1
|
Yi L, Mo A, Yang H, Yang Y, Xu Q, Yuan Y. Integrative RNA, miRNA, and 16S rRNA sequencing reveals immune-related regulation network for glycinin-induced enteritis in hybrid yellow catfish, Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂. Front Immunol 2025; 15:1475195. [PMID: 39882244 PMCID: PMC11775447 DOI: 10.3389/fimmu.2024.1475195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025] Open
Abstract
Glycinin-induced foodborne enteritis is a significant obstacle that hinders the healthy development of the aquatic industry. Glycinin causes growth retardation and intestinal damage in hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × Pelteobagrus vachelli ♂), but its immune mechanisms are largely unknown. In the current study, five experimental diets containing 0% (CK), 1.74% (G2), 3.57% (G4), 5.45% (G6), and 7.27% (G8) immunological activity of glycinin were fed to juvenile hybrid yellow catfish to reveal the mechanism of the intestinal immune response to glycinin through RNA and microRNA (miRNA) sequencing and to explore the interrelation between immune molecules and intestinal microbiota. The results demonstrated that glycinin content in the posterior intestine increased significantly and linearly with the rise of dietary glycinin levels. More than 5.45% of dietary glycinin significantly reduced the nutritional digestion and absorption function of the posterior intestine. Notably, an obvious alteration in the expression levels of inflammatory genes (tnf-α, il-1β, il-15, and tgf-β1) of the posterior intestine was observed when dietary glycinin exceeded 3.57%. Sequencing results of RNA and miRNA deciphered 4,246 differentially expressed genes (DEGs) and 28 differentially expressed miRNAs (DEmiRNAs) between the CK and G6 groups. Furthermore, enrichment analysis of DEGs and DEmiRNA target genes exhibited significant responses of the MAPK, NF-κB, and WNT pathways following experimental fish exposure to 5.45% dietary glycinin. Additionally, at the level of 3.57% in the diet, glycinin obviously inhibited the increase of microbiota, especially potential probiotics such as Ruminococcus bromii, Bacteroides plebeius, Faecalibacterium prausnitzii, and Clostridium clostridioforme. In sum, 5.45% dietary glycinin through the MAPK/NF-κB/WNT pathway induces enteritis, and inflammatory conditions could disrupt micro-ecological equilibrium through miRNA secreted by the host in hybrid yellow catfish. This study constitutes a comprehensive transcriptional perspective of how intestinal immunity responds to excessive glycinin in fish intestines.
Collapse
Affiliation(s)
- Linyuan Yi
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Aijie Mo
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Huijun Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yifan Yang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qian Xu
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongchao Yuan
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China
- Shuangshui Shuanglu Institute, Huazhong Agricultural University, Wuhan, China
- National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Konishi H, Rahmawati FN, Okamoto N, Akuta K, Inukai K, Jia W, Muramatsu F, Takakura N. Discovery of Transcription Factors Involved in the Maintenance of Resident Vascular Endothelial Stem Cell Properties. Mol Cell Biol 2024; 44:17-26. [PMID: 38247234 PMCID: PMC10829836 DOI: 10.1080/10985549.2023.2297997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
A resident vascular endothelial stem cell (VESC) population expressing CD157 has been identified recently in mice. Herein, we identified transcription factors (TFs) regulating CD157 expression in endothelial cells (ECs) that were associated with drug resistance, angiogenesis, and EC proliferation. In the first screening, we detected 20 candidate TFs through the CD157 promoter and gene expression analyses. We found that 10 of the 20 TFs induced CD157 expression in ECs. We previously reported that 70% of CD157 VESCs were side population (SP) ECs that abundantly expressed ATP-binding cassette (ABC) transporters. Here, we found that the 10 TFs increased the expression of several ABC transporters in ECs and increased the proportion of SP ECs. Of these 10 TFs, we found that six (Atf3, Bhlhe40, Egr1, Egr2, Elf3, and Klf4) were involved in the manifestation of the SP phenotype. Furthermore, the six TFs enhanced tube formation and proliferation in ECs. Single-cell RNA sequence data in liver ECs suggested that Atf3 and Klf4 contributed to the production of CD157+ VESCs in the postnatal period. We concluded that Klf4 might be important for the development and maintenance of liver VESCs. Our work suggests that a TF network is involved in the differentiation hierarchy of VESCs.
