1
|
Huang Y, Wang Y, Wu H, Wang Y, Deng Y, Chang Y, Su K, Yang L, Tao W, Liu W. Exploring the mechanism of Jianpi Lishi Jiedu Granules against postoperative recurrence of colorectal adenoma based on IL-6/JAK/STAT3 signaling pathway. Cell Signal 2025; 127:111535. [PMID: 39622429 DOI: 10.1016/j.cellsig.2024.111535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/08/2024]
Abstract
Globally, colorectal cancer (CRC) is the primary cause of cancer-related fatalities. Our previous study demonstrated the efficacy of Jianpi Lishi Jiedu Granules (JLJG) in preventing postoperative recurrence of colorectal adenoma (CRA). Building on this foundation, the current study aims to elucidate whether the mechanism by which JLJG prevents postoperative recurrence of CRA involves the classical JAK/STAT inflammatory signaling pathway and to assess its specific impact on this pathway. Utilizing proteomics, we discerned 143 differentially expressed proteins (DEPs) regulated by JLJG, whose functional roles are intimately linked to the JAK/STAT signaling pathway. Among these, we identified key proteins such as IL-6, JAK1, JAK2, STAT3, CCND1, MYC, Bcl-XL, and SOCS3 that are regulated by JLJG and play pivotal roles in the JAK/STAT signaling cascade. Our findings indicate that the sustained activation of the IL-6/JAK/STAT3 signaling pathway is significantly associated with CRA recurrence. JLJG was found to effectively modulate the expression levels of these proteins, as well as the expression of downstream genes including BCL2, MCL1, P21, and JAK1, STAT3, thereby inhibiting the IL-6/JAK/STAT3 signaling pathway. Consequently, this study demonstrates that JLJG prevents the postoperative recurrence of CRA by inhibiting the IL-6/JAK/STAT3 signaling pathway and its negative feedback loops.
Collapse
Affiliation(s)
- Yuzhen Huang
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Yulu Wang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Hao Wu
- Department of Gastroenterology, Nanjing Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210014, China.
| | - Yan Wang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Yanting Deng
- School of Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Yuan Chang
- School of Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Kunhan Su
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China; Department of Gastroenterology, Nanjing Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210014, China
| | - Lu Yang
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China; Department of Gastroenterology, Nanjing Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing 210014, China
| | - Weiwei Tao
- Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Wanli Liu
- Department of Gastroenterology, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China.
| |
Collapse
|
2
|
Li P, Huang D. Targeting the JAK-STAT pathway in colorectal cancer: mechanisms, clinical implications, and therapeutic potential. Front Cell Dev Biol 2024; 12:1507621. [PMID: 39659524 PMCID: PMC11628519 DOI: 10.3389/fcell.2024.1507621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/11/2024] [Indexed: 12/12/2024] Open
Abstract
Colorectal cancer (CRC) remains one of the most prevalent and fatal malignancies worldwide, consistently ranking among the top three in terms of incidence and mortality. Despite notable advancements in early detection and therapeutic interventions, survival outcomes for advanced-stage CRC are still dismal, largely due to issues such as drug resistance and metastasis. Recent research has increasingly implicated the JAK-STAT signaling pathway as a pivotal contributor to CRC pathogenesis. This evolutionarily conserved pathway plays a key role in transmitting extracellular signals to the nucleus, thereby modulating gene expression involved in numerous fundamental biological processes. In CRC, dysregulation of the JAK-STAT pathway is frequently observed and is strongly associated with tumor progression, including processes such as cellular proliferation, apoptosis, metastasis, immune evasion, and the sustenance of cancer stem cells. Given its integral role in CRC advancement, the JAK-STAT pathway has gained recognition as a viable therapeutic target. Extensive evidence from preclinical and clinical models supports the efficacy and safety of targeting components of the JAK-STAT pathway, presenting new therapeutic possibilities for patients with CRC, particularly in addressing drug resistance and enhancing treatment outcomes. This review offers a detailed exploration of the JAK-STAT pathway, focusing on its regulatory mechanisms in CRC-related malignancies. Moreover, it examines the association between JAK-STAT protein expression, clinical features, prognosis, and its therapeutic potential in CRC management.
