1
|
Li F, Tan H, Zhang X, Zhao X, Li X, Chen G. LncRNA HCG18 regulates the progression of spinal tuberculosis by modulating the hsa-miR-146a-5p/TGF-β1/SMADs pathway. J Orthop Surg Res 2025; 20:484. [PMID: 40390079 DOI: 10.1186/s13018-025-05810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/11/2025] [Indexed: 05/21/2025] Open
Abstract
Spinal tuberculosis is the most common extrapulmonary tuberculosis, characterized by intervertebral disc destruction, which seriously affects people's quality of life. Recent studies have suggested that the TGF-β1/SMADs signaling pathway plays an important regulatory role in the process of intervertebral disc destruction caused by spinal tuberculosis. However, the abnormal TGF-β1/SMADs signaling pathway in spinal tuberculosis is not fully understood. Herein, we found for the first time that HCG18 was significantly upregulated in spinal tuberculosis nucleus pulposus clinical samples and confirmed that HCG18 negatively regulates the proliferation and migration ability of nucleus pulposus cells (NPCs). In vitro experiments further suggest that overexpression of HCG18 can significantly promote TGF-β1/SMADs pathway activity and inhibit proliferation, migration, and apoptosis of NPCs, an effect which can be reversed by overexpressing hsa-miR-146a-5p. On the contrary, knocking down HCG18 yields the opposite result. In vivo experiments suggest that knocking down HCG18 can significantly alleviate the destruction of the nucleus pulposus in rats with spinal tuberculosis by inhibiting the activity of the TGF-β1/SMADs pathway. In summary, our research suggests that HCG18 can promote the progression of spinal tuberculosis by alleviating the inhibitory effect of hsa-miR-146a-5p on the TGF-β1/SMADs pathway. This study provides new insights into the occurrence and development of spinal tuberculosis, as well as new strategies for the prevention and treatment of spinal tuberculosis.
Collapse
Affiliation(s)
- Feng Li
- Department of Spine Surgery, The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Hongdong Tan
- Department of Orthopedic Surgery, Shandong Public Health Clinical Center, Jinan, 250100, China
| | - Xiao Zhang
- Department of Spine Surgery, The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Xiaodong Zhao
- Department of Spine Surgery, The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Weifang, 261000, China
| | - Xiaopeng Li
- Department of Spine Surgery, The First Affiliated Hospital of Shandong Second Medical University (Weifang People's Hospital), Weifang, 261000, China.
- Clinical College of Orthopedics, Tianjin Medical University, Tianjin, 300070, China.
| | - Gaoyang Chen
- Division of Hand & Foot and Microvascular Surgery, Department of Orthopedic Surgery, Shenzhen Key Laboratory of Musculoskeletal Tissue Reconstruction and Function Restoration, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, 518020, China.
| |
Collapse
|
2
|
Panou T, Gouveri E, Popovic DS, Papazoglou D, Papanas N. The Role of Inflammation in the Pathogenesis of Diabetic Peripheral Neuropathy: New Lessons from Experimental Studies and Clinical Implications. Diabetes Ther 2025; 16:371-411. [PMID: 39928224 PMCID: PMC11868477 DOI: 10.1007/s13300-025-01699-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 02/11/2025] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most frequent complications of diabetes mellitus (DM). Its pathogenesis is still not entirely clear. Inflammation is increasingly being appreciated as a key factor in its development and progression. The aim of this review was to outline current evidence from experimental research on the role of inflammation in the pathogenesis of DPN and to suggest emerging clinical implications. Beyond commonly assessed interleukins, chemokines and tumour necrosis factor alpha (TNFα), several novel underlying mechanisms and potential therapeutic targets have been unravelled. Pathogenesis is also influenced by dietary patterns, such as iron supplementation. Furthermore, the impact of the inflammasome nucleotide-binding oligomerisation domain-like receptor pyrin domain-containing protein 3 (NLPR3) is gaining importance. The same holds true for inflammatory pathways, such as the Toll-like receptor (TLR)-associated pathways or the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) pathway. SIRTuins are also of importance. DPN is associated with changes in macrophage polarisation. In addition, several metalloproteinases are emerging as contributors, although data is still limited. Finally, miRNAs (e.g. miR146a) are strongly linked with DPN by acting in several inflammatory pathways. However, we still need confirmation of preliminary research findings. It is hoped that new knowledge will lead to new therapeutic approaches, including stem cell-based or exosome-based therapies.
Collapse
Affiliation(s)
- Theodoros Panou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Evanthia Gouveri
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Djordje S Popovic
- Clinic for Endocrinology, Diabetes and Metabolic Disorders, Clinical Centre of Vojvodina, Medical Faculty, University of Novi Sad, Novi Sad, Serbia
| | - Dimitrios Papazoglou
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Nikolaos Papanas
- Diabetes Centre, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
3
|
Li Y, Ai S, Li Y, Ye W, Li R, Xu X, Liu Q. The role of natural products targeting macrophage polarization in sepsis-induced lung injury. Chin Med 2025; 20:19. [PMID: 39910395 PMCID: PMC11800549 DOI: 10.1186/s13020-025-01067-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/17/2025] [Indexed: 02/07/2025] Open
Abstract
Sepsis-induced acute lung injury (SALI) is characterized by a dysregulated inflammatory and immune response. As a key component of the innate immune system, macrophages play a vital role in SALI, in which a macrophage phenotype imbalance caused by an increase in M1 macrophages or a decrease in M2 macrophages is common. Despite significant advances in SALI research, effective drug therapies are still lacking. Therefore, the development of new treatments for SALI is urgently needed. An increasing number of studies suggest that natural products (NPs) can alleviate SALI by modulating macrophage polarization through various targets and pathways. This review examines the regulatory mechanisms of macrophage polarization and their involvement in the progression of SALI. It highlights how NPs mitigate macrophage imbalances to alleviate SALI, focusing on key signaling pathways such as PI3K/AKT, TLR4/NF-κB, JAK/STAT, IRF, HIF, NRF2, HMGB1, TREM2, PKM2, and exosome-mediated signaling. NPs influencing macrophage polarization are classified into five groups: terpenoids, polyphenols, alkaloids, flavonoids, and others. This work provides valuable insights into the therapeutic potential of NPs in targeting macrophage polarization to treat SALI.
