAs (based on cis-target and trans-target genes) and DEmRNAs were enriched in molecular functions (including DNA binding, protein binding, etc) and biological process (including immune response, inflammatory response, etc); Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these DElncRNAs (based on cis-target and trans-target genes) and DEmRNAs were enriched in immune and inflammation-related signaling, such as B cell receptor signaling pathway, TNF signaling pathway, NF-kappa B signaling pathway, etc.Our study displays the comprehensive expression profiles and functions of lncRNAs involved in AS, which provides reference for further researches discovering candidate lncRNAs with value in assisting early AS diagnosis.
Collapse
Affiliation(s)
- Chuangxin Li
- Department of Orthopaedic Surgery, Daqing Oilfield General Hospital, Daqing, P.R. China
| | - Wa Qu
- Department of Anesthesiology, Daqing Oilfield General Hospital, Daqing, P.R. China
| | - Xuefeng Yang
- Department of Thoracic Surgery, Daqing Oilfield General Hospital, Daqing, P.R. China
| |
Collapse
|
20
|
Liao HT, Tsai CY, Lai CC, Hsieh SC, Sun YS, Li KJ, Shen CY, Wu CH, Lu CH, Kuo YM, Li TH, Chou CT, Yu CL. The Potential Role of Genetics, Environmental Factors, and Gut Dysbiosis in the Aberrant Non-Coding RNA Expression to Mediate Inflammation and Osteoclastogenic/Osteogenic Differentiation in Ankylosing Spondylitis. Front Cell Dev Biol 2022; 9:748063. [PMID: 35127698 PMCID: PMC8811359 DOI: 10.3389/fcell.2021.748063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Ankylosing spondylitis (AS) or radiographic axial spondyloarthritis is a chronic immune-mediated rheumatic disorder characterized by the inflammation in the axial skeleton, peripheral joints, and soft tissues (enthesis, fascia, and ligament). In addition, the extra-skeletal complications including anterior uveitis, interstitial lung diseases and aortitis are found. The pathogenesis of AS implicates an intricate interaction among HLA (HLA-B27) and non-HLA loci [endoplasmic reticulum aminopeptidase 1 (ERAP1), and interleukin-23 receptor (IL23R), gut dysbiosis, immune plasticity, and numerous environmental factors (infections, heavy metals, stress, cigarette smoking, etc.) The latter multiple non-genetic factors may exert a powerful stress on epigenetic regulations. These epigenetic regulations of gene expression contain DNA methylation/demethylation, histone modifications and aberrant non-coding RNAs (ncRNAs) expression, leading to inflammation and immune dysfunctions. In the present review, we shall discuss these contributory factors that are involved in AS pathogenesis, especially the aberrant ncRNA expression and its effects on the proinflammatory cytokine productions (TNF-α, IL-17 and IL-23), T cell skewing to Th1/Th17, and osteoclastogenic/osteogenic differentiation. Finally, some potential investigatory approaches are raised for solving the puzzles in AS pathogenesis.
Collapse
Affiliation(s)
- Hsien-Tzung Liao
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chang-Youh Tsai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- *Correspondence: Chang-Youh Tsai, ; Chia-Li Yu,
| | - Chien-Chih Lai
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Song-Chou Hsieh
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Syuan Sun
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Ko-Jen Li
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chieh-Yu Shen
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Han Wu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Hsun Lu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Min Kuo
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Hao Li
- Division of Allergy, Immunology and Rheumatology, Taipei, Taiwan
- Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Chung-Tei Chou
- Division of Allergy, Immunology and Rheumatology, Taipei Veterans General Hospital, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
| | - Chia-Li Yu
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
- *Correspondence: Chang-Youh Tsai, ; Chia-Li Yu,
| |
Collapse
|
21
|
Wang YX, Lin C, Cui LJ, Deng TZ, Li QM, Chen FY, Miao XP. Mechanism of M2 macrophage-derived extracellular vesicles carrying lncRNA MEG3 in inflammatory responses in ulcerative colitis. Bioengineered 2021; 12:12722-12739. [PMID: 34895044 PMCID: PMC8810016 DOI: 10.1080/21655979.2021.2010368] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 12/20/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease of the colon. M2 macrophages possess certain anti-inflammation activity. Accordingly, the current study set out to investigate the potential mechanism of M2 macrophage-derived extracellular vesicles (M2-EVs) in UC inflammation. Firstly, mouse peritoneal macrophages were induced to M2 phenotype, and M2-EVs were isolated. , the murine model of UC was established, and the length and weight of the colon, disease activity index (DAI), apoptosis, and inflammatory response of UC mice were measured. Young adult mouse colon (YAMC) cells were induced with the help of lipopolysaccharide. LncRNA maternally expressed 3 (LncRNA MEG3), miR-20b-5p, and cAMP responsive element binding protein 1 (CREB1) expression patterns were detected in UC models. In addition, we analyzed the binding relationship among MEG3, miR-20b-5p, and CREB1. UC mice presented with shortened colon length, lightened weight, increased DAI score, enhanced apoptosis, and significant inflammatory cell infiltration, while M2-EVs reversed these trends. In vitro, M2-EVs increased UC cell viability and reduced inflammation. Mechanistic experimentation revealed that M2-EVs transferred MEG3 into YAMC cells to up-regulate MEG3 expression and promote CREB1 transcription by competitively binding to miR-20b-5p. Moreover, up-regulation of MEG3 in M2-EVs enhanced the protective effect of M2-EVs on UC cells, while over-expression of miR-20b-5p attenuated the aforementioned protective effect of M2-EVs on UC mice and cells. Collectively, our findings revealed that M2-EVs carrying MEG3 enhanced UC cell viability and reduced inflammatory responses via the miR-20b-5p/CREB1 axis, thus alleviating UC inflammation.