Collapse
Affiliation(s)
- Penghui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Sadeghi M, Seyedebrahimi S, Ghanadian M, Miroliaei M. Identification of cholinesterases inhibitors from flavonoids derivatives for possible treatment of Alzheimer's disease: In silico and in vitro approaches. Curr Res Struct Biol 2024; 7:100146. [PMID: 38707547 PMCID: PMC11070244 DOI: 10.1016/j.crstbi.2024.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
Nowadays, one of the methods to prevent the progress of Alzheimer's disease (AD) is to prescribe compounds that inhibit the acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Researchers are actively pursuing compounds, particularly of natural origin, that exhibit enhanced efficacy and reduced side effects. The inhibition of AChE and BChE using natural flavonoids represents a promising avenue for regulating AD. This study aims to identify alternative flavonoids capable of modulating AD by down-regulating AChE and BChE activity through a molecular docking approach. Molecular docking analysis identified Ginkgetin and Kolaflavanone as potent inhibitors of AChE and BChE, respectively, among the selected flavonoids. Asn87 and Ala127 involved in the interactions of AChE-Ginkgetin complex through conventional hydrogen bonds. While in the BChE-Kolaflavanone complex, Asn83, Ser79, Gln 47, and Ser287 are involved. In vitro analysis further corroborated the inhibitory potential, with Ginkgetin exhibiting an IC50 of 3.2 mM against AChE, and Kolaflavanone displaying an IC50 of 3.6 mM against BChE. These findings underscore the potential of Ginkgetin and Kolaflavanone as candidate inhibitors for the treatment of AD through the inhibition of AChE and BChE enzymes. Nevertheless, additional in vitro and in vivo studies are imperative to validate the efficacy of these compounds.
Collapse
Affiliation(s)
- Morteza Sadeghi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Seyedehmasoumeh Seyedebrahimi
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| | - Mustafa Ghanadian
- Department of Pharmacognosy, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehran Miroliaei
- Faculty of Biological Science and Technology, Department of Cell and Molecular Biology & Microbiology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
4
|
Peng J, Luo X, Wang T, Yue C, Duan M, Wu C. Radix Tetrastigma Hemsleyani Flavone represses cutaneous squamous cell carcinoma via Janus kinase/signal transducer and activator of transcription 3 pathway inactivation. Cytokine 2024; 175:156480. [PMID: 38232644 DOI: 10.1016/j.cyto.2023.156480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/12/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024]
Abstract
Cutaneous squamous cell carcinoma (CSCC) is the second most common malignant skin tumor and significantly affects patients' quality of life and health. The Janus kinase/signal transducer and activator of transcription 3 (JAK/STAT3) pathway activation is involved in CSCC development. Radix Tetrastigma hemsleyani flavone (RTHF) is an active Radix Tetrastigma extract (RTE), which was recently reported to have promising inhibitory effects on CSCC. However, the underlying functional mechanisms of this inhibition remain unknown. In the present study, A431 cells or SCL-1 cells were incubated with 1, 5, and 10 mg/mL RTHF for 48 h, respectively. A significantly increased wound closure rate, decreased number of migrated and invaded cells, decreased colony number, and elevated apoptotic rate were observed after treatment with 1, 5, and 10 mg/mL RTHF. Furthermore, after incubation with RTHF, p-JAK1/JAK1, p-JAK2/JAK2, and p-STAT3/STAT3 levels were drastically reduced. An A431 xenograft model was constructed, followed by oral administration of 15, 30, or 60 mg/kg RTHF for 21 consecutive days. A significantly lower increase in tumor volume and reduced tumor weight were observed in all RTHF-treated groups. In addition, JAK/STAT3 signaling was drastically repressed in tumor tissues. Collectively, RTHF inhibited CSCC progression, which may be associated with JAK/STAT3 pathway inactivation.
Collapse
Affiliation(s)
- Jianzhong Peng
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China.