Collapse
Affiliation(s)
- Yake Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Sinan Ai
- China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yuan Li
- Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wangyu Ye
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Rui Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
- Beijing Institute of Chinese Medicine, Beijing, 100010, China
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiaolong Xu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
- Laboratory for Clinical Medicine, Capital Medical University, Beijing, 100010, China.
| |
Collapse
|
4
|
Yang F, Qin H, Qin C, Huang B, Gao F, Liao Y, Tang Y, Mo Y, Yang Q, Wang C. SIRT1 regulates cigarette smoke extract‑induced alveolar macrophage polarization and inflammation by inhibiting the TRAF6/NLRP3 signaling pathway. Mol Med Rep 2025; 31:43. [PMID: 39635829 PMCID: PMC11632293 DOI: 10.3892/mmr.2024.13408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
M1 macrophages activated by cigarette smoke extract (CSE) serve a pro‑inflammatory role in chronic obstructive pulmonary disease (COPD). The expression of silent information regulator 1 (SIRT1) is decreased in the alveolar macrophages of patients with COPD. However, whether SIRT1 is involved in COPD by regulating macrophage polarization remains unknown. Rat Alveolar Macrophage NR8383 cells were exposed to CSE. Cell Counting Kit‑8 assay, western blot assay and ELISA showed that with increasing concentration of CSE, the activity of NR8383 cells and expression of SIRT1 gradually decreased, while the release of inflammatory cytokines TNFα, IL‑1β and IL‑6 increased. As shown in western blot or Immunofluorescence assays, exposure to CSE also increased expression levels of the M1 markers inducible nitric oxide synthase and CD86, whereas it downregulated expression of the M2 markers arginase 1 and CD206. In addition, CSE increased expression of TNF receptor associated factor 6 (TRAF6), NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) and cleaved caspase‑1 protein in NR8383 cells. Overexpression plasmids of SIRT1 and TRAF6 significantly reversed the aforementioned changes induced by CSE. Moreover, immunoprecipitation demonstrated that TRAF6 could bind to NLRP3. The overexpression of TRAF6 notably attenuated the regulatory effects of overexpression of SIRT1 on polarization and inflammation in NR8383 cells. Conversely, overexpression of SIRT1 inhibited the TRAF6/NLRP3 signaling pathway, thereby suppressing CSE‑induced M1 polarization and release of inflammatory factors in NR8383 cells. The present study demonstrates that SIRT1 regulates CSE‑induced alveolar macrophage polarization and inflammation by inhibiting the TRAF6/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Fang Yang
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Huiping Qin
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Chaoqun Qin
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Bing Huang
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Feng Gao
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Yi Liao
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Yanping Tang
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Yanju Mo
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Qianjie Yang
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| | - Changming Wang
- Department of Pulmonary and Critical Care Medicine, Guilin People's Hospital, Guilin, Guangxi 541001, P.R. China
| |
Collapse
|
5
|
Ding Y, Sun Y, Wang H, Zhao H, Yin R, Zhang M, Pan X, Zhu X. Atherosis-associated lnc_000048 activates PKR to enhance STAT1-mediated polarization of THP-1 macrophages to M1 phenotype. Neural Regen Res 2024; 19:2488-2498. [PMID: 38526285 PMCID: PMC11090429 DOI: 10.4103/nrr.nrr-d-23-01355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/12/2023] [Accepted: 01/20/2024] [Indexed: 03/26/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202419110-00029/figure1/v/2024-03-08T184507Z/r/image-tiff Our previous study has demonstrated that lnc_000048 is upregulated in large-artery atherosclerotic stroke and promotes atherosclerosis in ApoE-/- mice. However, little is known about the role of lnc_000048 in classically activated macrophage (M1) polarization. In this study, we established THP-1-derived testing state macrophages (M0), M1 macrophages, and alternately activated macrophages (M2). Real-time fluorescence quantitative PCR was used to verify the expression of marker genes and the expression of lnc_000048 in macrophages. Flow cytometry was used to detect phenotypic proteins (CD11b, CD38, CD80). We generated cell lines with lentivirus-mediated upregulation or downregulation of lnc_000048. Flow cytometry, western blot, and real-time fluorescence quantitative PCR results showed that down-regulation of lnc_000048 reduced M1 macrophage polarization and the inflammation response, while over-expression of lnc_000048 led to the opposite effect. Western blot results indicated that lnc_000048 enhanced the activation of the STAT1 pathway and mediated the M1 macrophage polarization. Moreover, catRAPID prediction, RNA-pull down, and mass spectrometry were used to identify and screen the protein kinase RNA-activated (PKR), then catRAPID and RPIseq were used to predict the binding ability of lnc_000048 to PKR. Immunofluorescence (IF)-RNA fluorescence in situ hybridization (FISH) double labeling was performed to verify the subcellular colocalization of lnc_000048 and PKR in the cytoplasm of M1 macrophage. We speculate that lnc_000048 may form stem-loop structure-specific binding and activate PKR by inducing its phosphorylation, leading to activation of STAT1 phosphorylation and thereby enhancing STAT1 pathway-mediated polarization of THP-1 macrophages to M1 and inflammatory factor expression. Taken together, these results reveal that the lnc_000048/PKR/STAT1 axis plays a crucial role in the polarization of M1 macrophages and may be a novel therapeutic target for atherosclerosis alleviation in stroke.
Collapse
Affiliation(s)
- Yuanyuan Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yu Sun
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hongyan Wang
- Qingdao Cadre Health Care Service Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hongqin Zhao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ruihua Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Meng Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
6
|
Jiang T, Yu F, Zhou Y, Li R, Zheng M, Jiang Y, Li Z, Pan J, Ouyang N. Synergistic effect of ultrasound and reinforced electrical environment by bioinspired periosteum for enhanced osteogenesis via immunomodulation of macrophage polarization through Piezo1. Mater Today Bio 2024; 27:101147. [PMID: 39045313 PMCID: PMC11263955 DOI: 10.1016/j.mtbio.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/18/2024] [Accepted: 07/03/2024] [Indexed: 07/25/2024] Open
Abstract
The periosteum plays a vital role in repairing bone defects. Researchers have demonstrated the existence of electrical potential in the periosteum and native bone, indicating that electrical signals are essential for functional bone regeneration. However, the clinical use of external electrical treatments has been limited due to their inconvenience and inefficacy. As an alternative, low-intensity pulsed ultrasound (LIPUS) is a noninvasive form of physical therapy that enhances bone regeneration. Furthermore, the wireless activation of piezoelectric biomaterials through ultrasound stimulation would generate electric charges precisely at the defect area, compensating for the insufficiency of external electrical stimulation and potentially promoting bone regeneration through the synergistic effect of mechanical and electrical stimulation. However, the optimal integration of LIPUS with an appropriate piezoelectric periosteum is yet to be explored. Herein, the BaTiO3/multiwalled-carbon nanotubes/collagen (BMC) membranes have been fabricated, possessing physicochemical properties including improved surface hydrophilicity, enhanced mechanical performance, ideal piezoelectricity, and outstanding biocompatibility, all of which are conducive to bone regeneration. When combined with LIPUS, the endogenous electrical microenvironment of native bone was recreated. After that, the wireless-generated electrical signals, along with the mechanical signals induced by LIPUS, were transferred to macrophages and activated Ca2+ influx through Piezo1. Ultimately, the regenerative effect of the BMC membrane with LIPUS stimulation (BMC + L) was confirmed in a mouse cranial defect model. Together, this research presents a co-engineering strategy that involves fabricating a novel biomimetic periosteum and utilizing the synergistic effect of ultrasound to enhance bone regeneration, which is achieved through the reinforcement of the electrical environment and the immunomodulation of macrophage polarization.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Fei Yu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuqi Zhou
- Department of Stomatology, Weifang People's Hospital Stomatological Hospital, Weifang, 261041, China
| | - Ruomei Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Mengting Zheng
- Oral Bioengineering Lab, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, 200011, China
| | - Yangyang Jiang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Zhenxia Li
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| | - Jun Pan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ningjuan Ouyang
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, 200011, China
| |
Collapse
|
7
|
Yang Z, Cui Y, Xu S, Li L. LncRNA HCG18 affects aortic dissection through the miR-103a-3p/HMGA2 axis by modulating proliferation and apoptosis of vascular smoothing muscle cells. Clinics (Sao Paulo) 2024; 79:100400. [PMID: 39089097 PMCID: PMC11342200 DOI: 10.1016/j.clinsp.2024.100400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/07/2024] [Accepted: 05/18/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Aortic Dissection (AD) is a vascular disease with a high mortality rate and limited treatment strategies. The current research analyzed the function and regulatory mechanism of lncRNA HCG18 in AD. METHODS HCG18, miR-103a-3p, and HMGA2 levels in the aortic tissue of AD patients were examined by RT-qPCR. After transfection with relevant plasmids, the proliferation of rat aortic Vascular Smoothing Muscle Cells (VSMCs) was detected by CCK-8 and colony formation assay, Bcl-2 and Bax was measured by Western blot, and apoptosis was checked by flow cytometry. Then, the targeting relationship between miR-103a-3p and HCG18 or HMGA2 was verified by bioinformation website analysis and dual luciferase reporter assay. Finally, the effect of HCG18 was verified in an AD rat model induced by β-aminopropionitrile. RESULTS HCG18 and HMGA2 were upregulated and miR-103a-3p was downregulated in the aortic tissues of AD patients. Downregulating HCG18 or upregulating miR-103a-3p enhanced the proliferation of VSMCs and limited cell apoptosis. HCG18 promoted HMGA2 expression by competing with miR-103a-3p and restoring HMGA2 could impair the effect of HCG18 downregulation or miR-103a-3p upregulation in mediating the proliferation and apoptosis of VSMCs. In addition, down-regulation of HCG18 could improve the pathological injury of the aorta in AD rats. CONCLUSION HCG18 reduces proliferation and induces apoptosis of VSMCs through the miR-103a-3p/HMGA2 axis, thus aggravating AD.