Collapse
Affiliation(s)
- Hirotaka Konishi
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fitriana N. Rahmawati
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Naoki Okamoto
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Keigo Akuta
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Koichi Inukai
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Weizhen Jia
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Fumitaka Muramatsu
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
- Laboratory of Signal Transduction, World Premier International Immunology Frontier Research Center, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Ping Z, Feng Y, Lu Y, Ai L, Jiang H. Integrated analysis of microRNA and mRNA expression profiles in Preeclampsia. BMC Med Genomics 2023; 16:309. [PMID: 38041082 PMCID: PMC10691005 DOI: 10.1186/s12920-023-01740-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Preeclampsia (PE), a pregnancy specific syndrome, is one kind of common gestational hypertension disease, which can cause maternal and perinatal mortality and morbidity. This study was conducted to identify key microRNAs (miRNAs), mRNAs and related signaling pathways in the pathogenesis of PE. METHODS Whole transcriptome sequencing and small RNA sequencing of the peripheral blood from 3 PE patients and 3 normal pregnant women were performed. Differential expressed (DE) miRNAs were identified using the DEseq2 package. Target genes of the selected upregulated and downregulated DE miRNAs were predicted. Based on the hypergeometric distribution of DE miRNA target genes, we analyzed GO enrichment and KEGG pathway enrichment using R. RESULTS Total 1291 and 1281 novel RNAs were obtained from the preeclampsia patients and healthy individuals. 70 miRNAs were screened out with significant levels with 51 significantly upregulated and 19 significantly downregulated. 44,306 genes were predicted as the targets of these miRNAs. Besides, KEGG pathway analysis revealed that the upregulated miRNAs were enriched in Glycosaminoglycan biosynthesis-chondroitin sulfate / dermatan sulfate, Base excision repair and the downregulated miRNAs were enriched in Tuberculosis, Phagosome. CONCLUSION We constructed regulatory networks of miRNAs and target genes, there were 2208 negative miRNA-mRNA interactions in total. The network and pathway information illustrate the potential functions of mRNAs and miRNAs in PE pathogenesis.
Collapse
Affiliation(s)
- Zepeng Ping
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, 2468 Central South Road, Jiaxing, 314000, China
| | - Ying Feng
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, 2468 Central South Road, Jiaxing, 314000, China
| | - Ying Lu
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, 2468 Central South Road, Jiaxing, 314000, China
| | - Ling Ai
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, 2468 Central South Road, Jiaxing, 314000, China.
| | - Huling Jiang
- Department of Obstetrics, Maternity and Child Health Care Affiliated Hospital, Jiaxing University, 2468 Central South Road, Jiaxing, 314000, China.
| |
Collapse
|
4
|
Wang Y, Liu T, Xiao W, Bai Y, Yue D, Feng L. Ox-LDL induced profound changes of small non-coding RNA in rat endothelial cells. Front Cardiovasc Med 2023; 10:1060719. [PMID: 36824457 PMCID: PMC9941181 DOI: 10.3389/fcvm.2023.1060719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Introduction Atherosclerosis (AS) is a common cardiovascular disease with a high incidence rate and mortality. Endothelial cell injury and dysfunction are early markers of AS. Oxidative low-density lipoprotein (Ox-LDL) is a key risk factor for the development of AS. Ox-LDL promotes endothelial cell apoptosis and induces inflammation and oxidative stress in endothelial cells. Small non-coding RNAs (sncRNAs) mainly include Piwi-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs), small nuclear RNAs (snRNAs), microRNAs (miRNAs) and repeat-associated RNAs. Studies have shown that small non-coding RNAs play an increasingly important role in diseases. Methods We used ox-LDL to treat rat endothelial cells to simulate endothelial cell injury. The expression changes of sncRNA were analyzed by small RNA high-throughput sequencing, and the expression changes of piRNA, snoRNA, snRNA, miRNA and repeat-associated RNA were verified by quantitative polymerase chain reaction (qPCR). Results Small RNA sequencing showed that 42 piRNAs were upregulated and 38 piRNAs were downregulated in endothelial cells treated with ox-LDL. PiRNA DQ614630 promoted the apoptosis of endothelial cells. The snoRNA analysis results showed that 80 snoRNAs were upregulated and 68 snoRNAs were downregulated in endothelial cells with ox-LDL treatment, and snoRNA ENSRNOT00000079032.1 inhibited the apoptosis of endothelial cells. For snRNA, we found that 20 snRNAs were upregulated and 26 snRNAs were downregulated in endothelial cells with ox-LDL treatment, and snRNA ENSRNOT00000081005.1 increased the apoptosis of endothelial cells. Analysis of miRNAs indicated that 106 miRNAs were upregulated and 91 miRNAs were downregulated in endothelial cells with ox-LDL treatment, and miRNA rno-novel-136-mature promoted the apoptosis of endothelial cells. The repeat RNA analysis results showed that 4 repeat RNAs were upregulated and 6 repeat RNAs were downregulated in endothelial cells treated with ox-LDL. Discussion This study first reported the expression changes of sncRNAs in endothelial cells with ox-LDL treatment, which provided new markers for the diagnosis and treatment of endothelial cell injury.