Collapse
Affiliation(s)
- Yu-Xuan Wang
- Department of Gastroenterology, Hainan General Hospital, Haikou, P.R. China
| | - Cheng Lin
- Department of Gastroenterology, Hainan General Hospital, Haikou, P.R. China
| | - Lu-Jia Cui
- Department of Gastroenterology, Hainan General Hospital, Haikou, P.R. China
| | - Tao-Zhi Deng
- Department of Gastroenterology, Hainan General Hospital, Haikou, P.R. China
| | - Qiu-Min Li
- Department of Gastroenterology, Hainan General Hospital, Haikou, P.R. China
| | - Feng-Ying Chen
- Department of Gastroenterology, Hainan General Hospital, Haikou, P.R. China
| | - Xin-Pu Miao
- Department of Gastroenterology, Hainan General Hospital, Haikou, P.R. China
| |
Collapse
|
22
|
Analysis of inflammation-related microRNA expression in patients with ankylosing spondylitis. Immunol Res 2021; 70:23-32. [PMID: 34743291 DOI: 10.1007/s12026-021-09249-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/26/2021] [Indexed: 02/08/2023]
Abstract
Ankylosing spondylitis (AS) is a complex genetic disease characterized by axial skeletal inflammation. Available scientific evidence suggests that a relationship may exist between miRNA expression levels and the pathogenesis of AS. This study investigated the clinical diagnostic value of miR-146a, miR-15a, miR-20a, miR-125a-3p, miR-125a-5p, miR-125b-5p, miR-148a, miR-149a, miR-499, and miR-155a in AS. A total of 44 AS patients and 56 healthy controls (HCs) were included in the study. MiRNA expression levels were detected using fluorescence quantitative PCR (qPCR). Results showed that the expression levels of miR-146a, miR-125a-3p, miR-125a-5p, miR-125b-5p, and miR-155a decreased, whereas miR-499a expression increased significantly in AS patients compared to that in the controls. Logistic regression analysis with receiver operating characteristic (ROC) curves showed that combined miR-146a/miR-125a-5p/miR-125b-5p/miR-499a/miR-155a (area under curve [AUC] = 0.824, 95% confidence interval [CI] = 0.727-0.921) had high sensitivity and specificity for AS diagnosis. C-reactive protein (CRP) levels were positively correlated with the expression of miR-125a-5p (rs = 0.438, p = 0.005) and miR-155a (rs = 0.414, p = 0.006), which indicates that miR-125a-5p and miR-155a can perhaps aggravate AS-induced inflammation. Our findings suggest the association of miR-125a-5p and miR-155a with disease activity in AS patients. Furthermore, miR-146a, miR-125a-5p, miR-125b-5p, miR-499a, and miR-155a could have potential diagnostic value in AS.
Collapse
|
23
|
Zheng YL, Song G, Guo JB, Su X, Chen YM, Yang Z, Chen PJ, Wang XQ. Interactions Among lncRNA/circRNA, miRNA, and mRNA in Musculoskeletal Degenerative Diseases. Front Cell Dev Biol 2021; 9:753931. [PMID: 34708047 PMCID: PMC8542847 DOI: 10.3389/fcell.2021.753931] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 12/18/2022] Open
Abstract
Musculoskeletal degenerative diseases (MSDDs) are pathological conditions that affect muscle, bone, cartilage, joint and connective tissue, leading to physical and functional impairments in patients, mainly consist of osteoarthritis (OA), intervertebral disc degeneration (IDD), rheumatoid arthritis (RA) and ankylosing spondylitis (AS). Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) are novel regulators of gene expression that play an important role in biological regulation, involving in chondrocyte proliferation and apoptosis, extracellular matrix degradation and peripheral blood mononuclear cell inflammation. Research on MSDD pathogenesis, especially on RA and AS, is still in its infancy and major knowledge gaps remain to be filled. The effects of lncRNA/circRNA-miRNA-mRNA axis on MSDD progression help us to fully understand their contribution to the dynamic cellular processes, provide the potential OA, IDD, RA and AS therapeutic strategies. Further studies are needed to explore the mutual regulatory mechanisms between lncRNA/circRNA regulation and effective therapeutic interventions in the pathology of MSDD.
