1
|
García-Hernández L, Dai L, Rodríguez-Ulloa A, Yi Y, González LJ, Besada V, Li W, Perea SE, Perera Y. Time- and dose-dependent effects of CIGB-300 on the proteome of lung squamous cell carcinoma. Biol Chem 2025:hsz-2024-0149. [PMID: 40261874 DOI: 10.1515/hsz-2024-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Proteome-wide scale in a dose - and time-depending setting is crucial to fully understand the pharmacological mechanism of anticancer drugs as well as identification of candidates for drug response biomarkers. Here, we investigated the effect of the CIGB-300 anticancer peptide at IC50 and IC80 doses during 1 and 4 h of treatment on the squamous lung cancer cell (NCI-H226) proteome. An overwhelming dose-dependent inhibitory effect with minor up-regulated proteins was observed by increasing CIGB-300 dose level. Functional enrichment was also CIGB-300 dose-dependent with common or exclusively regulated proteins in each dose and time settings. A protein core involving small molecule biosynthesis, aldehyde metabolism and metabolism of nucleobases was regulated irrespectively to the dose or the treatment time. Importantly, a group of proteins linked to NSCLC tumor biology, poor clinical outcome and some Protein Kinase CK2 substrates, were significantly regulated by treating with both CIGB-300 doses. Likewise, we observed a consistent downregulation of different proteins that had been already reported to be inhibited by CIGB-300 in lung adenocarcinoma and acute myeloid leukemia. Overall, our proteomics-guided strategy based on time and drug dose served to uncover novel clues supporting the CIGB-300 cytotoxic effect and also to identify putative pharmacodynamic biomarkers in NSCLC.
Collapse
Affiliation(s)
- Liudy García-Hernández
- Department of System Biology, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Havana 10600, Cuba
| | - Lingfeng Dai
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou City 425000, Hunan Province, China
| | - Arielis Rodríguez-Ulloa
- Department of System Biology, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Havana 10600, Cuba
| | - Ying Yi
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou City 425000, Hunan Province, China
| | - Luis J González
- Department of System Biology, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Havana 10600, Cuba
| | - Vladimir Besada
- Department of System Biology, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Havana 10600, Cuba
| | - Wen Li
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou City 425000, Hunan Province, China
| | - Silvio E Perea
- Department of Pharmaceuticals, Center for Genetic Engineering & Biotechnology (CIGB), 31 Ave, Playa, Havana 10600, Cuba
| | - Yasser Perera
- Research Department, China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Yangjiaqiao Street, Lengshuitan District, Yongzhou City 425000, Hunan Province, China
| |
Collapse
|
2
|
Yi Y, Dai L, Lan Y, Tan C, Vázquez-Blomquist DM, Zeng G, Jiang D, Yang K, Perea SE, Perera Y. CIGB-300 internalizes and impairs viability of NSCLC cells lacking actionable targets by inhibiting casein kinase-2 signaling. Sci Rep 2024; 14:26038. [PMID: 39472715 PMCID: PMC11522547 DOI: 10.1038/s41598-024-75990-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Overall response rates in advanced Non-Small Cell Lung Cancer (NSCLC) remains low. Thus, novel molecular targets, tailored drugs and/or drug combinations are needed. Casein Kinase-2 (CK2) is a constitutively active and frequently over-expressed enzyme which fosters tumor survival, proliferation and metastasis. By using a clinical-grade and Cell Penetrating Peptide-based inhibitor coined as CIGB-300, we explore the anti-neoplastic effects caused by interruption of CK2 signaling in lung cancer cells lacking EGFR, ALK and ROS mutations. CIGB-300 penetrated and impaired viability and proliferation of Lung Adenocarcinoma (LUAD) (A549, NCI-H522) and Lung Squamous Carcinoma (LUSC) (NCI-H226 and SK-MES-1) cells in a dose-response manner. The differential activity could not be explained by overall peptide uptake or its subcellular distribution, as evidenced by flow cytometry and confocal microscopy. Upon internalization, CIGB-300 interacted with CK2 catalytic subunits (ɑ1/ɑ2) and CK2 substrates, thus impairing phosphorylation of enzyme substrates (CDC37s13, NPM1s125) and downstream proteins (RPS6s325/326). CK2 inhibition induced an early Reactive Oxygen Species (ROS) and mitochondrial membrane depolarization, which predates lung cancer cell death. Finally, intravenous injection of CIGB-300 in a cell line-based xenograft corroborated CIGB-300's anti-tumor effects and suggested concurrent in situ reductions of CSNK2ɑ subunit and downstream RPS6s235/236 phosphorylation. Overall, CIGB-300 therapeutic hypothesis and antineoplastic effects demonstrated herein, further support the evaluation of this clinical-grade CK2 inhibitor in advanced NSCLC with limited therapeutic options.
Collapse
Affiliation(s)
- Ying Yi
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan Province, People's Republic of China
| | - Lingfeng Dai
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan Province, People's Republic of China
| | - Yaqin Lan
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan Province, People's Republic of China
| | - Changyuan Tan
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan Province, People's Republic of China
| | - Dania M Vázquez-Blomquist
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana, 10600, Cuba
| | - Guirong Zeng
- Hunan Pharmaceutical Medicines Research Center (HPMRC), Kangtian Road No. 123, National Biological Industry Base, Changsha, Hunan Province, People's Republic of China
| | - Dejian Jiang
- Hunan Pharmaceutical Medicines Research Center (HPMRC), Kangtian Road No. 123, National Biological Industry Base, Changsha, Hunan Province, People's Republic of China
| | - Ke Yang
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan Province, People's Republic of China.
| | - Silvio E Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana, 10600, Cuba.
| | - Yasser Perera
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Development and Construction Investment Co., Ltd. (YDCI), Yangjiaqiao Street, Lengshuitan District, Yongzhou City, 425000, Hunan Province, People's Republic of China.