Collapse
Affiliation(s)
| | | | - Wenying Xiao
- Department of Cardiology, Shidong Hospital, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | | | | | | |
Collapse
|
5
|
Bezna MC, Pisoschi C, Bezna M, Danoiu S, Tudorascu IR, Negroiu CE, Melinte PR. Decrease of glutathione peroxidase in arrhythmic cardiac pathology in young individuals and its therapeutic implications. Biomed Rep 2022; 17:93. [PMID: 36382261 PMCID: PMC9634505 DOI: 10.3892/br.2022.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Glutathione peroxidase (GPx), as an antioxidant enzyme, is involved in the regulation of processes that cause cellular oxidative stress, with implications in various pathologies. The aim of the present study was to evaluate GPx variations in patients with arrhythmic, non-structural cardiac disorders. The research was performed on 120 patients, with a mean age of 33 years old, divided into 3 equal groups, of which 2 groups included patients with cardiac arrhythmias, the first group, associated with dyslipidemia and the second one, without dyslipidemia, and a control group consisting of healthy individuals. The method for determining GPx was based on the GPx enzyme catalysis reaction of the reduced glutathione (GSH) oxidation reaction by cumene hydroperoxide. The results revealed that GPx variation was decreased in patients with cardiac arrhythmias, with or without dyslipidemia, up to 66 and 74% of mean control values, respectively, the differences being statistically significant, showing the existence of an oxidative stress imbalance, that may be involved in triggering arrhythmogenic electrochemical mechanisms. The GPx deficiency determined in relation to cardiac arrhythmias was in dyslipidemic and non-lipidemic patients as follows: 29-35% in sinus bradycardia, 31-35% in associated cardiac arrhythmias, 30-33% in sinus tachycardia, 27-33% in atrial fibrillation, 32-33% in atrial flutter, 27-32% in atrial extrasystolic arrhythmia, 28-30% in ventricular extrasystolic arrhythmia and 18-26% in paroxysmal supraventricular tachycardia. Collectively, the results revealed that GPx, an antioxidant enzyme, is a specific biomarker, whose decrease indicated the existence of oxidative stress in young individuals with cardiac arrhythmias and its involvement in arrhythmogenic electrochemical processes. In addition, GPx deficiencies were between 18-35% in all types of cardiac arrhythmias, the highest being recorded in sinus bradycardia and the lowest in paroxysmal supraventircular tachycardia. Furthermore, the oxidative stress favored by the decrease of GPx induced lipid oxidation, regardless of the presence or absence of dyslipidemia, which triggered the formation of anti-lipid antibodies and a subclinical endothelial aggression, with early atherosclerotic potential. GPx evaluation may argue for the existence of oxidative stress in non-structural cardiac arrhythmias, and by its proper correction (antioxidants), prophylaxis of atherogenic dysfunction.
