1
|
Zhang S, Wu Q, Cheng W, Dong W, Kou B. YTHDC1-Mediated lncRNA MSC-AS1 m6A Modification Potentiates Laryngeal Squamous Cell Carcinoma Development via Repressing ATXN7 Transcription. Mol Biotechnol 2025; 67:1659-1673. [PMID: 38637450 DOI: 10.1007/s12033-024-01150-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/19/2024] [Indexed: 04/20/2024]
Abstract
Laryngeal squamous cell carcinoma (LSCC) has the highest mortality rate among head and neck squamous cell carcinoma. This study was designed to investigate the biological effect of long noncoding RNA (lncRNA) MSC antisense RNA 1 (MSC-AS1) on LSCC development and the underlying mechanism. The expression and prognostic value of lncRNAs in head and neck squamous cell carcinoma were predicted in the bioinformatics tools. The overexpression of MSC-AS1 in LSCC patients predicted a poor prognosis. Depletion of MSC-AS1 using shRNA repressed the malignant phenotype of AMC-HN-8 and TU-177 cells. MSC-AS1, mainly localized in the nucleus, interacted closely with the transcription factor CCCTC-binding factor (CTCF). CTCF played anti-tumor effects in vitro and in vivo. Ataxin-7 (ATXN7) was predicted to be a downstream target of CTCF, whose expression was negatively controlled by MSC-AS1. MSC-AS1 was found to block the expression of CTCF, thereby repressing ATXN7. Finally, MSC-AS1 overexpression in LSCC was governed by YTH domain-containing protein 1 (YTHDC1)-mediated m6A modification. In summary, our research identified the YTHDC1/MSC-AS1/CTCF/ATXN7 axis in LSCC development, which indicated that MSC-AS1 is an attractive biomarker in the LSCC treatment.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
- Department of Otolaryngology Head and Neck Surgery, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, Inner Mongolia, People's Republic of China
| | - Qun Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Wei Cheng
- Department of General Surgery, Danfeng County Hospital, Shangluo, 726200, Shaanxi, People's Republic of China
| | - Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, People's Republic of China
| | - Bo Kou
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277, Yanta West Road, Yanta District, Xi'an, 710061, Shaanxi, People's Republic of China.
| |
Collapse
|
2
|
Zhang G, Zhang K, Li X, Wang X, Li G, Wang Y. Cinobufagin Enhances the Sensitivity of Cisplatin-Resistant Lung Cancer Cells to Chemotherapy by Inhibiting the PI3K/AKT and MAPK/ERK Pathways. J Cell Mol Med 2025; 29:e70501. [PMID: 40135405 PMCID: PMC11937849 DOI: 10.1111/jcmm.70501] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Lung cancer patients always develop serious chemotherapy resistance after long-term use of cisplatin treatment. It has been demonstrated that the combination of cisplatin (DDP) with other chemotherapy drugs may significantly reduce drug resistance. Cinobufagin (CB) showed potent anti-tumour effect against lung cancer. However, the relevance of CB and DDP resistance in lung cancer remains unclear. This article will study the effects of CB on reversing lung cell resistance. The apoptosis was rescued by flow cytometry analysis and TUNEL staining. The invasiveness was rescued by invasion assay. The mRNA and apoptosis-related proteins were estimated by qRT-PCR analysis and Western blot analysis, respectively. In vivo antitumor activities were investigated by subcutaneous xenograft assay. The present study firstly demonstrated that the sensitivity of DDP in DDP-resistant A549 (A549/DDP) cells was enhanced when treated with CB. Moreover, CB combined with DDP weakened the proliferation and increased apoptosis of A549/DDP cells. In addition, the expression level of Bcl-2 was increased, whereas Bax and caspase-3 were activated when A549/DDP cells were treated with both drugs. After treatment with IGF1 or PMA and mixed drugs (CB + DDP), the expressions of P-AKT, P-PI3K, P-MEK1/2 and P-ERK1/2 were increased. Finally, the results of in vivo experiments showed that the combination of DDP and CB significantly reduced the growth of tumours derived from A549/DDP cells. The combination of CB and DDP can be considered an effective strategy to increase the sensitivity of DDP-resistant lung cancer cells to DDP by inhibiting the PI3K/AKT and MAPK/ERK pathways.