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana, 10600, Cuba.
| |
Collapse
|
3
|
Rodríguez-Ulloa A, Rosales M, Ramos Y, Guirola O, González LJ, Wiśniewski JR, Perera Y, Perea SE, Besada V. "Phosphoproteomic quantification based on phosphopeptide intensity or occupancy? An evaluation based on casein kinase 2 downstream effects". J Proteomics 2024; 307:105269. [PMID: 39098729 DOI: 10.1016/j.jprot.2024.105269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Quantitative phosphoproteomic data has mostly been reported from experiments comparing relative phosphopeptides intensities in two or more different conditions, while the ideal parameter to compare is phosphopeptides occupancies. This term is scarcely used and therefore barely implemented in phosphoproteomics studies, and this should be of concern for the scientific journals. In order to demonstrate the relevance of this issue, here we show how the method of choice affects the interpretation of the data. The phosphoproteomic profile modulated in two AML cell lines after CK2 inhibition with CIGB-300 or CX-4945 is shown. Following the downstream action of CK2 the phosphosite intensity and occupancy results were compared to validate the best approach for quantitative phosphoproteomic studies. Even when the total number of quantified phosphopeptides was higher by using the intensity calculation, in all the cases the percent of CK2 consensus sequences which were down-regulated in response to CK2 inhibition was higher using the phosphosite occupancy quantification. To note, a high number of CK2 consensus sequences was found down-regulated with at least a 10% or 15% of phosphosite occupancy variation illustrating that low thresholds of occupancy modulation might be indicative of biological effect. Additionally, several biological processes only appear significantly over-represented in the phosphoproteome quantified by occupancy. The functional enrichment analysis per ranges of occupancy variations also illustrated clear differences among AML cell lines subjected to CK2 inhibition by CX-4945. A low overlap between the phosphoproteomes quantified by intensity and occupancy was obtained illustrating that new developments in proteomics techniques are needed to improve the performance of the occupancy approach. Even in such context, results indicate that occupancy quantification performs better than phosphorylation quantification based on intensity reinforcing the importance of such quantification approach to describe phosphoproteomic data.
Collapse
Affiliation(s)
- Arielis Rodríguez-Ulloa
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering& Biotechnology (CIGB), Havana 10600, Cuba.
| | - Mauro Rosales
- Department of Animal and Human Biology, Faculty of Biology, University of Havana, Havana 10600, Cuba; Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba.
| | - Yassel Ramos
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering& Biotechnology (CIGB), Havana 10600, Cuba.
| | - Osmany Guirola
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering& Biotechnology (CIGB), Havana 10600, Cuba.
| | - Luis J González
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering& Biotechnology (CIGB), Havana 10600, Cuba.
| | - Jacek R Wiśniewski
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Munich, Germany.
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba; China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou City 425000, Hunan Province, China.
| | - Silvio E Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering & Biotechnology (CIGB), Havana 10600, Cuba.
| | - Vladimir Besada
- Proteomics Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering& Biotechnology (CIGB), Havana 10600, Cuba.
| |
Collapse
|
4
|
Al-Qadhi MA, Yahya TAA, El-Nassan HB. Recent Advances in the Discovery of CK2 Inhibitors. ACS OMEGA 2024; 9:20702-20719. [PMID: 38764653 PMCID: PMC11097362 DOI: 10.1021/acsomega.3c10478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/21/2024]
Abstract
CK2 is a vital enzyme that phosphorylates a large number of substrates and thereby controls many processes in the body. Its upregulation was reported in many cancer types. Inhibitors of CK2 might have anticancer activity, and two compounds are currently under clinical trials. However, both compounds are ATP-competitive inhibitors that may have off-target side effects. The development of allosteric and dual inhibitors can overcome this drawback. These inhibitors showed higher selectivity and specificity for the CK2 enzyme compared to the ATP-competitive inhibitors. The present review summarizes the efforts exerted in the last five years in the design of CK2 inhibitors.
Collapse
Affiliation(s)
- Mustafa A. Al-Qadhi
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Sana’a University, 18084 Sana’a, Yemen
| | - Tawfeek A. A. Yahya
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Sana’a University, 18084 Sana’a,Yemen
| | - Hala B. El-Nassan
- Pharmaceutical
Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
CIGB-300 Anticancer Peptide Differentially Interacts with CK2 Subunits and Regulates Specific Signaling Mediators in a Highly Sensitive Large Cell Lung Carcinoma Cell Model. Biomedicines 2022; 11:biomedicines11010043. [PMID: 36672551 PMCID: PMC9856093 DOI: 10.3390/biomedicines11010043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Large cell lung carcinoma (LCLC) is one form of NSCLC that spreads more aggressively than some other forms, and it represents an unmet medical need. Here, we investigated for the first time the effect of the anti-CK2 CIGB-300 peptide in NCI-H460 cells as an LCLC model. NCI-H460 cells were highly sensitive toward CIGB-300 cytotoxicity, reaching a peak of apoptosis at 6 h. Moreover, CIGB-300 slightly impaired the cell cycle of NCI-H460 cells. The CIGB-300 interactomics profile revealed in more than 300 proteins that many of them participated in biological processes relevant in cancer. Interrogation of the CK2 subunits targeting by CIGB-300 indicated the higher binding of the peptide to the CK2α' catalytic subunit by in vivo pull-down assays plus immunoblotting analysis and confocal microscopy. The down-regulation of both phosphorylation and protein levels of the ribonuclear protein S6 (RPS6) was observed 48 h post treatment. Altogether, we have found that NCI-H460 cells are the most CIGB-300-sensitive solid tumor cell line described so far, and also, the findings we provide here uncover novel features linked to CK2 targeting by the CIGB-300 anticancer peptide.