Collapse
Affiliation(s)
- Maria Cristina Bezna
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Cătălina Pisoschi
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Marinela Bezna
- Department of Internal Medicine, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Suzana Danoiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Iulia-Robertina Tudorascu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Cristina-Elena Negroiu
- Department of Pathophysiology, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| | - Petru Razvan Melinte
- Department of Human Anatomy, University of Medicine and Pharmacy of Craiova, Emergency Hospital, 200330 Craiova, Romania
| |
Collapse
|
6
|
Tang S, Meng J, Tan J, Liu X, Zhou H, Li N, Hou S. N6-methyladenosine demethylase FTO regulates inflammatory cytokine secretion and tight junctions in retinal pigment epithelium cells. Clin Immunol 2022; 241:109080. [PMID: 35878734 DOI: 10.1016/j.clim.2022.109080] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/03/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Uveitis is an intraocular inflammatory disease. Epigenetics has been associated with its pathogenesis. However, the role of N6-methyladenosine (m6A) in uveitis has not been reported. We aimed to examine the role of m6A and its regulatory mechanism in experimental autoimmune uveitis (EAU). METHODS The mRNA expression of m6A-related methylase and demethylase of retinal pigment epithelium (RPE) between mice with EAU and control mice was detected by RT-qPCR. The overall m6A level of ARPE-19 cells was detected by an m6A quantitative detection kit. Cell proliferation was observed by CCK-8 assays, and ELISA was used to test the secretion of inflammatory factors. The expression of tight junction proteins and the target genes of FTO were examined by western blotting and MeRIP-PCR. RESULTS A decreased expression of FTO in RPE cells was found in mice with EAU. Increased overall m6A%, proliferation of cells and secretion of IL-6, IL-8 and MCP-1 were found after FTO knockdown in ARPE-19 cells. However, ZO-1 and occludin protein expression was decreased. ATF4 protein expression was decreased in the FTO knockdown (shFTO) group as compared with the control (shNC) group. In contrast, the m6A level of ATF4 was elevated, as shown by MeRIP-PCR. Functional analysis showed that p-STAT3 expression was increased in the shFTO group, and the change in occludin expression was reversed in ATF4 rescue experiment. CONCLUSION FTO may affect the translation of ATF4 by regulating its m6A level, resulting in the increased expression of p-STAT3 and inflammatory factors, and leading to uveitis.
Collapse
Affiliation(s)
- Shiyun Tang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jiayu Meng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Jun Tan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Xianyang Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Hongxiu Zhou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Na Li
- College of Basic Medicine, Chongqing Medical University, Chongqing, China.
| | - Shengping Hou
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Ophthalmology, Chongqing, China; Chongqing Eye Institute, Chongqing, China; Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China.
| |
Collapse
|
7
|
Cay P, Singer CA, Ba MA. Gene network analysis for identification of microRNA biomarkers for asthma. Respir Res 2022; 23:378. [PMID: 36572876 PMCID: PMC9793650 DOI: 10.1186/s12931-022-02304-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND To date, reliable biomarkers for asthma have not been identified. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate post-transcriptional gene expression, and they are involved in various diseases, including asthma. MiRNAs may serve as ideal biomarkers due to their ability to regulate multiple pathways. This study aims to identify miRNA biomarker signatures for asthma. METHODS We used the house dust mite (HDM) mouse model of allergic inflammation. Mice were phenotyped by assessing lung function, allergic response, airway inflammation, and remodeling. The miRNA signature profiles in serum and lung tissue were determined by small RNA sequencing, and data were analyzed using Qiagen CLC Genomics Workbench. To identify relevant gene targets, we performed mRNA sequencing, followed by miRNA-targets analysis. These miRNAs and targets were subject to subsequent pathway and functional analyses. RESULTS Mice exposed to HDM developed phenotypic features of allergic asthma. miRNA sequencing analysis showed that 213 miRNAs were substantially dysregulated (FDR p-value < 0.05 and fold change expression > + 1.5 and < - 1.5) in the lung of HDM mice relative to the control mice. In contrast, only one miRNA (miR-146b-5p) was significantly increased in serum. Target analysis of lung dysregulated miRNAs revealed a total of 131 miRNAs targeting 211 mRNAs. Pathway analysis showed T helper 2/1 (Th2/Th1) as the top significantly activated signaling pathway associated with the dysregulated miRNAs. The top enriched diseases were inflammatory response and disease, which included asthma. Asthma network analysis indicated that 113 of 131 miRNAs were directly associated with asthma pathogenesis. CONCLUSIONS These findings suggest that most dysregulated miRNAs in the HDM model were associated with asthma pathogenesis via Th2 signaling. We identified a panel of 30 miRNAs as potential biomarker candidates for asthma.