Collapse
Affiliation(s)
- Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Ge Song
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jia-Bao Guo
- The Second School of Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Xuan Su
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yu-Meng Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Zheng Yang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Pei-Jie Chen
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China.,Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
| |
Collapse
|
24
|
Exploring the Extracellular Vesicle MicroRNA Expression Repertoire in Patients with Rheumatoid Arthritis and Ankylosing Spondylitis Treated with TNF Inhibitors. DISEASE MARKERS 2021; 2021:2924935. [PMID: 34691284 PMCID: PMC8529175 DOI: 10.1155/2021/2924935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/03/2021] [Indexed: 12/17/2022]
Abstract
Rheumatoid arthritis (RA) and ankylosing spondylitis (AS) belong to the most common inflammatory rheumatic diseases. MicroRNAs (miRNAs) are small 18–22 RNA molecules that function as posttranscriptional regulators. They are abundantly present within extracellular vesicles (EVs), small intercellular communication vesicles that can be found in bodily fluids and that have key functions in pathological and physiological pathways. Recently, EVs have gained much interest because of their diagnostic and therapeutic potential. Using NanoString profiling technology, the miRNA repertoire of serum EVs was determined and compared in RA and AS patients before and after anti-TNF therapy to assess its potential use as a diagnostic and prognostic biomarker. Furthermore, possible functional effects of those miRNAs that were characterized by the most significant expression changes were evaluated using in silico prediction algorithms. The analysis revealed a unique profile of differentially expressed miRNAs in RA and AS patient serum EVs. We identified 12 miRNAs whose expression profiles enabled differentiation between RA and AS patients before induction of anti-TNF treatment, as well as 4 and 14 miRNAs whose repertoires were significantly changed during the treatment in RA and AS patients, respectively. In conclusion, our findings suggest that extracellular vesicle miRNAs could be used as potential biomarkers associated with RA and AS response to biological treatment.
Collapse
|
25
|
Dong J, Xia R, Zhang Z, Xu C. lncRNA MEG3 aggravated neuropathic pain and astrocyte overaction through mediating miR-130a-5p/CXCL12/CXCR4 axis. Aging (Albany NY) 2021; 13:23004-23019. [PMID: 34609952 PMCID: PMC8544300 DOI: 10.18632/aging.203592] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) exert a critical function in mediating neuropathic pain (NP). MEG3, a novel lncRNA, contributes to astrocyte activation and inflammation. However, its role in NP remains unclear. METHODS The chronic constriction injury (CCI) method was employed to construct an NP rat model. Astrocyte activation was induced by lipopolysaccharide (LPS). The profiles of MEG3, microRNA (miR)-130a-5p, CXC motif chemokine receptor 12 (CXCL12)/CXC motif chemokine receptor 4 (CXCR4), and the Rac1/NF-κB pathway in CCI rats' spinal cord tissues and astrocytes were monitored by reverse transcription-quantitative PCR (RT-qPCR) and western blot (WB). Pain scores of CCI rats were assessed. Enzyme-linked immunosorbent assay (ELISA) was adopted to monitor neuroinflammation alteration. The glial fibrillary acidic protein (GFAP)-labeled astrocytes were tested by immunohistochemistry (IHC). Bioinformatics, dual-luciferase reporter assay and RNA immunoprecipitation (RIP) were utilized to verify the molecular mechanism between MEG3 and miR-130a-3p. RESULTS MEG3, CXCL12 and CXCR4 were overexpressed and miR-130a-5p was knocked down in CCI rats and LPS-induced astrocytes. Up-regulating MEG3 aggravated NP, enhanced inflammatory cytokines interleukin-1β (IL-1β), tumor necrosis factor (TNF)-α, and interleukin-6 (IL-6) expression and release in CCI rats and LPS-induced astrocytes. Up-regulating miR-130-5p repressed LPS-induced inflammation in astrocytes. AS verified by the dual-luciferase reporter assay and RIP assay, MEG3 sponged miR-130a-5p as a competitive endogenous RNA (ceRNA). What's more, miR-130a-5p up-regulation weakened the MEG3-induced proinflammatory effects on LPS-induced astrocytes. CONCLUSIONS MEG3 aggravates NP and astrocyte activation via the miR-130a-5p/CXCL12/CXCR4 axis, which is a potential therapeutic target for NP.