Collapse
|
6
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
7
|
Ramón AC, Basukala O, Massimi P, Thomas M, Perera Y, Banks L, Perea SE. CIGB-300 Peptide Targets the CK2 Phospho-Acceptor Domain on Human Papillomavirus E7 and Disrupts the Retinoblastoma (RB) Complex in Cervical Cancer Cells. Viruses 2022; 14:v14081681. [PMID: 36016303 PMCID: PMC9414295 DOI: 10.3390/v14081681] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
CIGB-300 is a clinical-grade anti-Protein Kinase CK2 peptide, binding both its substrate’s phospho-acceptor site and the CK2α catalytic subunit. The cyclic p15 inhibitory domain of CIGB-300 was initially selected in a phage display library screen for its ability to bind the CK2 phospho-acceptor domain ofHPV-16 E7. However, the actual role of this targeting in CIGB-300 antitumoral mechanism remains unexplored. Here, we investigated the physical interaction of CIGB-300 with HPV-E7 and its impact on CK2-mediated phosphorylation. Hence, we studied the relevance of targeting E7 phosphorylation for the cytotoxic effect induced by CIGB-300. Finally, co-immunoprecipitation experiments followed by western blotting were performed to study the impact of the peptide on the E7–pRB interaction. Interestingly, we found a clear binding of CIGB-300 to the N terminal region of E7 proteins of the HPV-16 type. Accordingly, the in vivo physical interaction of the peptide with HPV-16 E7 reduced CK2-mediated phosphorylation of E7, as well as its binding to the tumor suppressor pRB. However, the targeting of E7 phosphorylation by CIGB-300 seemed to be dispensable for the induction of cell death in HPV-18 cervical cancer-derived C4-1 cells. These findings unveil novel molecular clues to the means by which CIGB-300 triggers cell death in cervical cancer cells.
Collapse
Affiliation(s)
- Ailyn C. Ramón
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
| | - Om Basukala
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Paola Massimi
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Miranda Thomas
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd., Lengshuitan District, Yongzhou 425000, China
| | - Lawrence. Banks
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
- Correspondence: (L.B.); (S.E.P.)
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
- Correspondence: (L.B.); (S.E.P.)
| |
Collapse
|
8
|
The Role of Protein Kinase CK2 in Development and Disease Progression: A Critical Review. J Dev Biol 2022; 10:jdb10030031. [PMID: 35997395 PMCID: PMC9397010 DOI: 10.3390/jdb10030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/01/2023] Open
Abstract
Protein kinase CK2 (CK2) is a ubiquitous holoenzyme involved in a wide array of developmental processes. The involvement of CK2 in events such as neurogenesis, cardiogenesis, skeletogenesis, and spermatogenesis is essential for the viability of almost all organisms, and its role has been conserved throughout evolution. Further into adulthood, CK2 continues to function as a key regulator of pathways affecting crucial processes such as osteogenesis, adipogenesis, chondrogenesis, neuron differentiation, and the immune response. Due to its vast role in a multitude of pathways, aberrant functioning of this kinase leads to embryonic lethality and numerous diseases and disorders, including cancer and neurological disorders. As a result, CK2 is a popular target for interventions aiming to treat the aforementioned diseases. Specifically, two CK2 inhibitors, namely CX-4945 and CIBG-300, are in the early stages of clinical testing and exhibit promise for treating cancer and other disorders. Further, other researchers around the world are focusing on CK2 to treat bone disorders. This review summarizes the current understanding of CK2 in development, the structure of CK2, the targets and signaling pathways of CK2, the implication of CK2 in disease progression, and the recent therapeutics developed to inhibit the dysregulation of CK2 function in various diseases.
Collapse
|
9
|
Naik RR, Shakya AK, Aladwan SM, El-Tanani M. Kinase Inhibitors as Potential Therapeutic Agents in the Treatment of COVID-19. Front Pharmacol 2022; 13:806568. [PMID: 35444538 PMCID: PMC9014181 DOI: 10.3389/fphar.2022.806568] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Corona virus is quickly spreading around the world. The goal of viral management is to disrupt the virus's life cycle, minimize lung damage, and alleviate severe symptoms. Numerous strategies have been used, including repurposing existing antivirals or drugs used in previous viral outbreaks. One such strategy is to repurpose FDA-approved kinase inhibitors that are potential chemotherapeutic agents and have demonstrated antiviral activity against a variety of viruses, including MERS, SARS-CoV-1, and others, by inhibiting the viral life cycle and the inflammatory response associated with COVID-19. The purpose of this article is to identify licensed kinase inhibitors that have the ability to reduce the virus's life cycle, from entrance through viral propagation from cell to cell. Several of these inhibitors, including imatinib, ruxolitinib, silmitasertib, and tofacitinib (alone and in conjunction with hydroxychloroquine), are now undergoing clinical studies to determine their efficacy as a possible treatment drug. The FDA approved baricitinib (a Janus kinase inhibitor) in combination with remdesivir for the treatment of COVID-19 patients receiving hospital care in November 2020. While in vitro trials with gilteritinib, fedratinib, and osimertinib are encouraging, further research is necessary before these inhibitors may be used to treat COVID-19 patients.