Collapse
Affiliation(s)
- Paulene Cay
- grid.266818.30000 0004 1936 914XDepartment of Pharmacology/CMM 573, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557-0046 USA
| | - Cherie A. Singer
- grid.266818.30000 0004 1936 914XDepartment of Pharmacology/CMM 573, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557-0046 USA
| | - Mariam A. Ba
- grid.266818.30000 0004 1936 914XDepartment of Pharmacology/CMM 573, University of Nevada, Reno School of Medicine, 1664 N. Virginia St., Reno, NV 89557-0046 USA
| |
Collapse
|
8
|
Kianmehr A, Qujeq D, Bagheri A, Mahrooz A. Oxidized LDL-regulated microRNAs for evaluating vascular endothelial function: molecular mechanisms and potential biomarker roles in atherosclerosis. Crit Rev Clin Lab Sci 2021; 59:40-53. [PMID: 34523391 DOI: 10.1080/10408363.2021.1974334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
As a simple monolayer, vascular endothelial cells can respond to physicochemical stimuli. In addition to promoting the formation of foam cells, oxidized low-density lipoprotein (ox-LDL) contributes to the atherosclerotic process through different mechanisms, including endothelial cell dysfunction. As conserved noncoding RNAs, microRNAs (miRNAs) naturally lie in different genomic positions and post-transcriptionally regulate the expression of many genes. They participate in integrated networks formed under stress to maintain cellular homeostasis, vascular inflammation, and metabolism. These small RNAs constitute therapeutic targets in different diseases, including atherosclerosis, and their role as biomarkers is crucial given their detectability even years before the emergence of diseases. This review was performed to investigate the role of ox-LDL-regulated miRNAs in atherosclerosis, their molecular mechanisms, and their application as biomarkers of vascular endothelial cell dysfunction.
Collapse
Affiliation(s)
- Anvarsadat Kianmehr
- Medical Cellular and Molecular Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Abouzar Bagheri
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdolkarim Mahrooz
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
9
|
Shang X, Shi LE, Taule D, Zhu ZZ. A Novel miRNA-mRNA Axis Involves in Regulating Transcriptional Disorders in Pancreatic Adenocarcinoma. Cancer Manag Res 2021; 13:5989-6004. [PMID: 34377019 PMCID: PMC8349199 DOI: 10.2147/cmar.s316935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 07/10/2021] [Indexed: 12/11/2022] Open
Abstract
Background Currently, there is still a lack of understanding about the mechanism and therapeutic targets of pancreatic adenocarcinoma (PAAD). The potential of miRNA-mRNA networks for the identification of regulatory mechanisms involved in PAAD development remains unexplored. Methods We compared differentially expressed miRNAs (DEMIs) and differentially expressed genes (DEGs) in PAAD and normal tissues from the Gene Expression Omnibus (GEO) database. Transcription factors (TFs) were obtained from FunRich. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of DEGs and DEMIs were implemented using Database for Annotation, Visualization and Integrated Discovery (DAVID). Then, key miRNAs and targeted mRNAs were identified by assessment of their expression and prognosis in UALCAN and Kaplan-Meier plotters. In the last step, the candidate miRNA-mRNA selected was confirmed by real-time quantitative polymerase chain reaction (qRT-PCR). Results We distinguished 62 significant DEMIs, 1314 upregulated DEGs, and 1110 downregulated DEGs. The top 10 TFs were identified. In total, there were 160 hub genes obtained by intersecting the set of 2224 predicted targets with the set of significant DEGs. And we selected 8 key miRNAs. Furthermore, low expression of miR-455-3p in PAAD tissue was closely connected with poor prognosis, and only 5 target mRNAs were predicted to be increased in PAAD tissue with poor prognosis. Therefore, a novel miRNA-hub gene regulatory network in PAAD was constructed. Finally, in vitro experiments indicated that miR-455-3p expression was decreased in PAAD sample. HOXC4, DLG4, DYNLL1 and FBXO45 were validated by qRT-PCR as highly probable targets of miR-455-3p. Conclusion A novel miRNA-mRNA axis has been discovered that may be involved in the regulation of transcriptional disorders and affected the survival of PAAD patients, which would provide a novel strategy for the treatment of PAAD.