Collapse
Affiliation(s)
- ZhiHong Yang
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - YuanSheng Cui
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - ShuGuo Xu
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China
| | - LongBiao Li
- Department of Invasive Technology, Ningde Municipal Hospital of Ningde Normal University, Ningde City, Fujian Province, China.
| |
Collapse
|
8
|
He Y, Qu L. Non-coding RNAs in diabetic peripheral neuropathy: their role and mechanisms underlying their effects. Metabolism 2024; 154:155833. [PMID: 38462040 DOI: 10.1016/j.metabol.2024.155833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/20/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Diabetic peripheral neuropathy (DPN) is a complication of diabetes with a high rate of disability. However, current clinical treatments for DPN are suboptimal. Non-coding RNAs (ncRNAs) are a type of RNAs that are not translated into proteins. NcRNAs perform functions that regulate epigenetic modifications, transcriptional or post-transcriptional regulators of proteins, and thus participate in the physiological and pathological processes of the body. NcRNAs play a role in the progress of DPN by affecting the processes of inflammation, oxidative stress, cellular autophagy or apoptosis. Therefore, ncRNAs treatment is regarded as a promising therapeutic approach for DPN. In addition, since some ncRNAs present stably in the blood of DPN patients, they are considered as potential biomarkers that contribute to early clinical diagnosis. In this paper, we review the studies on the role of ncRNAs in DPN in the last decade, and discuss the mechanisms of ncRNAs, aiming to provide a reference for the future research on the treatment and early diagnosis of DPN.
Collapse
Affiliation(s)
- Yiqian He
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730 Beijing, China
| | - Ling Qu
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, 100730 Beijing, China.
| |
Collapse
|
9
|
Yao M, Mao X, Zhang Z, Cui F, Shao S, Mao B. Communication molecules (ncRNAs) mediate tumor-associated macrophage polarization and tumor progression. Front Cell Dev Biol 2024; 12:1289538. [PMID: 38523627 PMCID: PMC10957787 DOI: 10.3389/fcell.2024.1289538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding RNAs play important roles in tumor cells and macrophages and participate in their communication as messengers. Non-coding RNAs have an impact in tumor cell proliferation, migration, and apoptosis, and they also regulate the differentiation and regulation of immune cells. In macrophages, they stimulate the polarization of macrophages into M1 or M2 by regulating proteins related to signaling pathways; in tumor cells, non-coding RNAs can enter macrophages through exosomes and affect the latter polarization. The polarization of macrophages further regulates the biological functions of cancer cells. The direction of macrophage polarization determines tumor progression, angiogenesis and drug resistance. This often creates a feedback loop. Non-coding RNAs act as bridges between tumor cells and macrophages to regulate the balance of the tumor microenvironment. We reviewed the signaling pathways related to macrophage polarization and the regulatory mechanisms of non-coding RNA in tumor-associated macrophages M1 and M2, and discussed the potential applications and prospects of exosome engineering.
Collapse
Affiliation(s)
- Min Yao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuhua Mao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
| | - Zherui Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feilun Cui
- The Affiliated Taizhou Second People`s Hospital of Yangzhou University, Taizhou, Jiangsu, China
| | - Shihe Shao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Boneng Mao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
| |
Collapse
|
10
|
Long F, Zhou X, Zhang J, Di C, Li X, Ye H, Pan J, Si J. The role of lncRNA HCG18 in human diseases. Cell Biochem Funct 2024; 42:e3961. [PMID: 38425124 DOI: 10.1002/cbf.3961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
A substantial number of long noncoding RNAs (lncRNAs) have been identified as potent regulators of human disease. Human leukocyte antigen complex group 18 (HCG18) is a new type of lncRNA that has recently been proven to play an important role in the occurrence and development of various diseases. Studies have found that abnormal expression of HCG18 is closely related to the clinicopathological characteristics of many diseases. More importantly, HCG18 was also found to promote disease progression by affecting a series of cell biological processes. This article mainly discusses the expression characteristics, clinical characteristics, biological effects and related regulatory mechanisms of HCG18 in different human diseases, providing a scientific theoretical basis for its early clinical application.