Collapse
Affiliation(s)
- Jiacai Dong
- Department of Anesthesiology, Qianjiang Hospital Affiliated to Renmin Hospital of Wuhan University, Qianjiang 433100, Hubei, China
| | - Rui Xia
- Department of Anesthesiology, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| | - Zhonggui Zhang
- Department of Pain, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| | - Cheng Xu
- Department of Pain, The First People's Hospital of Jingzhou, Jingzhou 434000, Hubei, China
| |
Collapse
|
26
|
Huang H, Xing D, Zhang Q, Li H, Lin J, He Z, Lin J. LncRNAs as a new regulator of chronic musculoskeletal disorder. Cell Prolif 2021; 54:e13113. [PMID: 34498342 PMCID: PMC8488571 DOI: 10.1111/cpr.13113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/15/2021] [Accepted: 07/30/2021] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES In recent years, long non-coding RNAs (lncRNAs) have been found to play a role in the occurrence, progression and prognosis of chronic musculoskeletal disorders. DESIGN AND METHODS Literature exploring on PubMed was conducted using the combination of keywords 'LncRNA' and each of the following: 'osteoarthritis', 'rheumatoid arthritis', 'osteoporosis', 'osteogenesis', 'osteoclastogenesis', 'gout arthritis', 'Kashin-Beck disease', 'ankylosing spondylitis', 'cervical spondylotic myelopathy', 'intervertebral disc degeneration', 'human muscle disease' and 'muscle hypertrophy and atrophy'. For each disorder, we focused on the publications in the last five years (5/1/2016-2021/5/1, except for Kashin-Beck disease). Finally, we excluded publications that had been reported in reviews of various musculoskeletal disorders during the last three years. Here, we summarized the progress of research on the role of lncRNA in multiple pathological processes during musculoskeletal disorders. RESULTS LncRNAs play a crucial role in regulating downstream gene expression and maintaining function and homeostasis of cells, especially in chondrocytes, synovial cells, osteoblasts, osteoclasts and skeletal muscle cells. CONCLUSIONS Understanding the mechanisms of lncRNAs in musculoskeletal disorders may provide promising strategies for clinical practice.
Collapse
Affiliation(s)
- Hesuyuan Huang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Dan Xing
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Qingxi Zhang
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Hui Li
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianjing Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Zihao He
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| | - Jianhao Lin
- Arthritis Clinic & Research CenterPeking University People's Hospital, Peking UniversityBeijingChina
- Arthritis InstitutePeking UniversityBeijingChina
| |
Collapse
|
27
|
Wang Z, Zhang W, Li S, Chen D, Wang L, Xu B, Li J. Multiple time-point assessment of lncRNA MEG3 shows potential to monitor treatment efficacy in rheumatoid arthritis patients. Biomark Med 2021; 15:1261-1270. [PMID: 34488430 DOI: 10.2217/bmm-2021-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: This study explored the clinical role of lncRNA MEG3 in rheumatoid arthritis (RA) management. Materials & methods: Totally, 191 active RA patients were enrolled, and their lncRNA MEG3 expressions in peripheral blood monoclonal cells were detected. Results: LncRNA MEG3 expression was downregulated, and it negatively correlated with lesion joints, inflammation and disease activity in RA patients. Moreover, lncRNA MEG3 expression was increased during treatment; meanwhile its increment correlated with treatment response and remission. Conclusion: LncRNA MEG3 may serve as a potential biomarker for monitoring treatment efficacy in RA management.