Collapse
Affiliation(s)
- Xin Shang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Lan-Er Shi
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Dina Taule
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| | - Zhang-Zhi Zhu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|
10
|
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis C, Tousoulis D. Inflammatory Mechanisms Contributing to Endothelial Dysfunction. Biomedicines 2021; 9:781. [PMID: 34356845 PMCID: PMC8301477 DOI: 10.3390/biomedicines9070781] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/16/2022] Open
Abstract
Maintenance of endothelial cell integrity is an important component of human health and disease since the endothelium can perform various functions including regulation of vascular tone, control of hemostasis and thrombosis, cellular adhesion, smooth muscle cell proliferation, and vascular inflammation. Endothelial dysfunction is encompassed by complex pathophysiology that is based on endothelial nitric oxide synthase uncoupling and endothelial activation following stimulation from various inflammatory mediators (molecular patterns, oxidized lipoproteins, cytokines). The downstream signaling via nuclear factor-κB leads to overexpression of adhesion molecules, selectins, and chemokines that facilitate leukocyte adhesion, rolling, and transmigration to the subendothelial space. Moreover, oscillatory shear stress leads to pro-inflammatory endothelial activation with increased monocyte adhesion and endothelial cell apoptosis, an effect that is dependent on multiple pathways and flow-sensitive microRNA regulation. Moreover, the role of neutrophil extracellular traps and NLRP3 inflammasome as inflammatory mechanisms contributing to endothelial dysfunction has recently been unveiled and is under further investigation. Consequently, and following their activation, injured endothelial cells release inflammatory mediators and enter a pro-thrombotic state through activation of coagulation pathways, downregulation of thrombomodulin, and an increase in platelet adhesion and aggregation owing to the action of von-Willebrand factor, ultimately promoting atherosclerosis progression.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration General Hospital, University of Athens Medical School, 11527 Athens, Greece; (P.T.); (M.S.); (E.O.); (A.S.A.); (G.S.); (C.T.)
| | - Marios Sagris
- 1st Department of Cardiology, Hippokration General Hospital, University of Athens Medical School, 11527 Athens, Greece; (P.T.); (M.S.); (E.O.); (A.S.A.); (G.S.); (C.T.)
| | - Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration General Hospital, University of Athens Medical School, 11527 Athens, Greece; (P.T.); (M.S.); (E.O.); (A.S.A.); (G.S.); (C.T.)
- 3rd Department of Cardiology, Thoracic Diseases General Hospital Sotiria, University of Athens Medical School, 11527 Athens, Greece
| | - Alexios S. Antonopoulos
- 1st Department of Cardiology, Hippokration General Hospital, University of Athens Medical School, 11527 Athens, Greece; (P.T.); (M.S.); (E.O.); (A.S.A.); (G.S.); (C.T.)
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration General Hospital, University of Athens Medical School, 11527 Athens, Greece; (P.T.); (M.S.); (E.O.); (A.S.A.); (G.S.); (C.T.)
- 3rd Department of Cardiology, Thoracic Diseases General Hospital Sotiria, University of Athens Medical School, 11527 Athens, Greece
| | - Costas Tsioufis
- 1st Department of Cardiology, Hippokration General Hospital, University of Athens Medical School, 11527 Athens, Greece; (P.T.); (M.S.); (E.O.); (A.S.A.); (G.S.); (C.T.)
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration General Hospital, University of Athens Medical School, 11527 Athens, Greece; (P.T.); (M.S.); (E.O.); (A.S.A.); (G.S.); (C.T.)
| |
Collapse
|
11
|
miR-217-5p Inhibits Invasion and Metastasis of Prostate Cancer by Targeting Clusterin. Mamm Genome 2021; 32:371-380. [PMID: 33993322 DOI: 10.1007/s00335-021-09874-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
Prostate cancer is not easy to metastasize because it is difficult to diagnose at an early stage, and there is no effective treatment currently. miRNA-217-5p has been reported to be a regulator in the process of prostate cancer. This study aimed to investigate how miRNA-217-5p affects the invasion and migration of prostate cancer. Luciferase assay was used to clarify whether the target gene Clusterin (CLU) was interacted directly with miR-217-5p. miR-217-5p and CLU were knocked down by transfecting respective siRNA into DU145 cells. The expression level of epithelial-mesenchymal transition (EMT)-related proteins was detected by Western blotting. Invasion and migration of DU145 cell were examined by wound healing assay. The results showed that miR-217-5p directly interacted with its target gene CLU, and the transfection of si-CLU and si-miR-217-5p had similar ability to regulate the expression level of EMT-related proteins, which in turn affected the migration and invasion of prostate cancer cell line DU145. In addition, miR-217-5p inhibited the expression of EMT-related proteins by regulating the expression of the target gene CLU, and further inhibited the invasion and migration of prostate cancer cells. Our findings provide a theoretical target basis for the treatment of prostate cancer.
Collapse
|