Collapse
Affiliation(s)
- Guangxin Zhang
- Department of Thoracic SurgerySecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| | - Kun Zhang
- Department of Medical Research CenterSecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| | - Xin Li
- Department of Medical Research CenterSecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| | - Xiuwen Wang
- College of Life ScienceJilin Normal UniversitySi PingPeople's Republic of China
| | - Guangquan Li
- Department of Medical Research CenterSecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| | - Yicun Wang
- Department of Medical Research CenterSecond Hospital of Jilin UniversityChang ChunPeople's Republic of China
| |
Collapse
|
3
|
Goleij P, Pourali G, Raisi A, Ravaei F, Golestan S, Abed A, Razavi ZS, Zarepour F, Taghavi SP, Ahmadi Asouri S, Rafiei M, Mousavi SM, Hamblin MR, Talei S, Sheida A, Mirzaei H. Role of Non-coding RNAs in the Response of Glioblastoma to Temozolomide. Mol Neurobiol 2025; 62:1726-1755. [PMID: 39023794 DOI: 10.1007/s12035-024-04316-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 06/16/2024] [Indexed: 07/20/2024]
Abstract
Chemotherapy and radiotherapy are widely used in clinical practice across the globe as cancer treatments. Intrinsic or acquired chemoresistance poses a significant problem for medical practitioners and researchers, causing tumor recurrence and metastasis. The most dangerous kind of malignant brain tumor is called glioblastoma multiforme (GBM) that often recurs following surgery. The most often used medication for treating GBM is temozolomide chemotherapy; however, most patients eventually become resistant. Researchers are studying preclinical models that accurately reflect human disease and can be used to speed up drug development to overcome chemoresistance in GBM. Non-coding RNAs (ncRNAs) have been shown to be substantial in regulating tumor development and facilitating treatment resistance in several cancers, such as GBM. In this work, we mentioned the mechanisms of how different ncRNAs (microRNAs, long non-coding RNAs, circular RNAs) can regulate temozolomide chemosensitivity in GBM. We also address the role of these ncRNAs encapsulated inside secreted exosomes.
Collapse
Affiliation(s)
- Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Ravaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Shahin Golestan
- Department of Ophthalmology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atena Abed
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Sadat Razavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Zarepour
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Sahar Ahmadi Asouri
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Moein Rafiei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mojtaba Mousavi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, 2028, South Africa
| | - Sahand Talei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Amirhossein Sheida
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.