| | - Xianyan Luo
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| | - Tao Wang
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| | - Chao Yue
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| | - Mengying Duan
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| | - Chenyang Wu
- Department of Dermatologic Surgery, Hangzhou Third People's Hospital, No. 38, west lake avenue, Hangzhou, Zhejiang, China
| |
Collapse
|
5
|
Zamani F, Khalighfard S, Kalhori MR, Poorkhani A, Amiriani T, Hosseinzadeh P, Esmati E, Alemrajabi M, Nikoofar A, Safarnezhad Tameshkel F, Alizadeh AM. Expanding CYLD protein in NF-κβ/TNF-α signaling pathway in response to Lactobacillus acidophilus in non-metastatic rectal cancer patients. Med Oncol 2023; 40:302. [PMID: 37725175 DOI: 10.1007/s12032-023-02170-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 08/12/2023] [Indexed: 09/21/2023]
Abstract
The CYLD gene is a tumor suppressor, reduced in many cancers. Here, we aimed to investigate CYLD protein level and NF-κβ/TNF-α signaling pathway in rectal cancer patients with Lactobacillus acidophilus (L. acidophilus) consumption. One hundred ten patients with non-metastatic rectal cancer were randomly divided into L. acidophilus probiotic (500 mg, three times daily) and placebo groups for 13 weeks. The expression of CYLD, TNF-α, and NF-κB proteins and the genes involved in the NF-κβ/TNF-α pathway were evaluated using ELISA and qPCR techniques. The survival rate was measured after five years. Unlike the placebo group, the results showed a significant increase in the expression of CYLD protein and tumor suppressor genes, including FOXP3, ROR-γ, Caspase3, GATA3, T-bet, and a considerable decrease in the expression of NF-ҝβ and TNF-α proteins and oncogenes, including STAT3, 4, 5, 6, and SMAD 3, in the probiotic group. A higher overall survival rate was seen after L. acidophilus consumption compared to the placebo group (P < 0.05). L. acidophilus consumption can reduce inflammation factors by affecting CYLD protein and its downstream signaling pathways. A schematic plot of probiotic consumption Effects on the CYLD protein in regulating the NF-ĸβ signaling pathway in colorectal cancer. NF-ĸβ can be activated by canonical and noncanonical pathways, which rely on IκB degradation and p100 processing, respectively. In the canonical NF-κβ pathway, dimmers, such as p65/p50, are maintained in the cytoplasm by interacting with an IκBα protein. The binding of a ligand to a cell-surface receptor activates TRAF2, which triggers an IKK complex, containing -α, -β, -g, which phosphorylates IKK-β. It then phosphorylates IκB-α, leading to K48-ubiquitination and degradation of this protein. The p65/p50 protein freely enters the nucleus to turn on target genes. The non-canonical pathway is primarily involved in p100/RelB activation. It differs from the classical pathway in that only certain receptor signals activate this pathway. It proceeds through an IKK complex that contains two IKK-α subunits but not NEMO. Several materials including peptidoglycan, phorbol, myristate, acetate, and gram-positive bacteria such as probiotics inhibit NF-κB by inducing CYLD. This protein can block the canonical and noncanonical NF-κβ pathways by removing Lys-63 ubiquitinated chains from activated TRAFs, RIP, NEMO, and IKK (α, β, and γ). Moreover, TNF-α induces apoptosis by binding caspase-3 to FADD.
Collapse
Affiliation(s)
- Farhad Zamani
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Kalhori
- Regenerative Medicine Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhoushang Poorkhani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Payam Hosseinzadeh
- Gastrointestinal and Liver Diseases Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Esmati
- Radiotherapy Department, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alemrajabi
- Surgery Department, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Nikoofar
- Radiotherapy Department, School of Medicine, Firoozgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Gao J, Cao B, Zhao R, Li H, Xu Q, Wei B. Critical Signaling Transduction Pathways and Intestinal Barrier: Implications for Pathophysiology and Therapeutics. Pharmaceuticals (Basel) 2023; 16:1216. [PMID: 37765024 PMCID: PMC10537644 DOI: 10.3390/ph16091216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
The intestinal barrier is a sum of the functions and structures consisting of the intestinal mucosal epithelium, mucus, intestinal flora, secretory immunoglobulins, and digestive juices. It is the first-line defense mechanism that resists nonspecific infections with powerful functions that include physical, endocrine, and immune defenses. Health and physiological homeostasis are greatly dependent on the sturdiness of the intestinal barrier shield, whose dysfunction can contribute to the progression of numerous types of intestinal diseases. Disorders of internal homeostasis may also induce barrier impairment and form vicious cycles during the response to diseases. Therefore, the identification of the underlying mechanisms involved in intestinal barrier function and the development of effective drugs targeting its damage have become popular research topics. Evidence has shown that multiple signaling pathways and corresponding critical molecules are extensively involved in the regulation of the barrier pathophysiological state. Ectopic expression or activation of signaling pathways plays an essential role in the process of shield destruction. Although some drugs, such as molecular or signaling inhibitors, are currently used for the treatment of intestinal diseases, their efficacy cannot meet current medical requirements. In this review, we summarize the current achievements in research on the relationships between the intestinal barrier and signaling pathways. The limitations and future perspectives are also discussed to provide new horizons for targeted therapies for restoring intestinal barrier function that have translational potential.