Collapse
Affiliation(s)
- Zehui Wang
- Laboratory Division, HanDan Central Hospital, Handan, 056002, China
| | - Weiyong Zhang
- Imaging CT/MRI Room, HanDan Central Hospital, Handan, 056002, China
| | - Shouxia Li
- Laboratory Division, HanDan Central Hospital, Handan, 056002, China
| | - Dingli Chen
- Laboratory Division, HanDan Central Hospital, Handan, 056002, China
| | - Lei Wang
- Laboratory Division, HanDan Central Hospital, Handan, 056002, China
| | - Baoyuan Xu
- Hospital Office, HanDan Central Hospital, Handan, 056002, China
| | - Juntao Li
- Hospital Office, HanDan Central Hospital, Handan, 056002, China
| |
Collapse
|
28
|
Miallot R, Galland F, Millet V, Blay JY, Naquet P. Metabolic landscapes in sarcomas. J Hematol Oncol 2021; 14:114. [PMID: 34294128 PMCID: PMC8296645 DOI: 10.1186/s13045-021-01125-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/08/2021] [Indexed: 12/15/2022] Open
Abstract
Metabolic rewiring offers novel therapeutic opportunities in cancer. Until recently, there was scant information regarding soft tissue sarcomas, due to their heterogeneous tissue origin, histological definition and underlying genetic history. Novel large-scale genomic and metabolomics approaches are now helping stratify their physiopathology. In this review, we show how various genetic alterations skew activation pathways and orient metabolic rewiring in sarcomas. We provide an update on the contribution of newly described mechanisms of metabolic regulation. We underscore mechanisms that are relevant to sarcomagenesis or shared with other cancers. We then discuss how diverse metabolic landscapes condition the tumor microenvironment, anti-sarcoma immune responses and prognosis. Finally, we review current attempts to control sarcoma growth using metabolite-targeting drugs.
Collapse
Affiliation(s)
- Richard Miallot
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| | - Franck Galland
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Virginie Millet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France
| | - Jean-Yves Blay
- Centre Léon Bérard, Lyon 1, Lyon Recherche Innovation contre le Cancer, Université Claude Bernard, Lyon, France
| | - Philippe Naquet
- Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille Luminy, Aix Marseille Univ, Marseille, France.
| |
Collapse
|
29
|
Bioinformatics Analysis of the Molecular Mechanism and Potential Treatment Target of Ankylosing Spondylitis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7471291. [PMID: 34335866 PMCID: PMC8321739 DOI: 10.1155/2021/7471291] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/05/2021] [Indexed: 02/08/2023]
Abstract
Ankylosing spondylitis (AS) is an autoimmune disease that mainly affects the spinal joints, sacroiliac joints, and adjacent soft tissues. We conducted bioinformatics analysis to explore the molecular mechanism related to AS pathogenesis and uncover novel potential molecular targets for the treatment of AS. The profiles of GSE25101, containing gene expression data extracted from the blood of 16 AS patients and 16 matched controls, were acquired from the Gene Expression Omnibus (GEO) database. The background correction and standardization were carried out utilizing the transcript per million (TPM) method. After analysis of AS patients and the normal groups, we identified 199 differentially expressed genes (DEGs) with upregulation and 121 DEGs with downregulation by the limma R package. The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) biological process enrichment analysis revealed that the DEGs with upregulation were mainly associated with spliceosome, ribosome, RNA-catabolic process, electron transport chain, etc. And the DEGs with downregulation primarily participated in T cell-associated pathways and processes. After analysis of the protein-protein interaction (PPI) network, our data revealed that the hub genes, comprising MRPL13, MRPL22, LSM3, COX7A2, COX7C, EP300, PTPRC, and CD4, could be the treatment targets in AS. Our data furnish new hints to uncover the features of AS and explore more promising treatment targets towards AS.
Collapse
|
30
|
Motta F, Pederzani A, Carena MC, Ceribelli A, Wordsworth PB, De Santis M, Selmi C, Vecellio M. MicroRNAs in Axial Spondylarthritis: an Overview of the Recent Progresses in the Field with a Focus on Ankylosing Spondylitis and Psoriatic Arthritis. Curr Rheumatol Rep 2021; 23:59. [PMID: 34216293 PMCID: PMC8254706 DOI: 10.1007/s11926-021-01027-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2021] [Indexed: 12/18/2022]
Abstract
Purpose of Review To highlight the recent discoveries and lines of evidence on the role of microRNAs in ankylosing spondylitis (AS) and psoriatic arthritis (PsA), focusing on their expression profiling and mechanisms of action. Recent Findings AS and PsA are chronic inflammatory musculoskeletal diseases with axial manifestations and represent an excellent model for studying microRNAs contribution to the disease pathogenesis, particularly through immunomodulation, inflammation, and bone remodelling, or their value as candidate diagnostic and prognostic biomarkers. Summary MicroRNAs are single-stranded nucleotides able to regulate gene expression. They are a key component of the epigenetic machinery, involved in physiological and pathological processes. The contribution of microRNAs in AS and PsA (such as miR-29a in regulating bone metabolism) is highlighted by several works in the field but their utility as possible markers must be still confirmed, particularly in larger patients’ cohorts.