| | - Hamed Mirzaei
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
4
|
Zhang X, Shi L, Xing M, Li C, Ma F, Ma Y, Ma Y. Interplay between lncRNAs and the PI3K/AKT signaling pathway in the progression of digestive system neoplasms (Review). Int J Mol Med 2025; 55:15. [PMID: 39513614 PMCID: PMC11573320 DOI: 10.3892/ijmm.2024.5456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
Long non‑coding RNA (lncRNA) is a class of non‑coding RNA molecules located in the cytoplasm or nucleus, which can regulate chromosome structure and function by interacting with DNA, RNA, proteins and other molecules; binding to mRNA bases in a complementary manner, affecting the splicing, stabilization, translation and degradation of mRNA; acting as competing endogenous RNA competitively binds to microRNAs to regulate gene expression and participate in the regulation of various vital activities of the body. The PI3K/AKT signalling pathway plays a key role in numerous biological and cellular processes, such as cell proliferation, invasion, migration and angiogenesis. It has been found that the lncRNA/PI3K/AKT axis regulates the expression of cancer‑related genes and thus tumour progression. The abnormal regulation of lncRNA expression in the lncRNA/PI3K/AKT axis is clearly associated with clinicopathological features and plays an important role in regulating biological functions. In the present review, the expression and biological functions of PI3K/AKT‑related lncRNAs both in vitro and in vivo over recent years, were comprehensively summarized and analyzed. Their correlation with clinicopathological features was also evaluated, with the objective of furnishing a solid theoretical foundation for clinical diagnosis and the monitoring of efficacy in digestive system neoplasms. The present review aimed to provide a comprehensive overview of the expression and biological functions of PI3K/AKT‑related lncRNAs in digestive system neoplasms and to assess their correlation with clinicopathological features. This endeavor seeks to establish a solid theoretical foundation for the clinical diagnosis and efficacy monitoring of digestive system tumors.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Lei Shi
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Mengzhen Xing
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Chunjing Li
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Fengjun Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuning Ma
- Key Laboratory of New Material Research Institute, Institute of Pharmaceutical Research, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| | - Yuxia Ma
- Department of Acupuncture and Massage College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
5
|
Ebrahimnezhad M, Asl SH, Rezaie M, Molavand M, Yousefi B, Majidinia M. lncRNAs: New players of cancer drug resistance via targeting ABC transporters. IUBMB Life 2024; 76:883-921. [PMID: 39091106 DOI: 10.1002/iub.2888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/30/2024] [Indexed: 08/04/2024]
Abstract
Cancer drug resistance poses a significant obstacle to successful chemotherapy, primarily driven by the activity of ATP-binding cassette (ABC) transporters, which actively efflux chemotherapeutic agents from cancer cells, reducing their intracellular concentrations and therapeutic efficacy. Recent studies have highlighted the pivotal role of long noncoding RNAs (lncRNAs) in regulating this resistance, positioning them as crucial modulators of ABC transporter function. lncRNAs, once considered transcriptional noise, are now recognized for their complex regulatory capabilities at various cellular levels, including chromatin modification, transcription, and post-transcriptional processing. This review synthesizes current research demonstrating how lncRNAs influence cancer drug resistance by modulating the expression and activity of ABC transporters. lncRNAs can act as molecular sponges, sequestering microRNAs that would otherwise downregulate ABC transporter genes. Additionally, they can alter the epigenetic landscape of these genes, affecting their transcriptional activity. Mechanistic insights reveal that lncRNAs contribute to the activity of ABC transporters, thereby altering the efflux of chemotherapeutic drugs and promoting drug resistance. Understanding these interactions provides a new perspective on the molecular basis of chemoresistance, emphasizing the regulatory network of lncRNAs and ABC transporters. This knowledge not only deepens our understanding of the biological mechanisms underlying drug resistance but also suggests novel therapeutic strategies. In conclusion, the intricate interplay between lncRNAs and ABC transporters is crucial for developing innovative solutions to combat cancer drug resistance, underscoring the importance of continued research in this field.