Collapse
Affiliation(s)
- Feng Long
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jinhua Zhang
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Cuixia Di
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xue Li
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Hailin Ye
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jingyu Pan
- Key Laboratory of TCM Prevention and Treatment of Chronic Diseases, School of Basic Medicine, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jing Si
- Department of Medical Physics, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
11
|
Luo Y, Jiang Y, Zhong T, Li Z, He J, Li X, Cui K. LncRNA HCG18 affects diabetic cardiomyopathy and its association with miR-9-5p/IGF2R axis. Heliyon 2024; 10:e24604. [PMID: 38322876 PMCID: PMC10845250 DOI: 10.1016/j.heliyon.2024.e24604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/08/2024] Open
Abstract
This paper aimed to investigate the role of lncRNA HCG18 (HCG18) in the progression of diabetic cardiomyopathy (DCM) and potential mechanisms. Streptozocin (STZ) was used to induce DCM model in rats, which was confirmed by blood glucose concentration, body weight, and HE staining. Myocardial apoptosis was detected by TUNEL. H9c2 cardiomyocytes were used to construct cell models of DCM through treatment of high glucose. The results showed that HCG18 was overexpressed in STZ induced DCM rat model and high glucose induced H9c2 cardiomyocytes. Si-HCG18 significantly increased cell viability, reduced cell apoptosis, attenuated activities of myocardial enzymes and enhanced activities of antioxidant enzymes in STZ induced DM model and high glucose induced H9c2 cardiomyocytes, while the results of upregulation of HCG18, in high glucose induced H9c2 cardiomyocytes, were opposite with that of si-HCG18. MiR-9-5p was a target of HCG18, and which was down-regulated in cardiomyocytes of DCM. The overexpression of miR-9-5p could neutralize the high glucose induced cardiomyocyte injury, and the silence of miR-9-5p could reverse the effect of si-HCG18 on high glucose induced cardiomyocytes. MiR-9-5p could directly target to IGF2R, and IGF2R was overexpressed in cardiomyocytes of DCM. Up-regulation of IGF2R can reverse the protective effect of si-HCG18 on cardiomyocytes. Taken together, HCG18 is significantly increased in cardiomyocytes of DCM. Down-regulation of HCG18 can improve cardiomyocyte injury through miR-9-5p/IGF2R axis in DCM.
Collapse
Affiliation(s)
- Yuhui Luo
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Yi Jiang
- Department of Geriatrics, Chongqing Emergency Medical Center, Central Hospital of Chongqing University, Chongqing, 40013, China
| | - Tingting Zhong
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Zhenggong Li
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Jia He
- Department of Echocardiogram, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Xiaoli Li
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| | - Kun Cui
- Department of Cardiology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 40013, China
| |
Collapse
|
12
|
Yao W, Wang L, Liu F, Xia L. The role of long non-coding RNAs in breast cancer microenvironment. Pathol Res Pract 2023; 248:154707. [PMID: 37506626 DOI: 10.1016/j.prp.2023.154707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
The tumor microenvironment (TME), which includes tumor cells, fibroblasts, endothelial cells, immune cells, and blood vessels, can affect tumor growth and metastasis. Studies have shown that tumor cells, fibroblasts, and macrophages can promote the development of tumors, while T and B cells can inhibit tumor progression. The crosstalk among different cells within the TME needs further study. Long non-coding RNAs (lncRNAs) are involved in biological processes, including cell proliferation, migration, and differentiation. The abnormal expression of certain lncRNAs is correlated with the progression of breast cancer and has been proven as diagnostic markers in various cancers, including breast cancer. In breast cancer, recent studies have shown that tumor cell- and non-tumor cell-derived lncRNAs can affect various facets of tumor progression, including growth, proliferation, and migration of tumor cells. Interestingly, in addition to being regulated by lncRNAs derived from tumor and non-tumor cells, the TME can regulate the expression of lncRNAs in tumor cells, fibroblasts, and macrophages, influencing their phenotype and function. However, the detailed molecular mechanisms of these phenomena remain unclear in the breast cancer microenvironment. Currently, many studies have shown that TME-associated lncRNAs are potential diagnostic and therapeutic targets for breast cancer. Considering that TME and lncRNAs can regulate each other, we summarize the role of lncRNAs in the breast cancer microenvironment and the potential of lncRNAs as valuable diagnostic markers.
Collapse
Affiliation(s)
- Wenwu Yao
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Wang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China
| | - Fang Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Lin Xia
- Institute of Hematological Disease, Jiangsu University, Zhenjiang 212001, China; Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, China.
| |
Collapse
|
13
|
The role of long non-coding RNA HCG18 in cancer. Clin Transl Oncol 2023; 25:611-619. [PMID: 36346572 DOI: 10.1007/s12094-022-02992-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/23/2022] [Indexed: 11/10/2022]
Abstract
The incidence of cancer is increasing worldwide and is becoming the most common cause of death. Identifying new biomarkers for cancer diagnosis and prognosis is important for developing cancer treatment strategies and reducing mortality. Long non-coding RNAs (lncRNAs) are non-coding, single-stranded RNAs that play an important role as oncogenes or tumor suppressors in the occurrence and development of human tumors. Abnormal expression of human leukocyte antigen complex group 18 (HCG18) is observed in many types of cancer, and its imbalance is closely related to cancer progression. HCG18 regulates cell proliferation, invasion, metastasis, and anti-apoptosis through a variety of mechanisms. Therefore, HCG18 is a potential tumor biomarker and therapeutic target. However, the therapeutic significance of HCG18 has not been well studied, and future research may develop new intervention strategies to combat cancer. In this study, we reviewed the biological function, mechanism, and potential clinical significance of HCG18 in various cancers to provide a reference for future research.
Collapse
|
14
|
Ghaffari M, Razi S, Zalpoor H, Nabi-Afjadi M, Mohebichamkhorami F, Zali H. Association of MicroRNA-146a with Type 1 and 2 Diabetes and their Related Complications. J Diabetes Res 2023; 2023:2587104. [PMID: 36911496 PMCID: PMC10005876 DOI: 10.1155/2023/2587104] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 03/06/2023] Open
Abstract
Most medical investigations have found a reduced blood level of miR-146a in type 2 diabetes (T2D) patients, suggesting an important role for miR-146a (microRNA-146a) in the etiology of diabetes mellitus (DM) and its consequences. Furthermore, injection of miR-146a mimic has been confirmed to alleviate diabetes mellitus in diabetic animal models. In this line, deregulation of miR-146a expression has been linked to the progression of nephropathy, neuropathy, wound healing, olfactory dysfunction, cardiovascular disorders, and retinopathy in diabetic patients. In this review, besides a comprehensive review of the function of miR-146a in DM, we discussed new findings on type 1 (T1MD) and type 2 (T2DM) diabetes mellitus, highlighting the discrepancies between clinical and preclinical investigations and elucidating the biological pathways regulated through miR-146a in DM-affected tissues.
Collapse
Affiliation(s)
- Mahyar Ghaffari
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Sara Razi
- Vira Pioneers of Modern Science (VIPOMS), Tehran, Iran
| | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehram, Iran
| |
Collapse
|
15
|
Zhu L, Yu Y, Wang H, Wang M, Chen M. LncRNA HCG18 loaded by polymorphonuclear neutrophil-secreted exosomes aggravates sepsis acute lung injury by regulating macrophage polarization. Clin Hemorheol Microcirc 2023; 85:13-30. [PMID: 37355886 DOI: 10.3233/ch-221624] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Polymorphonuclear neutrophils (PMNs) exert significant roles in septic acute lung injury (ALI). Accumulating evidence suggests that PMN-derived exosomes (PMN-exo) are a novel subcellular entity that is the fundamental link between PMN-driven inflammation and tissue damage. However, the role of PMN-exo in septic ALI and the underlying mechanisms remain unclear. Tumor necrosis factor-α (TNF-α), a key regulator of innate immunity in septic ALI, was used to induce PMN activation in vitro. Using an in vitro co-culture system, the rat alveolar macrophage cell line NR8383 was co-cultured with TNF-α-stimulated PMN-released exosomes (TNF-α-exo) to further confirm the results of the in vitro studies and explore the underlying mechanisms involved. A septic lung injury model was established by cecal ligation and puncture surgery, and PMN-exo were injected into septic mice through the tail vein, and then lung injury, inflammatory release, macrophage polarization, and apoptosis were examined. The results reported that TNF-α-exo promoted the activation of M1 macrophages after i.p. injection in vivo or co-culture in vitro. Furthermore, TNF-α-exo affected alveolar macrophage polarization by delivering HCG18. Mechanistic studies indicated that HCG18 mediated the function of TNF-α-exo by targeting IL-32 in macrophages. In addition, tail vein injection of si-HCG18 in septic mice significantly reduced TNF-α-exo-induced M1 macrophage activation and lung macrophage death, as well as histological lesions. In conclusion, TNF-α-exo-loaded HCG18 contributes to septic ALI by regulating macrophage polarization. These findings may provide new insights into novel mechanisms of PMN-macrophage polarization interactions in septic ALI and may provide new therapeutic strategies for patients with sepsis.