Collapse
Affiliation(s)
- Jingwang Gao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Ruiyang Zhao
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Hanghang Li
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Qixuan Xu
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing 100853, China;
| | - Bo Wei
- Department of General Surgery, Medical School of Chinese PLA, Beijing 100853, China; (J.G.); (R.Z.); (H.L.); (Q.X.)
| |
Collapse
|
7
|
Genomic distribution of signal transducer and activator of transcription (STAT) family in colorectal cancer. Hum Cell 2023; 36:286-295. [PMID: 36284066 DOI: 10.1007/s13577-022-00815-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/16/2022] [Indexed: 01/07/2023]
Abstract
JAK/STAT pathway has been widely acknowledged in the development of human cancers. However, the role of different phosphorylated STAT proteins translocating into nucleus in transcription activation of target genes is not fully understood. In present research, ChIP-seq was carried on to investigate the genome-wide distribution of the activated STAT1, STAT2, STAT3, STAT5 and STAT6 in colorectal cancer HCT-116 cells. Our observations indicated that the homodimers rather than heterodimers of STAT protein predominantly occupied on genomic DNA. STAT3 accounted for the largest proportion among all STAT proteins HCT-116 cells. Furthermore, the biased binding motif targeted by different STAT homodimers suggested the distinct biological functions. Here, we noticed that NR5A2 was a specific co-activator of STAT3 by DNA motif analysis. Co-IP assay determined that NR5A2 indeed interacted with STAT3 homodimer rather than other homodimers or heterodimers. NR5A2 knockdown resulted in a reduced binding affinity of STAT3 homodimer in the original regions. Taken together, we characterize the genome-wide landscape of activated STAT proteins, and reveal the differences of binding patterns as well as the target genes and associated functions between homodimer and heterodimer of STAT proteins in HCT-116 cells. We also present some new findings and possible mechanisms regarding the role of NR5A2 on STAT3 in CRC. Our findings may provide new insights into the design of STAT inhibitors to treat CRC and other diseases.
Collapse
|
8
|
Rizwi FA, Abubakar M, Puppala ER, Goyal A, Bhadrawamy CV, Naidu VGM, Roshan S, Tazneem B, Almalki WH, Subramaniyan V, Rawat S, Gupta G. Janus Kinase-Signal Transducer and Activator of Transcription Inhibitors for the Treatment and Management of Cancer. J Environ Pathol Toxicol Oncol 2023; 42:15-29. [PMID: 37522565 DOI: 10.1615/jenvironpatholtoxicoloncol.2023045403] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
According to the World Health Organization (WHO), cancer is the second-highest cause of mortality worldwide, killing nearly 9.6 million people annually. Despite the advances in diagnosis and treatment during the last couple of decades, it remains a serious concern due to the limitations of currently available cancer management strategies. Therefore, alternative strategies are highly required to overcome these glitches. In addition, many etiological factors such as environmental and genetic factors initiate the activation of the Janus kinase (JAK)-signal transducer and activator of the transcription (STAT) pathway. This aberrant activation of the JAK-STAT pathway has been reported in various disease states, including inflammatory conditions, hematologic malignancies, and cancer. For instance, many patients with myeloproliferative neoplasms carry the acquired gain-of-function JAK2 V617F somatic mutation. This knowledge has dramatically improved our understanding of pathogenesis and has facilitated the development of therapeutics capable of suppressing the constitutive activation of the JAK-STAT pathway. Our aim is not to be expansive but to highlight emerging ideas towards preventive therapy in a modern view of JAK-STAT inhibitors. A series of agents with different specificities against different members of the JAK family of proteins is currently undergoing evaluation in clinical trials. Here we give a summary of how JAK-STAT inhibitors function and a detailed review of current clinical drugs for managing cancer as a new therapeutic approach.