Collapse
Affiliation(s)
- Rajashri R. Naik
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Ashok K. Shakya
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Safwan M. Aladwan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mohamed El-Tanani
- Department of Biopharmaceutics and Clinical Pharmacy, Al-Ahliyya Amman University, Faculty of Pharmacy, Amman, Jordan
- Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Centre, Al-Ahliyya Amman University, Amman, Jordan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| |
Collapse
|
10
|
Rosales M, Rodríguez-Ulloa A, Pérez GV, Besada V, Soto T, Ramos Y, González LJ, Zettl K, Wiśniewski JR, Yang K, Perera Y, Perea SE. CIGB-300-Regulated Proteome Reveals Common and Tailored Response Patterns of AML Cells to CK2 Inhibition. Front Mol Biosci 2022; 9:834814. [PMID: 35359604 PMCID: PMC8962202 DOI: 10.3389/fmolb.2022.834814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/01/2022] [Indexed: 01/13/2023] Open
Abstract
Protein kinase CK2 is a highly pleiotropic and ubiquitously expressed Ser/Thr kinase with instrumental roles in normal and pathological states, including neoplastic phenotype in solid tumor and hematological malignancies. In line with previous reports, CK2 has been suggested as an attractive prognostic marker and molecular target in acute myeloid leukemia (AML), a blood malignant disorder that remains as an unmet medical need. Accordingly, this work investigates the complex landscape of molecular and cellular perturbations supporting the antileukemic effect exerted by CK2 inhibition in AML cells. To identify and functionally characterize the proteomic profile differentially modulated by the CK2 peptide-based inhibitor CIGB-300, we carried out LC-MS/MS and bioinformatic analysis in human cell lines representing two differentiation stages and major AML subtypes. Using this approach, 109 and 129 proteins were identified as significantly modulated in HL-60 and OCI-AML3 cells, respectively. In both proteomic profiles, proteins related to apoptotic cell death, cell cycle progression, and transcriptional/translational processes appeared represented, in agreement with previous results showing the impact of CIGB-300 in AML cell proliferation and viability. Of note, a group of proteins involved in intracellular redox homeostasis was specifically identified in HL-60 cell-regulated proteome, and flow cytometric analysis also confirmed a differential effect of CIGB-300 over reactive oxygen species (ROS) production in AML cells. Thus, oxidative stress might play a relevant role on CIGB-300-induced apoptosis in HL-60 but not in OCI-AML3 cells. Importantly, these findings provide first-hand insights concerning the CIGB-300 antileukemic effect and draw attention to the existence of both common and tailored response patterns triggered by CK2 inhibition in different AML backgrounds, a phenomenon of particular relevance with regard to the pharmacologic blockade of CK2 and personalized medicine.
Collapse
Affiliation(s)
- Mauro Rosales
- Department of Animal and Human Biology, Faculty of Biology, University of Havana (UH), Havana, Cuba
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, CIGB, Havana, Cuba
| | - George V. Pérez
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Vladimir Besada
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, CIGB, Havana, Cuba
| | - Thalia Soto
- Department of Animal and Human Biology, Faculty of Biology, University of Havana (UH), Havana, Cuba
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, CIGB, Havana, Cuba
| | - Luis J. González
- Mass Spectrometry Laboratory, Proteomics Group, Department of System Biology, Biomedical Research Division, CIGB, Havana, Cuba
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Munich, Germany
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Munich, Germany
| | - Ke Yang
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd., Yongzhou, China
- *Correspondence: Ke Yang, ; Yasser Perera, ; Silvio E. Perea,
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd., Yongzhou, China
- *Correspondence: Ke Yang, ; Yasser Perera, ; Silvio E. Perea,
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana, Cuba
- *Correspondence: Ke Yang, ; Yasser Perera, ; Silvio E. Perea,
| |
Collapse
|
11
|
Ramón AC, Pérez GV, Caballero E, Rosales M, Aguilar D, Vázquez-Blomquist D, Ramos Y, Rodríguez-Ulloa A, Falcón V, Rodríguez-Moltó MP, Yang K, Perera Y, Perea SE. Targeting of Protein Kinase CK2 Elicits Antiviral Activity on Bovine Coronavirus Infection. Viruses 2022; 14:552. [PMID: 35336959 PMCID: PMC8949182 DOI: 10.3390/v14030552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 12/07/2022] Open
Abstract
Coronaviruses constitute a global threat to the human population; therefore, effective pan-coronavirus antiviral drugs are required to tackle future re-emerging virus outbreaks. Protein kinase CK2 has been suggested as a promising therapeutic target in COVID-19 owing to the in vitro antiviral activity observed after both pharmacologic and genetic inhibition of the enzyme. Here, we explored the putative antiviral effect of the anti-CK2 peptide CIGB-325 on bovine coronavirus (BCoV) infection using different in vitro viral infected cell-based assays. The impact of the peptide on viral mRNA and protein levels was determined by qRT-PCR and Western blot, respectively. Finally, pull-down experiments followed by Western blot and/or mass spectrometry analysis were performed to identify CIGB-325-interacting proteins. We found that CIGB-325 inhibited both the cytopathic effect and the number of plaque-forming units. Accordingly, intracellular viral protein levels were clearly reduced after treatment of BCoV-infected cells, with CIGB-325 determined by immunocytochemistry. Pull-down assay data revealed the physical interaction of CIGB-325 with viral nucleocapsid (N) protein and a group of bona fide CK2 cellular substrates. Our findings evidence in vitro antiviral activity of CIGB-325 against bovine coronavirus as well as some molecular clues that might support such effect. Altogether, data provided here strengthen the rationale of inhibiting CK2 to treat betacoronavirus infections.
Collapse
Affiliation(s)
- Ailyn C. Ramón
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.C.R.); (G.V.P.); (E.C.); (M.R.); (D.A.)
| | - George V. Pérez
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.C.R.); (G.V.P.); (E.C.); (M.R.); (D.A.)
| | - Evelin Caballero
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.C.R.); (G.V.P.); (E.C.); (M.R.); (D.A.)
| | - Mauro Rosales
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.C.R.); (G.V.P.); (E.C.); (M.R.); (D.A.)
- Department of Animal and Human Biology, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Daylén Aguilar
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.C.R.); (G.V.P.); (E.C.); (M.R.); (D.A.)
| | - Dania Vázquez-Blomquist
- Pharmacogenomic Group, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.R.); (A.R.-U.)
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.R.); (A.R.-U.)
| | - Viviana Falcón
- Microscopy Laboratory, Department of System Biology, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - María Pilar Rodríguez-Moltó
- Department of Agricultural Research, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - Ke Yang
- China-Cuba Biotechnology Joint Innovation Center, Yongzhou Zhong Gu Biotechnology, Yongzhou 425000, China
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.C.R.); (G.V.P.); (E.C.); (M.R.); (D.A.)