Collapse
Affiliation(s)
- LiJun Zhu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - YuLong Yu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - HuiJun Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - MingCang Wang
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| | - MinJuan Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, Zhejiang, China
| |
Collapse
|
16
|
Identification of Immune Infiltration and the Potential Biomarkers in Diabetic Peripheral Neuropathy through Bioinformatics and Machine Learning Methods. Biomolecules 2022; 13:biom13010039. [PMID: 36671424 PMCID: PMC9855866 DOI: 10.3390/biom13010039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is one of the most common chronic complications in diabetes. Previous studies have shown that chronic neuroinflammation was associated with DPN. However, further research is needed to investigate the exact immune molecular mechanism underlying the pathogenesis of DPN. Expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened by R software. After functional enrichment analysis of DEGs, a protein-protein interaction (PPI) network analysis was performed. The CIBERSORT algorithm was used to evaluate the infiltration of immune cells in DPN. Next, the least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms were applied to identify potential DPN diagnostic markers. Finally, the results were further validated by qRT-PCR. A total of 1308 DEGs were screened in this study. Enrichment analysis identified that DEGs were significantly enriched in immune-related biological functions and pathways. Immune cell infiltration analysis found that M1 and M2 macrophages, monocytes, resting mast cells, resting CD4 memory T cells and follicular helper T cells were involved in the development of DPN. LTBP2 and GPNMB were identified as diagnostic markers of DPN. qRT-PCR results showed that 15 mRNAs, including LTBP2 and GPNMB, were differentially expressed, consistent with the microarray results. In conclusion, LTBP2 and GPNMB can be used as novel candidate molecular diagnostic markers for DPN. Furthermore, the infiltration of immune cells plays an important role in the progression of DPN.
Collapse
|
17
|
NUP160 knockdown inhibits the progression of diabetic nephropathy in vitro and in vivo. Regen Ther 2022; 21:87-95. [PMID: 35785044 PMCID: PMC9234011 DOI: 10.1016/j.reth.2022.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/02/2022] Open
Abstract
Diabetic nephropathy (DN) is a severe diabetic complication and podocyte damage is a hallmark of DN. The Nucleoporin 160 (NUP160) gene was demonstrated to regulate cell proliferation and apoptosis in mouse podocytes. This study explored the possible role and mechanisms of NUP160 in high glucose-triggered podocyte injury. A rat model of DN was established by intraperitoneal injection of 60 mg/kg streptozotocin (STZ). Podocytes were treated with 33 mM high glucose. The effects of the Nup160 on DN and its mechanisms were assessed using MTT, flow cytometry, Western blot, ELISA, RT-qPCR, and luciferase reporter assays. The in vivo effects of NUP160 were analyzed by HE, PAS, and MASSON staining assays. The NUP160 level was significantly upregulated in podocytes treated with 33 mM high glucose. Functionally, NUP160 knockdown alleviated high glucose-induced apoptosis and inflammation in podocytes. Mechanistically, miR-495-3p directly targeted NUP160, and lncRNA HCG18 upregulated NUP160 by sponging miR-495-3p by acting as a ceRNA. Additionally, NUP160 overexpression reversed the effects of HCG18 knockdown in high glucose treated-podocytes. The in vivo assays indicated that NUP160 knockdown alleviated the symptoms of DN rats. NUP160 knockdown plays a key role in preventing the progression of DN, suggesting that targeting NUP160 may be a potential therapeutic strategy for DN treatment.
Collapse
|
18
|
Ding Q, Gao Z, Chen K, Zhang Q, Hu S, Zhao L. Inflammation-Related Epigenetic Modification: The Bridge Between Immune and Metabolism in Type 2 Diabetes. Front Immunol 2022; 13:883410. [PMID: 35603204 PMCID: PMC9120428 DOI: 10.3389/fimmu.2022.883410] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
T2DM, as a typical metabolic inflammatory disease, is under the joint regulation of environmental factors and genetics, combining with a variety of epigenetic changes. Apart from epigenetic changes of islet β cells and glycometabolic tissues or organs, the inflammation-related epigenetics is also the core pathomechanism leading to β-cell dysfunction and insulin resistance. In this review, we focus on the epigenetic modification of immune cells’ proliferation, recruitment, differentiation and function, providing an overview of the key genes which regulated by DNA methylation, histone modifications, and non-coding RNA in the respect of T2DM. Meanwhile, we further summarize the present situation of T2DM epigenetic research and elucidate its prospect in T2DM clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Qiyou Ding
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zezheng Gao
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keyu Chen
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Qiqi Zhang
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shiwan Hu
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Linhua Zhao,
| |
Collapse
|
19
|
Wang Y, Xu H, Chen N, Yang J, Zhou H. LncRNA: A Potential Target for Host-Directed Therapy of Candida Infection. Pharmaceutics 2022; 14:pharmaceutics14030621. [PMID: 35335994 PMCID: PMC8954347 DOI: 10.3390/pharmaceutics14030621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023] Open
Abstract
Despite various drugs work against Candida, candidiasis represents clinical management challenges worldwide due to the rising incidence and recurrence rate, as well as epidemics, of new drug-resistant pathogens. Recent insights into interactions between Candida and hosts contribute to exploring novel therapeutic strategies, termed host-directed therapies (HDTs). HDTs are viable adjuncts with good efficacy for the existing standard antifungal regimens. However, HDTs induce other response unintendedly, thus requiring molecular targets with highly specificity. Long noncoding RNAs (lncRNAs) with highly specific expression patterns could affect biological processes, including the immune response. Herein, this review will summarize recent advances of HDTs based on the Candida–host interaction. Especially, the findings and application strategies of lncRNAs related to the host response are emphasized. We propose it is feasible to target lncRNAs to modulate the host defense during Candida infection, which provides a new perspective in identifying options of HDTs for candidiasis.