Collapse
Affiliation(s)
- Francesca Motta
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Andrea Pederzani
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Angela Ceribelli
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Paul B Wordsworth
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Maria De Santis
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlo Selmi
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Matteo Vecellio
- Division of Rheumatology and Clinical Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy. .,Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
31
|
Wang Y, Wang N, Cui L, Li Y, Cao Z, Wu X, Wang Q, Zhang B, Ma C, Cheng Y. Long Non-coding RNA MEG3 Alleviated Ulcerative Colitis Through Upregulating miR-98-5p-Sponged IL-10. Inflammation 2021; 44:1049-1059. [PMID: 33394187 DOI: 10.1007/s10753-020-01400-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
Ulcerative colitis (UC) is a refractory chronic colitis disease with the particularly complex cause. Recently, long noncoding RNAs (lncRNAs) have been reported to be related to the development of UC. LncRNA MEG3 has been proved to play an anti-inflammatory role in a variety of inflammatory diseases, which share similar pathogenesis with UC, indicating the potential involvement of lncRNA MEG3 in UC. This study aims to investigate the functional role and underlying mechanism of lncRNA MEG3 in UC. Gradient concentration of H2O2 (0, 20, 50, 100, and 200 μM) was used to induce Caco-2 damage models in vitro. Cell viability was detected by cell counting kit-8 (CCK-8) assay. LncRNA MEG3, miR-98-5p, and IL-10 levels in H2O2-treated Caco-2 cells were assessed by performing real-time quantitative polymerase chain reaction (RT-qPCR). Moreover, the binding relationship between lncRNA MEG3 and miR-98-5p, as well as the binding relationship between miR-98-5p and IL-10, was validated using dual-luciferase reporter assay. 2, 4, 6-Trinitrobenzenesulfonic acid solution (TNBS) was applied to induce ulcerative colitis in young rats. The body weight, disease activity index (DAI), length and weight of the colons, pathological scores of UC rats, reactive oxygen species (ROS), and inflammatory cytokines were determined to evaluate the effects of lncRNA MEG3 on the progression of UC. Besides, hematoxylin-eosin (HE) staining was exploited to observe histological changes of UC rat colons. In addition, western blotting analysis was also performed to evaluate the apoptosis and pyroptosis-related protein levels. Moreover, lncRNA MEG3, miR-98-5p, and IL-10 levels in UC rat colons were further assessed by RT-qPCR. Meanwhile, IL-10 expression was determined using immunohistochemistry. LncRNA MEG3 and IL-10 levels were distinctly decreased while miR-98-5p was increased in Caco-2 damage models and UC rats. Bioinformatics analysis predicted the binding sites of lncRNA MEG3 to miR-98-5p and miR-98-5p to IL-10. Besides, dual-luciferase reporter assay validated the negative correlation between lncRNA MEG3 and miR-98-5p, miR-98-5p, and IL-10. Overexpressed lncRNA MEG3 reduced. DAI scores and colon weight/length ratio improved UC ulceration. In addition, upregulation of lncRNA MEG3 relieved oxidative stress, inflammatory response, apoptosis, and pyroptosis of UC rat colons. LncRNA MEG3 overexpression alleviates the serve ulceration of UC rat colons by upregulating IL-10 expression via sponging miR-98-5p. To sum up, this study reveals the protective role of lncRNA MEG3 in the development of UC and may provide potential therapeutic targets for UC.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Nan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Lianlian Cui
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Yan Li
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Zhenfeng Cao
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Xing Wu
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Qianhan Wang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Bo Zhang
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Caixia Ma
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China
| | - Yanbo Cheng
- Department of Pediatrics, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, People's Hospital of Henan University, No.7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan Province, China.
| |
Collapse
|
32
|
Gut microbiota-microRNA interactions in ankylosing spondylitis. Autoimmun Rev 2021; 20:102827. [PMID: 33864943 DOI: 10.1016/j.autrev.2021.102827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/17/2021] [Indexed: 12/20/2022]
Abstract
Ankylosing spondylitis (AS) is a chronic autoimmune inflammatory disability that is part of the rheumatic disease group of spondyloarthropathies. AS commonly influences the joints of the axial skeleton. The contributions to AS pathogenesis of genetic susceptibility (particularly HLA-B27 and ERAP-1) and epigenetic modifications, like non-coding RNAs, as well as environmental factors, have been investigated over the last few years. But the fundamental etiology of AS remains elusive to date. The evidence summarized here indicates that in the immunopathogenesis of AS, microRNAs and the gut microbiome perform critical functions. We discuss significant advances in the immunological mechanisms underlying AS and address potential cross-talk between the gut microbiome and host microRNAs. This critical interaction implicates a co-evolutionary symbiotic link between host immunity and the gut microbiome.