- China-Cuba Biotechnology Joint Innovation Center, Yongzhou Zhong Gu Biotechnology, Yongzhou 425000, China
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (A.C.R.); (G.V.P.); (E.C.); (M.R.); (D.A.)
| |
Collapse
|
12
|
Miranda J, Bringas R, Fernandez-de-Cossio J, Perera-Negrin Y. Targeting CK2 mediated signaling to impair/tackle SARS-CoV-2 infection: a computational biology approach. Mol Med 2021; 27:161. [PMID: 34930105 PMCID: PMC8686809 DOI: 10.1186/s10020-021-00424-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/13/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Similarities in the hijacking mechanisms used by SARS-CoV-2 and several types of cancer, suggest the repurposing of cancer drugs to treat Covid-19. CK2 kinase antagonists have been proposed for cancer treatment. A recent study in cells infected with SARS-CoV-2 found a significant CK2 kinase activity, and the use of a CK2 inhibitor showed antiviral responses. CIGB-300, originally designed as an anticancer peptide, is an antagonist of CK2 kinase activity that binds to the CK2 phospho-acceptor sites. Recent preliminary results show the antiviral activity of CIGB-300 using a surrogate model of coronavirus. Here we present a computational biology study that provides evidence, at the molecular level, of how CIGB-300 may interfere with the SARS-CoV-2 life cycle within infected human cells. METHODS Sequence analyses and data from phosphorylation studies were combined to predict infection-induced molecular mechanisms that can be interfered by CIGB-300. Next, we integrated data from multi-omics studies and data focusing on the antagonistic effect on the CK2 kinase activity of CIGB-300. A combination of network and functional enrichment analyses was used. RESULTS Firstly, from the SARS-CoV studies, we inferred the potential incidence of CIGB-300 in SARS-CoV-2 interference on the immune response. Afterwards, from the analysis of multiple omics data, we proposed the action of CIGB-300 from the early stages of viral infections perturbing the virus hijacking of RNA splicing machinery. We also predicted the interference of CIGB-300 in virus-host interactions that are responsible for the high infectivity and the particular immune response to SARS-CoV-2 infection. Furthermore, we provided evidence of how CIGB-300 may participate in the attenuation of phenotypes related to muscle, bleeding, coagulation and respiratory disorders. CONCLUSIONS Our computational analysis proposes putative molecular mechanisms that support the antiviral activity of CIGB-300.
Collapse
Affiliation(s)
- Jamilet Miranda
- Division of Informatics, Department of Bioinformatics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Ricardo Bringas
- Division of Informatics, Department of Bioinformatics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Jorge Fernandez-de-Cossio
- Division of Informatics, Department of Bioinformatics, Center for Genetic Engineering and Biotechnology, Havana, Cuba
| | - Yasser Perera-Negrin
- Laboratory of Molecular Oncology, Division of Biomedical Research, Department of Pharmaceuticals, Center for Genetic Engineering and Biotechnology, Havana, Cuba
- China-Cuba Biotechnology Joint Innovation Center, Yongzhou Zhong Gu Biotechnology Co., Yongzhou, Hunan People’s Republic of China
| |
Collapse
|
13
|
Birus R, El-Awaad E, Ballentin L, Alchab F, Aichele D, Ettouati L, Götz C, Le Borgne M, Jose J. 4,5,7-Trisubstituted indeno[1,2-b]indole inhibits CK2 activity in tumor cells equivalent to CX-4945 and shows strong anti-migratory effects. FEBS Open Bio 2021; 12:394-411. [PMID: 34873879 PMCID: PMC8804612 DOI: 10.1002/2211-5463.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/22/2021] [Accepted: 12/06/2021] [Indexed: 11/07/2022] Open
Abstract
Highly pleiotropic and constitutively active protein kinase CK2 is a key target in cancer therapy, but only one small-molecule inhibitor has reached clinical trials-CX-4945. In this study, we present the indeno[1,2-b]indole derivative 5-isopropyl-4-methoxy-7-methyl-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (5a-2) that decreased the intracellular CK2 activity in A431, A549, and LNCaP tumor cell lines analogous to CX-4945 (> 75% inhibition at 20 µm) and similarly blocked CK2-specific Akt phosphorylation in LNCaP cells. Cellular uptake analysis demonstrated higher intracellular concentrations of 5a-2 (408.3 nm) compared with CX-4945 (119.3 nm). This finding clarifies the comparable effects of both compounds on the intracellular CK2 activity despite their different inhibitory potency in vitro [IC50 = 25 nm (5a-2) and 3.7 nm (CX-4945)]. Examination of the effects of both CK2 inhibitors on cancer cells using live-cell imaging revealed notable differences. Whereas CX-4945 showed a stronger pro-apoptotic effect on tumor cells, 5a-2 was more effective in inhibiting tumor cell migration. Our results showed that 49% of intracellular CX-4945 was localized in the nuclear fraction, whereas 71% of 5a-2 was detectable in the cytoplasm. The different subcellular distribution, and thus the site of CK2 inhibition, provides a possible explanation for the different cellular effects. Our study indicates that investigating CK2 inhibition-mediated cellular effects in relation to the subcellular sites of CK2 inhibition may help to improve our understanding of the preferential roles of CK2 within different cancer cell compartments.