Collapse
|
20
|
Gada Y, Pandey A, Jadhav N, Ajgaonkar S, Mehta D, Nair S. New Vistas in microRNA Regulatory Interactome in Neuropathic Pain. Front Pharmacol 2022; 12:778014. [PMID: 35280258 PMCID: PMC8914318 DOI: 10.3389/fphar.2021.778014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/10/2021] [Indexed: 12/11/2022] Open
Abstract
Neuropathic pain is a chronic pain condition seen in patients with diabetic neuropathy, cancer chemotherapy-induced neuropathy, idiopathic neuropathy as well as other diseases affecting the nervous system. Only a small percentage of people with neuropathic pain benefit from current medications. The complexity of the disease, poor identification/lack of diagnostic and prognostic markers limit current strategies for the management of neuropathic pain. Multiple genes and pathways involved in human diseases can be regulated by microRNA (miRNA) which are small non-coding RNA. Several miRNAs are found to be dysregulated in neuropathic pain. These miRNAs regulate expression of various genes associated with neuroinflammation and pain, thus, regulating neuropathic pain. Some of these key players include adenylate cyclase (Ac9), toll-like receptor 8 (Tlr8), suppressor of cytokine signaling 3 (Socs3), signal transducer and activator of transcription 3 (Stat3) and RAS p21 protein activator 1 (Rasa1). With advancements in high-throughput technology and better computational power available for research in present-day pharmacology, biomarker discovery has entered a very exciting phase. We dissect the architecture of miRNA biological networks encompassing both human and rodent microRNAs involved in the development of neuropathic pain. We delineate various microRNAs, and their targets, that may likely serve as potential biomarkers for diagnosis, prognosis, and therapeutic intervention in neuropathic pain. miRNAs mediate their effects in neuropathic pain by signal transduction through IRAK/TRAF6, TLR4/NF-κB, TXIP/NLRP3 inflammasome, MAP Kinase, TGFβ and TLR5 signaling pathways. Taken together, the elucidation of the landscape of signature miRNA regulatory networks in neuropathic pain will facilitate the discovery of novel miRNA/target biomarkers for more effective management of neuropathic pain.
Collapse
|
21
|
Lu X, Tan Q, Ma J, Zhang J, Yu P. Emerging Role of LncRNA Regulation for NLRP3 Inflammasome in Diabetes Complications. Front Cell Dev Biol 2022; 9:792401. [PMID: 35087834 PMCID: PMC8789514 DOI: 10.3389/fcell.2021.792401] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes is a widespread metabolic disease with various complications, including diabetic nephropathy, retinopathy, cardiomyopathy, and other cardiovascular or cerebrovascular diseases. As the prevalence of diabetes increases in all age groups worldwide, diabetes and its complications cause an emerging public health burden. NLRP3 inflammasome is a complex of several proteins that play a critical role in inflammatory response and various diseases, including diabetes and its complications. Accumulating evidences indicate that NLRP3 inflammasome contributes to the development of diabetes and diabetic complications and that NLRP3 inflammation inactivation is beneficial in treating these illnesses. Emerging evidences suggest the critical role of long non-coding RNAs (lncRNAs) in regulating NLRP3 inflammasome activity in various diseases. LncRNAs are non-coding RNAs exceeding 200 nucleotides in length. Its dysregulation has been linked to the development of diseases, including diabetes. Recently, growing evidences hint that regulating lncRNAs on NLRP3 inflammasome is critical in developing and progressing diabetes and diabetic complications. Here, we discuss the role of lncRNAs in regulating NLRP3 inflammasome as well as its participation in diabetes and diabetic complications, providing novel insights into developing future therapeutic approaches for diabetes.
Collapse
Affiliation(s)
- Xiaolin Lu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qihong Tan
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jing Zhang
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- The Second Clinical Medical College of Nanchang University, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Metabolism and Endocrinology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
22
|
Jiang P, Li X. Regulatory Mechanism of lncRNAs in M1/M2 Macrophages Polarization in the Diseases of Different Etiology. Front Immunol 2022; 13:835932. [PMID: 35145526 PMCID: PMC8822266 DOI: 10.3389/fimmu.2022.835932] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Precise expression and regulation of genes in the immune system is important for organisms to produce strong immunity towards pathogens and limit autoimmunity. In recent years, an increasing number of studies has shown that long noncoding RNAs (lncRNAs) are closely related to immune function and can participate in regulating immune responses by regulating immune cell differentiation, development, and function. As immune cells, the polarization response of macrophages (Mφs) plays an important role in immune function and inflammation. LncRNAs can regulate the phenotypic polarization of Mφs to M1 or M2 through various mechanisms; promote pro-inflammatory or anti-inflammatory effects; and participate in the pathogenesis of cancers, inflammatory diseases, infections, metabolic diseases, and autoimmune diseases. In addition, it is important to explore the regulatory mechanisms of lncRNAs on the dynamic transition between different Mφs phenotypes. Thus, the regulatory role of lncRNAs in the polarization of Mφs and their mechanism are discussed in this review.
Collapse
Affiliation(s)
- Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaopeng Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
- Integrated Traditional Chinese and Western Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- *Correspondence: Xiaopeng Li,
| |
Collapse
|
23
|
Liu X, Qiao K, Zhu K, Li X, Zhao C, Li J, Feng D, Fang Y, Wang P, Qian C, Qiao W. Long Noncoding RNA HCG18 Promotes Malignant Phenotypes of Breast Cancer Cells via the HCG18/miR-103a-3p/UBE2O/mTORC1/HIF-1α-Positive Feedback Loop. Front Cell Dev Biol 2022; 9:675082. [PMID: 34976998 PMCID: PMC8715259 DOI: 10.3389/fcell.2021.675082] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, an increasing number of studies have reported that long noncoding RNAs (lncRNAs) play crucial roles in breast cancer (BC) progression and metastasis. Another study group of our research center reported that lncRNA HCG18 was one of the 30 upregulated lncRNAs in BC tissues compared with normal tissues in The Cancer Genome Atlas database. However, the exact biological roles of HCG18 in BC remain unclear. In this study, we demonstrated that HCG18 is significantly upregulated in BC tissues and cells and that BC patients with high HCG18 expression tend to have poor prognosis. In vitro assays indicated that HCG18 promotes BC cell proliferation and invasion and endows BC cells with cancer stemness properties. In vivo assays revealed that reducing HCG18 expression in the BC cell line MDA-MB-231 markedly decreased tumor growth and lung metastasis in xenograft mouse models. In terms of mechanism, we found that HCG18 positively regulated the expression of BC-related ubiquitin-conjugating enzyme E2O (UBE2O) by sponging miR-103a-3p, and our previous research verified that UBE2O could promote the malignant phenotypes of BC cells through the UBE2O/AMPKα2/mTORC1 axis. Furthermore, as a downstream target of the HCG18/miR-103a-3p/UBE2O/mTORC1 axis, hypoxia-inducible factor 1α transcriptionally promoted HCG18 expression and then formed a positive feedback loop in BC. Taken together, these results confirm that HCG18 plays an oncogenic role in BC and might serve as a prognostic biomarker and a potential therapeutic target for BC treatment.