Collapse
|
33
|
Zhang S, Li L, Wang J, Zhang T, Ye T, Wang S, Xing D, Chen W. Recent advances in the regulation of ABCA1 and ABCG1 by lncRNAs. Clin Chim Acta 2021; 516:100-110. [PMID: 33545111 DOI: 10.1016/j.cca.2021.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Coronary heart disease (CHD) with atherosclerosis is the leading cause of death worldwide. ABCA1 and ABCG1 promote cholesterol efflux to suppress foam cell generation and reduce atherosclerosis development. Long noncoding RNAs (lncRNAs) are emerging as a unique group of RNA transcripts that longer than 200 nucleotides and have no protein-coding potential. Many studies have found that lncRNAs regulate cholesterol efflux to influence atherosclerosis development. ABCA1 is regulated by different lncRNAs, including MeXis, GAS5, TUG1, MEG3, MALAT1, Lnc-HC, RP5-833A20.1, LOXL1-AS1, CHROME, DAPK1-IT1, SIRT1 AS lncRNA, DYNLRB2-2, DANCR, LeXis, LOC286367, and LncOR13C9. ABCG1 is also regulated by different lncRNAs, including TUG1, GAS5, RP5-833A20.1, DYNLRB2-2, ENST00000602558.1, and AC096664.3. Thus, various lncRNAs are associated with the roles of ABCA1 and ABCG1 on cholesterol efflux in atherosclerosis regulation. However, some lncRNAs play dual roles in ABCA1 expression and atherosclerosis, and the functions of some lncRNAs in atherosclerosis have not been investigated in vivo. In this article, we review the roles of lncRNAs in atherosclerosis and focus on new insights into lncRNAs associated with the roles of ABCA1 and ABCG1 on cholesterol efflux and the potential of these lncRNAs as novel therapeutic targets in atherosclerosis.
Collapse
Affiliation(s)
- Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Lu Li
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Jie Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Tingting Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Ting Ye
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China
| | - Shuai Wang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Medical Imaging, Radiotherapy Department of Affiliated Hospital, Weifang Medical University, Weifang, Shandong 261053, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China; School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, Shandong 266071, China.
| |
Collapse
|
34
|
Gu G, Huo Y, Xu G, Li L, Yu J, Sheng L, Yin Z. RETRACTED: MicroRNA-204-GSDMD interaction regulates pyroptosis of fibroblast-like synoviocytes in ankylosing spondylitis. Int Immunopharmacol 2021; 91:107227. [PMID: 33359850 DOI: 10.1016/j.intimp.2020.107227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. Concern was raised about the reliability of the Western blot results in Figs. 1D and 2D+F, which appear to have the same eyebrow shaped phenotype as many other publications tabulated here (https://docs.google.com/spreadsheets/d/149EjFXVxpwkBXYJOnOHb6RhAqT4a2llhj9LM60MBffM/edit#gid=0 [docs.google.com]). The journal requested the corresponding author comment on these concerns and provide the raw data. However, the authors were not responsive to the request for comment. Since original data could not be provided, the overall validity of the results could not be confirmed. Therefore, the Editor-in-Chief decided to retract the article.
Collapse
Affiliation(s)
- Guangxue Gu
- Department of Traumatic Orthopedics, The First People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China
| | - Yongfeng Huo
- Department of Traumatic Orthopedics, The First People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China
| | - Gang Xu
- Department of Traumatic Orthopedics, The First People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China
| | - Leiming Li
- Department of Traumatic Orthopedics, The First People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China
| | - Jian Yu
- Department of Traumatic Orthopedics, The First People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China
| | - Luxin Sheng
- Department of Traumatic Orthopedics, The First People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China
| | - Zhaoyang Yin
- Department of Traumatic Orthopedics, The First People's Hospital of Lianyungang, Lianyungang 222000, Jiangsu Province, China.