Collapse
Affiliation(s)
- Mohammad Ebrahimnezhad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanaz Hassanzadeh Asl
- Student Research Committee, Faculty of Medicine, Tabriz Azad University of Medical Sciences, Tabriz, Iran
| | - Maede Rezaie
- Immunology research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehran Molavand
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Molecular research center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
6
|
Yang X, Fan L, Huang J, Li Y. Plasma Exosome miR-203a-3p is a Potential Liquid Biopsy Marker for Assessing Tumor Progression in Breast Cancer Patients. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:631-643. [PMID: 39310782 PMCID: PMC11416789 DOI: 10.2147/bctt.s478328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Background Timely detection of tumor progression in breast cancer (BC) patients is critical for therapeutic management and prognosis. Plasma exosomal miRNAs are potential liquid biopsy markers for monitoring tumor progression, but their roles in BC remain unclear. Methods In the TCGA database, we first screened for miRNAs significantly associated with BC progression by comparing miRNA expression in para-carcinoma tissues, stage I BC tissues, and stage II-III BC tissues (n = 1026). Cox regression analyses and survival analyses were performed on candidate miRNAs to explore their prognostic value (n = 848). KEGG, GO, and PPI analyses were used to identify enriched pathways associated with cancer. Finally, the potential of candidate miRNAs as liquid biopsy markers was evaluated by sequencing and analyzing plasma exosomal miRNAs from our collection of 45 BC patients (14 in stage I, 31 in stage II-III) and 5 healthy controls, combined with qRT-PCR analysis to assess the correlation of candidate gene expression in plasma exosomes and BC tissues. Results We found that only miR-203a-3p was progressively elevated with BC progression and was associated with poor prognosis in the TCGA dataset. Its potential target genes were enriched in pathways related to tumor progression, and the downregulation of 48 of these genes was associated with poor prognosis. More importantly, plasma exosomal miR-203a-3p was also found to gradually increase with BC progression, and its expression was positively correlated with miR-203a-3p in BC tissues. This result suggests that plasma exosomal miR-203a-3p may reflect the expression of miR-203a-3p in tumor tissues and serve as a potential liquid biopsy marker for monitoring BC progressions. Conclusion We found for the first time that elevated miR-203a-3p was associated with BC progression and poor prognosis. Our findings suggested that plasma exosomal miR-203a-3p could hold potential as a liquid biopsy marker for evaluating BC progression in patients.
Collapse
Affiliation(s)
- Xin Yang
- Peking University Fifth School of Clinical Medicine, Beijing, People’s Republic of China
| | - Lei Fan
- Breast Center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Jicheng Huang
- Breast Center, Department of Thyroid-Breast-Hernia Surgery, Department of General Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yongjun Li
- Peking University Fifth School of Clinical Medicine, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Wang Y, Lun J, Zhang Y, Yu M, Liu X, Guo J, Zhang H, Qiu W, Fang J. miR-373-3p promotes aerobic glycolysis in colon cancer cells by targeting MFN2. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1498-1508. [PMID: 38946424 PMCID: PMC11612643 DOI: 10.3724/abbs.2024090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 03/18/2024] [Indexed: 07/02/2024] Open
Abstract
MicroRNAs (miRNAs) are implicated in the development of cancers and may serve as potential targets for therapy. However, the functions and underlying mechanisms of miRNAs in cancers are not well understood. This work aims to study the role of miR-373-3p in colon cancer cells. We find that the expression of miR-373-3p mimics promotes and the miR-373-3p inhibitor suppresses aerobic glycolysis and proliferation of colon cancer cells. Mechanistically, miR-373-3p inhibits the expression of MFN2, a gene that is known to suppress glycolysis, which leads to the activation of glycolysis and eventually the proliferation of cells. In a nude mouse tumor model, the expression of miR-373-3p in colon cancer cells promotes tumor growth by enhancing lactate formation, which is inhibited by the co-expression of MFN2 in the cells. Administration of the miR-373-3p antagomir blunts in vivo tumor growth by decreasing lactate production. In addition, in human colon cancers, the expression levels of miR-373-3p are increased, while those of MFN2 mRNA are decreased, and the increase of miR-373-3p is associated with the decrease of MFN2 mRNA. Our results reveal a previously unknown function and underlying mechanism of miR-373-3p in the regulation of glycolysis and proliferation in cancer cells and underscore the potential of targeting miR-373-3p for colon cancer treatment.