Collapse
Affiliation(s)
- Xu Liu
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Kun Qiao
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Kaiyuan Zhu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xianglan Li
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Chunbo Zhao
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Jiaqi Li
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Dawei Feng
- Department of Radiotherapy Technology Center, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Yu Fang
- Department of Oncology Phase I Clinical Research, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Peng Wang
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Cheng Qian
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| | - Wenbo Qiao
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, China
| |
Collapse
|
24
|
Zhang F, Luo BH, Wu QH, Li QL, Yang KD. LncRNA HCG18 upregulates TRAF4/TRAF5 to facilitate proliferation, migration and EMT of epithelial ovarian cancer by targeting miR-29a/b. Mol Med 2022; 28:2. [PMID: 34983361 PMCID: PMC8725507 DOI: 10.1186/s10020-021-00415-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Although long noncoding RNA HLA complex group 18 (lncRNA HCG18) has been suggested to regulate cell growth in several tumours, the function of HCG18 in epithelial ovarian cancer (EOC) and its mechanism are still unclear. Methods shRNAs were applied to reduce HCG18 and related genes. For overexpression of miRNA, a miRNA mimic was transfected into cells. Quantitative real-time PCR (qRT–PCR) was used to detect levels of HCG18, miR-29a/b, and mRNAs. MTT, colony formation, wound healing and Transwell assays were used to evaluate cell proliferation, migration and invasion, respectively. A luciferase reporter assay was utilized to evaluate NF-κB activity and the binding of miRNAs with HCG18 or TRAF4/5. BALB nude mice injected with cells stably expressing shHCG18 or shNC were used for in vivo modelling. Subcutaneous tumour growth was monitored in nude mice, and immunohistochemistry (IHC) was used to determine expression of the proliferation marker Ki67. Results Abnormal expression of HCG18 and miR-29a/b was observed in EOC tissues. Knockdown of HCG18 using shRNA inhibited proliferation, migration, EMT and the proinflammatory pathway in EOC cells. miR-29a/b mimics and TRAF4/5 knockdown exhibited effects similar to HCG18 knockdown. Further experiments suggested that HCG18 directly targets miR-29a/b and upregulates TRAF4/5 expression, which are inhibited by targeting miR-29a/b. Moreover, overexpression of TRAF4/5 antagonized the inhibitory effect of HCG18 knockdown, suggesting that they are involved in HCG18-mediated oncogenic effects. Silencing HCG18 reduced tumour size and levels of Ki67 and TRAF4/5 while increasing miR-29a/b levels in vivo. Conclusions Taken together, our data revealed an oncogenic signalling pathway mediated by HCG18 in ovarian cell lines, which functions as a ceRNA of miR-29a/b and thus derepresses expression levels of TRAF4/5, facilitating NF-κB pathway-mediated promotion of EOC cell proliferation and migration. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00415-y.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China.,Department of Physiology, School of Basic Medical Science, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Bai-Hua Luo
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Qi-Hui Wu
- Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, People's Republic of China
| | - Qing-Ling Li
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China
| | - Ke-Da Yang
- Department of Pathology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan Province, People's Republic of China.
| |
Collapse
|
25
|
Winsvold BS, Kitsos I, Thomas LF, Skogholt AH, Gabrielsen ME, Zwart JA, Nilsen KB. Genome-Wide Association Study of 2,093 Cases With Idiopathic Polyneuropathy and 445,256 Controls Identifies First Susceptibility Loci. Front Neurol 2021; 12:789093. [PMID: 34975738 PMCID: PMC8718917 DOI: 10.3389/fneur.2021.789093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Background: About one third of patients with chronic polyneuropathy have no obvious underlying etiology and are classified as having idiopathic polyneuropathy. The lack of knowledge about pathomechanisms and predisposing factors limits the development of effective prevention and treatment for these patients. We report the first genome-wide association study (GWAS) of idiopathic polyneuropathy. Methods: Cases with idiopathic polyneuropathy and healthy controls were identified by linkage to hospital records. We performed genome-wide association studies using genetic data from two large population-based health studies, the Trøndelag Health Study (HUNT, 1,147 cases and 62,204 controls) and UK Biobank (UKB, 946 cases and 383,052 controls). In a two-stage analysis design, we first treated HUNT as a discovery cohort and UK Biobank as a replication cohort. Secondly, we combined the two studies in a meta-analysis. Downstream analyses included genetic correlation to other traits and diseases. We specifically examined previously reported risk loci, and genes known to cause hereditary polyneuropathy. Results: No replicable risk loci were identified in the discovery-replication stage, in line with the limited predicted power of this approach. When combined in a meta-analysis, two independent loci reached statistical significance (rs7294354 in B4GALNT3, P-value 4.51 × 10−8) and (rs147738081 near NR5A2, P-value 4.75 × 10−8). Idiopathic polyneuropathy genetically correlated with several anthropometric measures, most pronounced for height, and with several pain-related traits. Conclusions: In this first GWAS of idiopathic polyneuropathy we identify two risk-loci that indicate possible pathogenetic mechanisms. Future collaborative efforts are needed to replicate and expand on these findings.
Collapse
Affiliation(s)
- Bendik S. Winsvold
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Ioannis Kitsos
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Laurent F. Thomas
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- BioCore–Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Laboratory Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Anne Heidi Skogholt
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken E. Gabrielsen
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - John-Anker Zwart
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kristian Bernhard Nilsen
- Department of Research and Innovation, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- *Correspondence: Kristian Bernhard Nilsen
| |
Collapse
|
26
|
Li S, Wang X, Wang T, Zhang H, Lu X, Liu L, Li L, Bo C, Kong X, Xu S, Ning S, Wang J, Wang L. Identification of the regulatory role of lncRNA HCG18 in myasthenia gravis by integrated bioinformatics and experimental analyses. J Transl Med 2021; 19:468. [PMID: 34794447 PMCID: PMC8600732 DOI: 10.1186/s12967-021-03138-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/03/2021] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs), functioning as competing endogenous RNAs (ceRNAs), have been reported to play important roles in the pathogenesis of autoimmune diseases. However, little is known about the regulatory roles of lncRNAs underlying the mechanism of myasthenia gravis (MG). The aim of the present study was to explore the roles of lncRNAs as ceRNAs associated with the progression of MG. METHODS MG risk genes and miRNAs were obtained from public databases. Protein-protein interaction (PPI) network analysis and module analysis were performed. A lncRNA-mediated module-associated ceRNA (LMMAC) network, which integrated risk genes in modules, risk miRNAs and predicted lncRNAs, was constructed to systematically explore the regulatory roles of lncRNAs in MG. Through performing random walk with restart on the network, HCG18/miR-145-5p/CD28 ceRNA axis was found to play important roles in MG, potentially. The expression of HCG18 in MG patients was detected using RT-PCR. The effects of HCG18 knockdown on cell proliferation and apoptosis were determined by CCK-8 assay and flow cytometry. The interactions among HCG18, miR-145-5p and CD28 were explored by luciferase assay, RT-PCR and western blot assay. RESULTS Based on PPI network, we identified 9 modules. Functional enrichment analyses revealed these modules were enriched in immune-related signaling pathways. We then constructed LMMAC network, containing 25 genes, 50 miRNAs, and 64 lncRNAs. Through bioinformatics algorithm, we found lncRNA HCG18 as a ceRNA, might play important roles in MG. Further experiments indicated that HCG18 was overexpressed in MG patients and was a target of miR-145-5p. Functional assays illustrated that HCG18 suppressed Jurkat cell apoptosis and promoted cell proliferation. Mechanistically, knockdown of HCG18 inhibited the CD28 mRNA and protein expression levels in Jurkat cells, while miR-145-5p inhibitor blocked the reduction of CD28 expression induced by HCG18 suppression. CONCLUSION We have reported a novel HCG18/miR-145-5p/CD28 ceRNA axis in MG. Our findings will contribute to a deeper understanding of the molecular mechanism of and provide a novel potential therapeutic target for MG.