Collapse
Affiliation(s)
- Robin Birus
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Ehab El-Awaad
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany.,Department of Pharmacology, Faculty of Medicine, Assiut University, Egypt
| | - Laurens Ballentin
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Faten Alchab
- EEA 4446 Bioactive Molecules and Medicinal Chemistry, Faculté de Pharmacie-ISPB, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Université Claude Bernard Lyon 1, Université de Lyon, France.,Faculty of Pharmacy, Manara University, Latakia, Syria
| | - Dagmar Aichele
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| | - Laurent Ettouati
- CNRS UMR 5246 Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS), Faculté de Pharmacie, ISPB, Université Lyon 1, Université de Lyon, France
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, Germany
| | - Marc Le Borgne
- Small Molecules for Biological Targets Team, Centre de recherche en cancérologie de Lyon, Centre Léon Bérard, CNRS 5286, INSERM 1052, Université Claude Bernard Lyon 1, Université de Lyon, France
| | - Joachim Jose
- Institute of Pharmaceutical and Medicinal Chemistry, Westfälische Wilhelms-Universtität Münster, Germany
| |
Collapse
|
14
|
CK2 Regulation: Perspectives in 2021. Biomedicines 2021; 9:biomedicines9101361. [PMID: 34680478 PMCID: PMC8533506 DOI: 10.3390/biomedicines9101361] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 12/20/2022] Open
Abstract
The protein kinase CK2 (CK2) family encompasses a small number of acidophilic serine/threonine kinases that phosphorylate substrates involved in numerous biological processes including apoptosis, cell proliferation, and the DNA damage response. CK2 has also been implicated in many human malignancies and other disorders including Alzheimer′s and Parkinson’s diseases, and COVID-19. Interestingly, no single mechanism describes how CK2 is regulated, including activation by external proteins or domains, phosphorylation, or dimerization. Furthermore, the kinase has an elongated activation loop that locks the kinase into an active conformation, leading CK2 to be labelled a constitutively active kinase. This presents an interesting paradox that remains unanswered: how can a constitutively active kinase regulate biological processes that require careful control? Here, we highlight a selection of studies where CK2 activity is regulated at the substrate level, and discuss them based on the regulatory mechanism. Overall, this review describes numerous biological processes where CK2 activity is regulated, highlighting how a constitutively active kinase can still control numerous cellular activities. It is also evident that more research is required to fully elucidate the mechanisms that regulate CK2 and what causes aberrant CK2 signaling in disease.
Collapse
|
15
|
Targeting of Protein Kinase CK2 in Acute Myeloid Leukemia Cells Using the Clinical-Grade Synthetic-Peptide CIGB-300. Biomedicines 2021; 9:biomedicines9070766. [PMID: 34356831 PMCID: PMC8301452 DOI: 10.3390/biomedicines9070766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 12/15/2022] Open
Abstract
Protein kinase CK2 has emerged as an attractive therapeutic target in acute myeloid leukemia (AML), an advent that becomes particularly relevant since the treatment of this hematological neoplasia remains challenging. Here we explored for the first time the effect of the clinical-grade peptide-based CK2 inhibitor CIGB-300 on AML cells proliferation and viability. CIGB-300 internalization and subcellular distribution were also studied, and the role of B23/nucleophosmin 1 (NPM1), a major target for the peptide in solid tumors, was addressed by knock-down in model cell lines. Finally, pull-down experiments and phosphoproteomic analysis were performed to study CIGB-interacting proteins and identify the array of CK2 substrates differentially modulated after treatment with the peptide. Importantly, CIGB-300 elicited a potent anti-proliferative and proapoptotic effect in AML cells, with more than 80% of peptide transduced cells within three minutes. Unlike solid tumor cells, NPM1 did not appear to be a major target for CIGB-300 in AML cells. However, in vivo pull-down experiments and phosphoproteomic analysis evidenced that CIGB-300 targeted the CK2α catalytic subunit, different ribosomal proteins, and inhibited the phosphorylation of a common CK2 substrates array among both AML backgrounds. Remarkably, our results not only provide cellular and molecular insights unveiling the complexity of the CIGB-300 anti-leukemic effect in AML cells but also reinforce the rationale behind the pharmacologic blockade of protein kinase CK2 for AML-targeted therapy.
Collapse
|
16
|
Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 2021; 6:183. [PMID: 33994545 PMCID: PMC8126563 DOI: 10.1038/s41392-021-00567-7] [Citation(s) in RCA: 200] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.
Collapse
|
17
|
Dominguez I, Cruz-Gamero JM, Corasolla V, Dacher N, Rangasamy S, Urbani A, Narayanan V, Rebholz H. Okur-Chung neurodevelopmental syndrome-linked CK2α variants have reduced kinase activity. Hum Genet 2021; 140:1077-1096. [PMID: 33944995 DOI: 10.1007/s00439-021-02280-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/31/2021] [Indexed: 12/22/2022]
Abstract
The Okur-Chung neurodevelopmental syndrome, or OCNDS, is a newly discovered rare neurodevelopmental disorder. It is characterized by developmental delay, intellectual disability, behavioral problems (hyperactivity, repetitive movements and social interaction deficits), hypotonia, epilepsy and language/verbalization deficits. OCNDS is linked to de novo mutations in CSNK2A1, that lead to missense or deletion/truncating variants in the encoded protein, the protein kinase CK2α. Eighteen different missense CK2α mutations have been identified to date; however, no biochemical or cell biological studies have yet been performed to clarify the functional impact of such mutations. Here, we show that 15 different missense CK2α mutations lead to varying degrees of loss of kinase activity as recombinant purified proteins and when mutants are ectopically expressed in mammalian cells. We further detect changes in the phosphoproteome of three patient-derived fibroblast lines and show that the subcellular localization of CK2α is altered for some of the OCNDS-linked variants and in patient-derived fibroblasts. Our data argue that reduced kinase activity and abnormal localization of CK2α may underlie the OCNDS phenotype.
Collapse
Affiliation(s)
- I Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA
| | - J M Cruz-Gamero
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - V Corasolla
- Laboratorio di Proteomica e Metabonomica, CERC-Fondazione S.Lucia, Via del Fosso di Fiorano 64, 00143, Roma, Italy
| | - N Dacher
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France
| | - S Rangasamy
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - A Urbani
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy.,Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168, Roma, Italy
| | - V Narayanan
- Translational Genomics Research Institute (TGen), Phoenix, AZ, 85004, USA
| | - H Rebholz
- Institut de Psychiatrie et Neurosciences de Paris (IPNP), UMR S1266, INSERM, Université de Paris, Paris, France. .,Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168, Roma, Italy. .,GHU Psychiatrie et Neurosciences, Paris, France. .,Center of Neurodegeneration, Faculty of Medicine, Danube Private University, Krems, Austria.