Collapse
Affiliation(s)
- Yu Wang
- Department of Oncologythe Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdao Cancer InstituteQingdao266071China
- School of Basic MedicineQingdao UniversityQingdao266071China
| | - Jie Lun
- Department of Oncologythe Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdao Cancer InstituteQingdao266071China
- School of PharmacyQingdao UniversityQingdao266071China
| | - Yuying Zhang
- School of Public HealthQingdao UniversityQingdao266071China
| | - Mengchao Yu
- Central LaboratoryQingdao Municipal HospitalQingdao266071China
| | - Xingqian Liu
- Department of Oncologythe Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdao Cancer InstituteQingdao266071China
- School of Basic MedicineQingdao UniversityQingdao266071China
| | - Jing Guo
- Department of Oncologythe Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Hongwei Zhang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao UniversityJinan250014China
| | - Wensheng Qiu
- Department of Oncologythe Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdao Cancer InstituteQingdao266071China
| | - Jing Fang
- Department of Oncologythe Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdao Cancer InstituteQingdao266071China
| |
Collapse
|
8
|
Jegathesan Y, Stephen PP, Sati ISEE, Narayanan P, Monif M, Kamarudin MNA. MicroRNAs in adult high-grade gliomas: Mechanisms of chemotherapeutic resistance and their clinical relevance. Biomed Pharmacother 2024; 172:116277. [PMID: 38377734 DOI: 10.1016/j.biopha.2024.116277] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/11/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
Notorious for its high mortality rate, the current standard treatment for high-grade gliomas remains a challenge. This is largely due to the complex heterogeneity of the tumour coupled with dysregulated molecular mechanisms leading to the development of drug resistance. In recent years, microRNAs (miRNAs) have been considered to provide important information about the pathogenesis and prognostication of gliomas. miRNAs have been shown to play a specific role in promoting oncogenesis and regulating resistance to anti-glioma therapeutic agents through diverse cellular mechanisms. These include regulation of apoptosis, alterations in drug efflux pathways, enhanced activation of oncogenic signalling pathways, Epithelial-Mesenchymal Transition-like process (EMT-like) and a few others. With this knowledge, upregulation or inhibition of selected miRNAs can be used to directly affect drug resistance in glioma cells. Moreover, the clinical use of miRNAs in glioma management is becoming increasingly valuable. This comprehensive review delves into the role of miRNAs in drug resistance in high-grade gliomas and underscores their clinical significance. Our analysis has identified a distinct cluster of oncogenic miRNAs (miR-9, miR-21, miR-26a, miR-125b, and miR-221/222) and tumour suppressive miRNAs (miR-29, miR-23, miR-34a-5p, miR 181b-5p, miR-16-5p, and miR-20a) that consistently emerge as key players in regulating drug resistance across various studies. These miRNAs have demonstrated significant clinical relevance in the context of resistance to anti-glioma therapies. Additionally, the clinical significance of miRNA analysis is emphasised, including their potential to serve as clinical biomarkers for diagnosing, staging, evaluating prognosis, and assessing treatment response in gliomas.
Collapse
Affiliation(s)
- Yugendran Jegathesan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Taiping Hospital, Jalan Taming Sari, Perak, Taiping 34000, Malaysia
| | - Pashaun Paveen Stephen
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia; Coffs Harbour Health Campus, Coffs Harbour, NSW 2450, Australia
| | - Isra Saif Eldin Eisa Sati
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Prakrithi Narayanan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Mastura Monif
- Department of Neuroscience, Central Clinical School, Monash University, VIC, Melbourne, Australia; Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, VIC, Australia; Department of Neurology, The Alfred, Melbourne, VIC, Australia
| | - Muhamad Noor Alfarizal Kamarudin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia.