Collapse
Affiliation(s)
- Shuang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xu Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Tianfeng Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Huixue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xiaoyu Lu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Li Liu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Lifang Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Chunrui Bo
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Xiaotong Kong
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Si Xu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China
| | - Shangwei Ning
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Jianjian Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| | - Lihua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
27
|
Dissecting the Pathogenesis of Diabetic Retinopathy Based on the Biological ceRNA Network and Genome Variation Disturbance. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9833142. [PMID: 34707685 PMCID: PMC8545528 DOI: 10.1155/2021/9833142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/29/2021] [Indexed: 12/23/2022]
Abstract
Background Diabetic retinopathy (DR) is the most important manifestation of diabetic microangiopathy. It is essential to explore the gene regulatory relationship and genomic variation disturbance of biological networks in DR progression. Methods In this study, we constructed a comprehensive lncRNA-mRNA ceRNA network of DR procession (CLMN) and explored its topological characteristics. Results Modular and functional analysis indicated that the organization of CLMN performed fundamental and specific functions in diabetes and DR pathology. The differential expression of hub ceRNA nodes and positive correlation reveals the highly connected ceRNA regulation and important roles in the regulating of DR pathology. A large proportion of SNPs in the TFBS, DHS, and enhancer regions of lncRNAs will affect lncRNA transcription and further cause expression variation. Some SNPs were found to disrupt the lncRNA functional elements such as miRNA target binding sites. These results indicate the complex nature of genotypic effects in the disturbing of CLMN and further contribute to gene expression variation and different disease phenotypes. Conclusion The identification of individual genomic variations and analysis of biological network disturbance by these genomic variations will help provide more personalized treatment plans and promote the development of precision medicine for DR.
Collapse
|
28
|
Ghafouri-Fard S, Abak A, Tavakkoli Avval S, Shoorei H, Taheri M, Samadian M. The impact of non-coding RNAs on macrophage polarization. Biomed Pharmacother 2021; 142:112112. [PMID: 34449319 DOI: 10.1016/j.biopha.2021.112112] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophage polarization is a process through which macrophages attain unique functional features as a response to certain stimuli from their niche. Lipopolysaccharide and Th1 cytokines induce generation of M1 macrophages. On the other hand, IL-4, IL-13, IL-10, IL-33, and TGF-β induce polarization of macrophages towards M2 phenotype. This process is also modulated by a number of miRNAs and lncRNAs. miR-375, miR-let7, miR-34a, miR-155, miR-124, miR-34a, miR-511-3p, miR-99a, miR-132 and miR-145-3p are among miRNAs that regulate macrophage polarization. Meanwhile, macrophage polarization is influenced by some lncRNAs such as H19, NRON, MEG3, GAS5, RN7SK, and AK085865. Macrophage polarization has functional significance in a wide range of human disorders particularly immune disorders and cancer. In addition, the effect of certain drugs in modulation of macrophage polarization is exerted through modulation of expression of non-coding RNAs. In the current manuscript, we provide a summary of studies aimed to identification of this aspect of non-coding RNAs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Men's Health and Reproductive Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Samadian
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
29
|
Liu BY, Li L, Bai LW, Xu CS. Long Non-coding RNA XIST Attenuates Diabetic Peripheral Neuropathy by Inducing Autophagy Through MicroRNA-30d-5p/ sirtuin1 Axis. Front Mol Biosci 2021; 8:655157. [PMID: 33996907 PMCID: PMC8113765 DOI: 10.3389/fmolb.2021.655157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/31/2021] [Indexed: 01/18/2023] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a prevalent diabetes mellitus (Feldman et al., 2017) complication and the primary reason for amputation. Meanwhile, long non-coding RNAs (lncRNAs) are a type of regulatory non-coding RNAs (ncRNAs) that broadly participate in DPN development. However, the correlation of lncRNA X-inactive specific transcript (XIST) with DPN remains unclear. In this study, we were interested in the role of XIST in the modulation of DPN progression. Significantly, our data showed that the expression of XIST and sirtuin1 (SIRT1) was inhibited, and the expression of microRNA-30d-5p (miR-30d-5p) was enhanced in the trigeminal sensory neurons of the diabetic mice compared with the normal mice. The levels of LC3II and Beclin-1 were inhibited in the diabetic mice. The treatment of high glucose (HG) reduced the XIST expression in Schwann cells. The apoptosis of Schwann cells was enhanced in the HG-treated cells, but the overexpression of XIST could block the effect in the cells. Moreover, the levels of LC3II and Beclin-1 were reduced in the HG-treated Schwann cells, while the overexpression of XIST was able to reverse this effect. The HG treatment promoted the production of oxidative stress, while the XIST overexpression could attenuate this result in the Schwann cells. Mechanically, XIST was able to sponge miR-30d-5p and miR-30d-5p-targeted SIRT1 in the Schwann cells. MiR-30d-5p inhibited autophagy and promoted oxidative stress in the HG-treated Schwann cells, and SIRT1 presented a reversed effect. MiR-30d-5p mimic or SIRT1 depletion could reverse XIST overexpression-mediated apoptosis and autophagy of the Schwann cells. Thus, we concluded that XIST attenuated DPN by inducing autophagy through miR-30d-5p/SIRT1 axis. XIST and miR-30d-5p may be applied as the potential targets for DPN therapy.
Collapse
Affiliation(s)
- Bei-Yan Liu
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Lin Li
- Department of Neurology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Li-Wei Bai
- Department of Endocrinology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China
| | - Chang-Shui Xu
- Department of Neurology, Henan Province People's Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Yan C, Chen J, Yang X, Li W, Mao R, Chen Z. Emerging Roles of Long Non-Coding RNAs in Diabetic Foot Ulcers. Diabetes Metab Syndr Obes 2021; 14:2549-2560. [PMID: 34135607 PMCID: PMC8200159 DOI: 10.2147/dmso.s310566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetes mellitus is one of the most widespread metabolic diseases in the world, and diabetic foot ulcer (DFU), as one of its chronic complications, not only causes a large amount of physiological and psychological pain to patients but also places a tremendous burden on the entire economy and society. Despite significant advances in knowledge on the mechanism and in the treatment of DFU, clinical practice is still not satisfactory, and our understanding of its cellular and molecular pathogenesis is far from complete. Fortunately, progress in studying the roles of long non-coding RNAs (lncRNAs), which play important regulatory roles in the expression of genes at multiple levels, suggests that we can apply them in the early diagnosis and potential targeted intervention of DFU. In this review, we briefly summarize the current knowledge regarding the functional roles and potential mechanisms of reported lncRNAs in regulating DFU.
Collapse
Affiliation(s)
- Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Wenqing Li
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Renqun Mao
- Department of Hand and Foot Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong, People’s Republic of China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Correspondence: Zhenbing Chen Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of ChinaTel +86 13871103730Fax +86 2785351628 Email
| |
Collapse
|