| |
Collapse
|
18
|
Cruz L, Baladrón I, Rittoles A, Díaz PA, Valenzuela C, Santana R, Vázquez MM, García A, Chacón D, Thompson D, Perera G, González A, Reyes R, Torres L, Pérez J, Valido Y, Rodriguez R, Vázquez-Bloomquist DM, Rosales M, Ramón AC, Pérez GV, Guillén G, Muzio V, Perera Y, Perea SE, ATENEA-Co-300 Group. Treatment with an Anti-CK2 Synthetic Peptide Improves Clinical Response in COVID-19 Patients with Pneumonia. A Randomized and Controlled Clinical Trial. ACS Pharmacol Transl Sci 2021; 4:206-212. [PMID: 33615173 PMCID: PMC7755077 DOI: 10.1021/acsptsci.0c00175] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 12/20/2022]
Abstract
The instrumental role of CK2 in the SARS-CoV-2 infection has pointed out this protein kinase as promising therapeutic target in COVID-19. Anti-SARS-CoV-2 activity has been reported by CK2 inhibitors in vitro; however, no anti-CK2 clinical approach has been investigated in COVID-19. This trial aimed to explore the safety and putative clinical benefit of CIGB-325, an anti-CK2 peptide previously assessed in cancer patients. A monocentric, controlled, and therapeutic exploratory trial of intravenous CIGB-325 in adults hospitalized with COVID-19 was performed. Twenty patients were randomly assigned to receive CIGB-325 (2.5 mg/kg/day during 5-consecutive days) plus standard-of-care (10 patients) or standard-of-care alone (10 patients). Adverse events were classified by the WHO Adverse Reaction Terminology. Parametric and nonparametric statistical analyses were performed according to the type of variable. Considering the small sample size, differences between groups were estimated by Bayesian analysis. CIGB-325 induced transient mild and/or moderate adverse events such as pruritus, flushing, and rash in some patients. Both therapeutic regimens were similar with respect to SARS-CoV-2 clearance in nasopharynx swabs over time. However, CIGB-325 significantly reduced the median number of pulmonary lesions (9.5 to 5.5, p = 0.042) at day 7 and the proportion of patients with such an effect was also higher according to Bayesian analysis (pDif > 0; 0.951). Also, CIGB-325 significantly reduced the CPK (p = 0.007) and LDH (p = 0.028) plasma levels at day 7. Our preliminary findings suggest that this anti-CK2 clinical approach could be combined with standard-of-care in COVID-19 in larger studies.
Collapse
Affiliation(s)
| | - Idania Baladrón
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | | - Pablo A. Díaz
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | | - Raúl Santana
- Central
Hospital “Luis Diaz Soto”, Havana 19130, Cuba
| | - Maria M. Vázquez
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | | - Deyli Chacón
- Central
Hospital “Luis Diaz Soto”, Havana 19130, Cuba
| | | | | | - Ariel González
- International
Center of Health “La Pradera”, Havana 11600, Cuba
| | - Rafael Reyes
- National
Institute of Oncology and Radiobiology, Havana 10400, Cuba
| | - Loida Torres
- International
Center of Health “La Pradera”, Havana 11600, Cuba
| | - Jesus Pérez
- Central
Hospital “Luis Diaz Soto”, Havana 19130, Cuba
| | - Yania Valido
- Central
Hospital “Luis Diaz Soto”, Havana 19130, Cuba
| | | | | | - Mauro Rosales
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
- Faculty of
Biology, University of Havana, Havana 10400, Cuba
| | - Ailyn C. Ramón
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - George V. Pérez
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Gerardo Guillén
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Verena Muzio
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | - Yasser Perera
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
- China−Cuba
Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu
Biotechnology Co., Ltd, Hunan 425000, China
| | - Silvio E. Perea
- Center
for Genetic Engineering and Biotechnology, Havana 10600, Cuba
| | | |
Collapse
|
19
|
Rosales M, Rodríguez-Ulloa A, Besada V, Ramón AC, Pérez GV, Ramos Y, Guirola O, González LJ, Zettl K, Wiśniewski JR, Perera Y, Perea SE. Phosphoproteomic Landscape of AML Cells Treated with the ATP-Competitive CK2 Inhibitor CX-4945. Cells 2021; 10:cells10020338. [PMID: 33562780 PMCID: PMC7915770 DOI: 10.3390/cells10020338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
Casein kinase 2 (CK2) regulates a plethora of proteins with pivotal roles in solid and hematological neoplasia. Particularly, in acute myeloid leukemia (AML) CK2 has been pointed as an attractive therapeutic target and prognostic marker. Here, we explored the impact of CK2 inhibition over the phosphoproteome of two cell lines representing major AML subtypes. Quantitative phosphoproteomic analysis was conducted to evaluate changes in phosphorylation levels after incubation with the ATP-competitive CK2 inhibitor CX-4945. Functional enrichment, network analysis, and database mining were performed to identify biological processes, signaling pathways, and CK2 substrates that are responsive to CX-4945. A total of 273 and 1310 phosphopeptides were found differentially modulated in HL-60 and OCI-AML3 cells, respectively. Despite regulated phosphopeptides belong to proteins involved in multiple biological processes and signaling pathways, most of these perturbations can be explain by direct CK2 inhibition rather than off-target effects. Furthermore, CK2 substrates regulated by CX-4945 are mainly related to mRNA processing, translation, DNA repair, and cell cycle. Overall, we evidenced that CK2 inhibitor CX-4945 impinge on mediators of signaling pathways and biological processes essential for primary AML cells survival and chemosensitivity, reinforcing the rationale behind the pharmacologic blockade of protein kinase CK2 for AML targeted therapy.