| |
Collapse
|
9
|
Shen J, Huang C, Cui L, Zhao Y, Zhu M, Chen Z, Wang M, Zhu W, Shen B. Chemotherapeutic Drugs Endow Gastric Cancer Mesenchymal Stem Cells with Stronger Tumor-Promoting Ability. J Environ Pathol Toxicol Oncol 2024; 43:1-13. [PMID: 37824366 DOI: 10.1615/jenvironpatholtoxicoloncol.2023041847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Gastric cancer (GC) is one of the most aggressive tumors and has a poor prognosis. It has been demonstrated that gastric cancer mesenchymal stem cells (GC-MSCs) can promote the progression, metastasis, and chemoresistance of GC through various mechanisms, but the effect of GC-MSCs on GC during chemotherapy is still unknown. In this study, flow cytometry, CCK8 assay, migration assay, colony formation assay, and western blot were conducted. We also analyzed GC patients from the cancer genome atlas (TCGA). Our results showed that GC-MSCs were resistant to 5-FU and Taxol at the IC50 concentration for GC cells, and 5-FU could promote the migration of GC-MSCs at low doses. Furthermore, the conditioned medium of GC-MSCs pretreated with chemotherapeutic drugs was more effective in promoting the proliferation, migration, and stemness of GC cell lines than the conditioned medium of GC-MSCs without chemotherapeutic drugs treatment. These effects were dependent on the activation of phosphorylated AKT (p-AKT) in GC cell lines. Correspondingly, the inhibition of p-AKT reversed the tumor-promoting effect of the conditioned medium of GC-MSCs pretreated with chemotherapeutic drugs. Additionally, the expression of AKT1 was higher in GC tissues than in both paracancerous tissues and normal tissues, and patients resistant to chemotherapy expressed more AKT1 compared to those who were sensitive. Taken together, our data demonstrated that GC-MSCs gained more tumor-promoting abilities during chemotherapy.
Collapse
Affiliation(s)
- Jiaqi Shen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chao Huang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Linjing Cui
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Ministry of Education, Wuhan 430030, China; NHC Key Laboratory of Organ Transplantation, Wuhan 430030, China; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan 430030, China; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Miaolin Zhu
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical, Jiangsu University, Nanjing 21000, China
| | - Zhihong Chen
- Department of Gastrointestinal Surgery, Affiliated People's Hospital of Jiangsu, Zhenjiang 212002, China
| | - Mei Wang
- Department of Oncology, Changhai Hospital, Second Military Medical University, 168 Changhai Road, Shanghai, People's Republic of China, 200433; School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Bo Shen
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical, Jiangsu University, Nanjing 21000, China
| |
Collapse
|
10
|
Zhao G, Zhao Z, Xia M, Xiao L, Zhu B, Wang H, Li X, Di J. CPEB2 inhibit cell proliferation through upregulating p21 mRNA stability in glioma. Sci Rep 2023; 13:23103. [PMID: 38158431 PMCID: PMC10756880 DOI: 10.1038/s41598-023-50848-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
Glioma is the most common primary malignant brain tumor in adults and remains an incurable disease at present. Thus, there is an urgent need for progress in finding novel molecular mechanisms that control the progression of glioma which could be used as therapeutic targets for glioma patients. The RNA binding protein cytoplasmic polyadenylate element-binding protein 2 (CPEB2) is involved in the pathogenesis of several tumors. However, the role of CPEB2 in glioma progression is unknown. In this study, the functional characterization of the role and molecular mechanism of CPEB2 in glioma were examined using a series of biological and cellular approaches in vitro and in vivo. Our work shows CPEB2 is significantly downregulated in various glioma patient cohorts. Functional characterization of CPEB2 by overexpression and knockdown revealed that it inhibits glioma cell proliferation and promotes apoptosis. CPEB2 exerts an anti-tumor effect by increasing p21 mRNA stability and inducing G1 cell cycle arrest in glioma. Overall, this work stands as the first report of CPEB2 downregulation and involvement in glioma pathogenesis, and identifies CPEB2 as an important tumor suppressor gene through targeting p21 in glioma, which revealed that CPEB2 may become a promising predictive biomarker for prognosis in glioma patients.
Collapse
Affiliation(s)
- Guang Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, Jiangsu, China
- Department of Emergency Medicine, The First People's Hospital of Kunshan, Kunshan, 215300, Jiangsu, China
| | - Zhongjun Zhao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Mingyi Xia
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Lishun Xiao
- Department of Biostatistics, School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Bao Zhu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Hui Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China
| | - Xiang Li
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221000, Jiangsu, China.