Collapse
Affiliation(s)
- Fahim Anwar Rizwi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Md Abubakar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Ch Veera Bhadrawamy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research-Guwahati, Sila Katamur, Halugurisuk P.O-Changsari, Kamrup, Assam, India-781101
| | - S Roshan
- Deccan School of Pharmacy, Hyderabad, India
| | - B Tazneem
- Deccan School of Pharmacy, Hyderabad, India
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, MONASH University, Malaysia
| | - Sushama Rawat
- Nirma University, Institute of Pharmacy, Ahmedabad, Gujarat 382481, India; School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
9
|
Lu T, Zheng C, Fan Z. Cardamonin suppressed the migration, invasion, epithelial mesenchymal transition (EMT) and lung metastasis of colorectal cancer cells by down-regulating ADRB2 expression. PHARMACEUTICAL BIOLOGY 2022; 60:1011-1021. [PMID: 35645356 PMCID: PMC9154753 DOI: 10.1080/13880209.2022.2069823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Cardamonin (CDN) can suppress cell growth in colorectal cancer (CRC), a common digestive malignancy. OBJECTIVE We explored the effect and mechanism of CDN on metastatic CRC. MATERIALS AND METHODS Two cell lines (HT29 and HCT116) were initially treated with CDN at different concentrations (5, 10 and 20 μmol/L) or 50 μmol/L propranolol (positive control) for 24 or 48 h. Then, the two cell lines were separately transfected with siADRB2 and ADRB2 overexpression plasmids, and further treated with 10 μmol/L CDN for 24 h. The cell viability, migration and invasion were determined by cell counting kit-8 (CCK-8), wound healing and transwell assays, respectively. The levels of ADRB2, matrix metalloprotease (MMP)-2, MMP-9, E-cadherin and N-cadherin were measured by Western blotting or/and RT-qPCR. A CRC metastasis model was established to evaluate the antimetastatic potential of CDN (25 mg/kg). RESULTS ADRB2 (3.2-fold change; p < 0.001) was highly expressed in CRC tissues. CDN at 10 μmol/L suppressed viability (69% and 70%), migration (33% and 66%), invasion (43% and 72%) and ADRB2 expression (2.2- and 2.84-fold change) in HT29 and HCT116 cells (p < 0.001). CDN at 10 μmol/L inhibited MMP-2, MMP-9 and N-cadherin expression but promoted E-cadherin expression in CRC cells (p < 0.001). Importantly, the effect of CDN on CRC cells was impaired by ADRB2 overexpression, but further enhanced by ADRB2 down-regulation (p < 0.01). Additionally, ADRB2 overexpression reversed the inhibitory effect of CDN on metastatic lung nodules (p < 0.05). Discussion and conclusions: CDN is a potential candidate for the treatment of metastatic CRC in clinical practice.
Collapse
Affiliation(s)
- Ting Lu
- Proctology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunju Zheng
- Proctology Department, Huai’an TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Huai’an, China
| | - Zhimin Fan
- Proctology Department, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
10
|
Cao M, Wang Y, Lu G, Qi H, Li P, Dai X, Lu J. Classical Angiogenic Signaling Pathways and Novel Anti-Angiogenic Strategies for Colorectal Cancer. Curr Issues Mol Biol 2022; 44:4447-4471. [PMID: 36286020 PMCID: PMC9601273 DOI: 10.3390/cimb44100305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/17/2022] Open
Abstract
Although productive progress has been made in colorectal cancer (CRC) researchs, CRC is the second most frequent type of malignancy and the major cause of cancer-related death among gastrointestinal cancers. As angiogenesis constitutes an important point in the control of CRC progression and metastasis, understanding the key signaling pathways that regulate CRC angiogenesis is critical in elucidating ways to inhibit CRC. Herein, we comprehensively summarized the angiogenesis-related pathways of CRC, including vascular endothelial growth factor (VEGF), nuclear factor-kappa B (NF-κB), Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Wingless and int-1 (Wnt), and Notch signaling pathways. We divided the factors influencing the specific pathway into promoters and inhibitors. Among these, some drugs or natural compounds that have antiangiogenic effects were emphasized. Furthermore, the interactions of these pathways in angiogenesis were discussed. The current review provides a comprehensive overview of the key signaling pathways that are involved in the angiogenesis of CRC and contributes to the new anti-angiogenic strategies for CRC.