| |
Collapse
|
35
|
Jiang X, Xing L, Chen Y, Qin R, Song S, Lu Y, Xie S, Wang L, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. CircMEG3 inhibits telomerase activity by reducing Cbf5 in human liver cancer stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:310-323. [PMID: 33425489 PMCID: PMC7779543 DOI: 10.1016/j.omtn.2020.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Circular RNA (CircRNA) is a newly identified special class of non-coding RNA (ncRNA) that plays an important regulatory role in the progression of certain diseases. Herein, our results indicate that CircMEG3 is downregulated expression and negatively correlated with the expression of telomerase-related gene Cbf5 in human liver cancer. Moreover, CircMEG3 inhibits the growth of human liver cancer stem cells in vivo and in vitro. CircMEG3 inhibits the expression of m6A methyltransferase METTL3 dependent on HULC. Moreover, CircMEG3 inhibits the expression of Cbf5, a component of telomere synthetase H/ACA ribonucleoprotein (RNP; catalyst RNA pseudouracil modification) through METTL3 dependent on HULC. Thereby, CircMEG3 inhibits telomerase activity and shortens telomere lifespan dependent on HULC and Cbf5 in human liver cancer stem cell. Strikingly, increased Cbf5 abrogates the ability of CircMEG3 to inhibit malignant differentiation of human liver cancer stem cells. In summary, these observations provide important basic information for finding effective liver cancer therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Libo Xing
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yingjie Chen
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Rushi Qin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sijie Xie
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jie Xu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
36
|
Ma J, Zhang X, Zhang H, Chen H. lncRNA MEG3 Suppresses the Progression of Ankylosis Spondylitis by Regulating the Let-7i/SOST Axis. Front Mol Biosci 2020; 7:173. [PMID: 32793634 PMCID: PMC7393269 DOI: 10.3389/fmolb.2020.00173] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023] Open
Abstract
Ankylosis spondylitis (AS) is a disease mainly characterized by sacroiliac joint and spinal attachment point inflammation. Long non-coding RNA (lncRNA) plays a key role in the progression of many diseases. However, few studies have been conducted on the function of lncRNA maternally expressed gene 3 (MEG3) in AS. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the relative levels of MEG3, microRNA let-7i, sclerostin (SOST), and inflammatory cytokines. Dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay and biotin-labeled RNA pull-down assay were used to confirm the interaction between MEG3 and let-7i or let-7i and SOST. In addition, western blot (WB) analysis was performed to detect the protein levels of osteogenesis markers and SOST. The expression levels of MEG3 and SOST were decreased and let-7i was increased in AS patients. MEG3 could interact with let-7i in AS fibroblasts, and let-7i overexpression reversed the suppressive effect of MEG3 upregulation on the inflammation and bone formation of AS. Additionally, let-7i could target SOST, and SOST silencing reversed the inhibitory effect of let-7i inhibitor or MEG3 overexpression on the inflammation and bone formation of AS. Furthermore, SOST expression was positively regulated by MEG3, while was negatively regulated by let-7i. Our results revealed that lncRNA MEG3 promoted SOST expression to restrain the progression of AS by sponging let-7i, which provided a treatment target for AS.
Collapse
Affiliation(s)
- Junjie Ma
- Third Department of Spine Surgery, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Xiaohua Zhang
- Department of Anesthesiology, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Hongxing Zhang
- Third Department of Spine Surgery, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Luoyang, China
| | - Hailong Chen
- Third Department of Spine Surgery, Henan Luoyang Orthopedic Hospital (Henan Provincial Orthopedic Hospital), Luoyang, China
| |
Collapse
|
37
|
Chang WW, Zhang L, Yao XM, Chen Y, Zhu LJ, Fang ZM, Zhao Y, Yao YS, Jin YL. Upregulation of long non-coding RNA MEG3 in type 2 diabetes mellitus complicated with vascular disease: a case-control study. Mol Cell Biochem 2020; 473:93-99. [PMID: 32594338 DOI: 10.1007/s11010-020-03810-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/18/2020] [Indexed: 12/17/2022]
Abstract
Previous studies have indicated that long non-coding RNAs (lncRNAs) were closely related to diabetes. In this study, we aimed to explore the possible role and mechanism of lncRNA MEG3 in the occurrence and development of type 2 diabetes mellitus (T2DM) and its vascular complications. A case-control study involving 115 subjects was conducted, including 53 T2DM patients (37 patients with vascular complication and 16 patients without vascular complications) and 62 healthy subjects. We performed real-time polymerase chain reaction (RT-PCR) analysis of the lncRNA MEG3 and miR-146a levels in peripheral blood mononuclear cells (PBMCs) in the 115 samples. We found that the expression of lncRNA MEG3 was upregulated in the T2DM patients with vascular complication (DC group) compared with T2DM patients without vascular complication (D group) (P < 0.05) and the control group (P < 0.01). miR-146a levels in DC group were significantly lower compared with control group. There was a significant positive correlation between the expression of lncRNA MEG3 and glucose (GLU) (r = 0.301, P = 0.0011) and hemoglobin A1C (HbA1c) (r = 0.477, P = 0.0006). Our study suggests MEG3 may play as an important role in progression of diabetes-related vascular complications, contributing to a novel understanding of pathogenesis and prognosis for diabetes and its complications.
Collapse
Affiliation(s)
- Wei-Wei Chang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Liu Zhang
- Department of Hospital Infection Management Office, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, 241000, Anhui, China
| | - Xin-Ming Yao
- Department of Endocrine, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yan Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Li-Jun Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Zheng-Mei Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Ying Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China
| | - Ying-Shui Yao
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China.
| | - Yue-Long Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Wannan Medical College, Wenchang West Road 22, Wuhu, 241002, Anhui, China.
| |
Collapse
|