Collapse
Affiliation(s)
- Mauro Rosales
- Department of Animal and Human Biology, Faculty of Biology, University of Havana (UH), Havana 10400, Cuba;
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - Arielis Rodríguez-Ulloa
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Vladimir Besada
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Ailyn C. Ramón
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - George V. Pérez
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
| | - Yassel Ramos
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Osmany Guirola
- Bioinformatics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba;
| | - Luis J. González
- Mass Spectrometry Laboratory, Proteomics Group, Department of Systems Biology, Biomedical Research Division, CIGB, Havana 10600, Cuba; (A.R.-U.); (V.B.); (Y.R.); (L.J.G.)
| | - Katharina Zettl
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Jacek R. Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Munich, Germany; (K.Z.); (J.R.W.)
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd, Lengshuitan District, Yongzhou 425000, China
- Correspondence: (Y.P.); (S.E.P.)
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (G.V.P.)
- Correspondence: (Y.P.); (S.E.P.)
| |
Collapse
|
20
|
Protein kinase CK2 inhibition as a pharmacological strategy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 124:23-46. [PMID: 33632467 DOI: 10.1016/bs.apcsb.2020.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CK2 is a constitutively active Ser/Thr protein kinase which phosphorylates hundreds of substrates. Since they are primarily related to survival and proliferation pathways, the best-known pathological roles of CK2 are in cancer, where its targeting is currently being considered as a possible therapy. However, CK2 activity has been found instrumental in many other human pathologies, and its inhibition will expectably be extended to different purposes in the near future. Here, after a description of CK2 features and implications in diseases, we analyze the different inhibitors and strategies available to target CK2, and update the results so far obtained by their in vivo application.
Collapse
|
21
|
Preclinical efficacy of CIGB-300, an anti-CK2 peptide, on breast cancer metastasic colonization. Sci Rep 2020; 10:14689. [PMID: 32895446 PMCID: PMC7477577 DOI: 10.1038/s41598-020-71854-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/12/2020] [Indexed: 12/01/2022] Open
Abstract
CK2 is a serine/threonine kinase that is overexpressed in breast cancer and its inhibition is associated to reduced tumor growth and disease progression. CIGB-300 is an antitumor peptide with a novel mechanism of action, since it binds to protein kinase CK2 catalytic subunit alpha and to CK2 substrates thus preventing the enzyme activity. Our aim was to evaluate the potential therapeutic benefits of CIGB-300 on breast cancer disease using experimental models with translational relevance. We demonstrated that CIGB-300 reduces breast cancer cell growth in MDA-MB-231, MCF-7 and F3II cells, exerting a pro-apoptotic action and cell cycle arrest. We also found that CIGB-300 decreased cell adhesion, migration and clonogenic capacity of malignant cells. Effect on experimental breast cancer lung metastasis was evaluated after surgical removal of primary F3II tumors or after tail vein injection of tumor cells, also we evaluated CIGB-300 effect on spontaneous lung metastasis in an orthotopic model. Systemic CIGB-300 treatment inhibited breast cancer colonization of the lung, reducing the size and number of metastatic lesions. The present preclinical study establishes for the first time the efficacy of CIGB-300 on breast cancer. These encouraging results suggest that CIGB-300 could be used for the management of breast cancer as an adjuvant therapy after surgery, limiting tumor metastatic spread and thus protecting the patient from distant recurrence.
Collapse
|
22
|
Perera Y, Melão A, Ramón AC, Vázquez D, Ribeiro D, Perea SE, Barata JT. Clinical-Grade Peptide-Based Inhibition of CK2 Blocks Viability and Proliferation of T-ALL Cells and Counteracts IL-7 Stimulation and Stromal Support. Cancers (Basel) 2020; 12:cancers12061377. [PMID: 32471246 PMCID: PMC7352628 DOI: 10.3390/cancers12061377] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Despite remarkable advances in the treatment of T-cell acute lymphoblastic leukemia (T-ALL), relapsed cases are still a major challenge. Moreover, even successful cases often face long-term treatment-associated toxicities. Targeted therapeutics may overcome these limitations. We have previously demonstrated that casein kinase 2 (CK2)-mediated phosphatase and tensin homologue (PTEN) posttranslational inactivation, and consequent phosphatidylinositol 3-kinase (PI3K)/Akt signaling hyperactivation, leads to increased T-ALL cell survival and proliferation. We also revealed the existence of a crosstalk between CK2 activity and the signaling mediated by interleukin 7 (IL-7), a critical leukemia-supportive cytokine. Here, we evaluated the impact of CIGB-300, a the clinical-grade peptide-based CK2 inhibitor CIGB-300 on T-ALL biology. We demonstrate that CIGB-300 decreases the viability and proliferation of T-ALL cell lines and diagnostic patient samples. Moreover, CIGB-300 overcomes IL-7-mediated T-ALL cell growth and viability, while preventing the positive effects of OP9-delta-like 1 (DL1) stromal support on leukemia cells. Signaling and pull-down experiments indicate that the CK2 substrate nucleophosmin 1 (B23/NPM1) and CK2 itself are the molecular targets for CIGB-300 in T-ALL cells. However, B23/NPM1 silencing only partially recapitulates the anti-leukemia effects of the peptide, suggesting that CIGB-300-mediated direct binding to CK2, and consequent CK2 inactivation, is the mechanism by which CIGB-300 downregulates PTEN S380 phosphorylation and inhibits PI3K/Akt signaling pathway. In the context of IL-7 stimulation, CIGB-300 blocks janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway in T-ALL cells. Altogether, our results strengthen the case for anti-CK2 therapeutic intervention in T-ALL, demonstrating that CIGB-300 (given its ability to circumvent the effects of pro-leukemic microenvironmental cues) may be a valid tool for clinical intervention in this aggressive malignancy.
Collapse
Affiliation(s)
- Yasser Perera
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - Alice Melão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
| | - Ailyn C. Ramón
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - Dania Vázquez
- Pharmacogenomics Department, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba;
| | - Daniel Ribeiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
| | - Silvio E. Perea
- Laboratory of Molecular Oncology, Center for Genetic Engineering and Biotechnology, Havana 10600, Cuba; (Y.P.); (A.C.R.); (S.E.P.)
| | - João T. Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (A.M.); (D.R.)
- Correspondence:
| |
Collapse
|