Collapse
Affiliation(s)
- Mengyuan Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yunmeng Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Guige Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoran Qi
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Peiyu Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoshuo Dai
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou 450052, China
- Correspondence:
| |
Collapse
|
11
|
Muhammad S, Saba A, Khera RA, Al-Sehemi AG, Algarni H, Iqbal J, Alshahrani MY, Chaudhry AR. Virtual screening of potential inhibitor against breast cancer-causing estrogen receptor alpha (ERα): molecular docking and dynamic simulations. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2072840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shabbir Muhammad
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - Afsheen Saba
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Abdullah. G. Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P.O. Box 9004, Saudi Arabia
| | - H. Algarni
- Department of Physics, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, College of Science, University of Agriculture, Faisalabad, Pakistan
| | - Mohammad Y. Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | | |
Collapse
|
12
|
Mas-Bargues C, Borrás C, Viña J. The multimodal action of genistein in Alzheimer's and other age-related diseases. Free Radic Biol Med 2022; 183:127-137. [PMID: 35346775 DOI: 10.1016/j.freeradbiomed.2022.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/07/2023]
Abstract
Genistein is a phytoestrogen that, due to its structural similarity with estrogen, can both mimic and antagonize estrogen effects. Early analysis proved that at high concentrations, genistein inhibits breast cancer cell proliferation, thereby suggesting an anticancer activity. Since then, many discoveries have identified the genistein mechanism of action, including cell cycle arrest, apoptosis induction, as well as angiogenesis, and metastasis inhibition. In this review, we aim to discuss the multimodal action of genistein as an antioxidant, anti-inflammatory, anti-amyloid β, and autophagy promoter, which could be responsible for the genistein beneficial effect on Alzheimer's. Furthermore, we pinpoint the main signal transduction pathways that are known to be modulated by genistein. Genistein has thus several beneficial effects in several diseases, many of them associated with age, such as the above mentioned Alzheimer disease. Indeed, the beneficial effects of genistein for health promotion depend on each multimodality. In the context of geroscience, genistein has promising beneficial effects due to its multimodal action to treat age associated-diseases.
Collapse
Affiliation(s)
- Cristina Mas-Bargues
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - Consuelo Borrás
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain.
| | - José Viña
- Freshage Research Group, Department of Physiology, Faculty of Medicine, University of Valencia, Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable-Instituto de Salud Carlos III (CIBERFES-ISCIII), INCLIVA, Valencia, 46010, Spain
| |
Collapse
|
13
|
Zhou XY, Dai HY, Zhang H, Zhu JL, Hu H. Signal transducer and activator of transcription family is a prognostic marker associated with immune infiltration in endometrial cancer. J Clin Lab Anal 2022; 36:e24315. [PMID: 35244291 PMCID: PMC8993664 DOI: 10.1002/jcla.24315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Signal transducer and activator of transcription (STAT) is a unique protein family that binds to DNA and plays a vital role in regulating major physiological cellular processes. Seven STAT genes have been identified in the human genome. Several studies suggest STAT family members to be involved in cancer development, progression, and metastasis. However, the predictive relationship between STAT family expression and immune cell infiltration in endometrial cancer remains unknown. METHODS We explored STAT family expression and prognosis in endometrial cancer using various databases. The STRING, GeneMANIA, and DAVID databases, along with GO and KEGG analyses, were used to construct a protein interaction network of related genes. Finally, the TIMER database and ssGSEA immune infiltration algorithm were used to investigate the correlation of STAT family expression with the immune infiltration level in uterine corpus endometrial carcinoma (UCEC). RESULTS Our study showed that different STAT family members are differentially expressed in UCEC. STAT1 and STAT2 expression increased at various stages of UCEC, and STAT5A, STAT5B, and STAT6 levels were decreased. STAT3 and STAT4 expression was not significantly different between UCEC and normal tissues. High STAT1 expression may be a prognostic disadvantage of UCEC, and high STAT6 expression may improve UCEC patient prognosis. The STAT family-associated genes were significantly enriched in signal transduction, protein binding, DNA binding, and ATP binding upon GO analysis. Related genes in the KEGG analysis were mainly enriched in pathways in cancer, viral carcinogenesis, chemokine signaling pathway, JAK/STAT signaling pathway, and regulation of the actin cytoskeleton. In terms of immune infiltration, STAT1 and STAT2 were positively correlated with B, CD8+ T, CD4+ T, and dendritic cells, and neutrophils (p < 0.05). All STAT family members were positively correlated with neutrophils and dendritic cells (p < 0.05). STAT1 and STAT2 showed similar correlations with all immune cell types, whereas STAT1 and STAT6 showed opposite correlations. CONCLUSION These findings suggest that the STAT family is a prognostic marker, and the immune infiltration level, a therapeutic target, for endometrial cancer.
Collapse
Affiliation(s)
- Xin-Ying Zhou
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hai-Yan Dai
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hu Zhang
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Jian-Long Zhu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| | - Hua Hu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai, China
| |
Collapse
|