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 West Huaihai Road, Xuzhou, 221002, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
11
|
Hermawan A, Wulandari F, Yudi Utomo R, Asmah Susidarti R, Kirihata M, Meiyanto E. Transcriptomics analyses reveal the effects of Pentagamaboronon-0-ol on PI3K/Akt and cell cycle of HER2+ breast cancer cells. Saudi Pharm J 2023; 31:101847. [PMID: 38028209 PMCID: PMC10652209 DOI: 10.1016/j.jsps.2023.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Monoclonal antibodies and targeted therapies against HER2+ breast cancer has improved overall and disease-free survival in patients; however, encountering drug resistance causes recurrence, necessitating the development of newer HER2-targeted medications. A curcumin analog PGB-0-ol showed most cytotoxicity against HCC1954 HER2+ breast cancer cells than against other subtypes of breast cancer cells. Objective Here, we employed next-generation sequencing technology to elucidate the molecular mechanism underlying the effect of PGB-0-ol on HCC1954 HER2+ breast cancer cells. Methods The molecular mechanism underlying the action of PGB-0-ol on HCC1954 HER2+ breast cancer cells was determined using next-generation sequencing technologies. Additional bioinformatics studies were performed, including gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, disease-gene, and drug-gene associations, network topology analysis (NTA), and gene set enrichment analysis (GSEA). Results We detected 2,263 differentially expressed genes (DEGs) (1,459 upregulated and 804 downregulated) in the PGB-0-ol- and DMSO-treated HCC1954 cells. KEGG enrichment data revealed the control of phosphatidylinositol signaling system, and ErbB signaling following PGB-0-ol treatment. Gene ontology (GO) enrichment analysis demonstrated that these DEGs governed cell cycle, participated in the mitotic spindle and nuclear membrane, and controlled kinase activity at the molecular level. According to the NTA data for GO enrichment, GSEA data for KEGG, drug-gene and disease-gene, PGB-0-ol regulated PI3K/Akt signaling and cell cycle in breast cancer. Overall, our investigation revealed the transcriptomic profile of PGB-0-ol-treated HCC1954 breast cancer cells following PGB-0-ol therapy. Bioinformatics analyses showed that PI3K/Akt signaling and cell cycle was modulated. However, further studies are required to validate the findings of this study.
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Advanced Pharmaceutical Sciences. APSLC Building, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Febri Wulandari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Rohmad Yudi Utomo
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Ratna Asmah Susidarti
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Laboratory of Medicinal Chemistry, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| | - Mitsunori Kirihata
- Research Center for BNCT, Osaka Metropolitan University, 1-2, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Edy Meiyanto
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281, Yogyakarta, Indonesia
| |
Collapse
|
12
|
Li H, Liu J, Qin X, Sun J, Liu Y, Jin F. Function of Long Noncoding RNAs in Glioma Progression and Treatment Based on the Wnt/β-Catenin and PI3K/AKT Signaling Pathways. Cell Mol Neurobiol 2023; 43:3929-3942. [PMID: 37747595 PMCID: PMC11407728 DOI: 10.1007/s10571-023-01414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/09/2023] [Indexed: 09/26/2023]
Abstract
Gliomas are a deadly primary malignant tumor of the central nervous system, with glioblastoma (GBM) representing the most aggressive type. The clinical prognosis of GBM patients remains bleak despite the availability of multiple options for therapy, which has needed us to explore new therapeutic methods to face the rapid progression, short survival, and therapy resistance of glioblastomas. As the Human Genome Project advances, long noncoding RNAs (lncRNAs) have attracted the attention of researchers and clinicians in cancer research. Numerous studies have found aberrant expression of signaling pathways in glioma cells. For example, lncRNAs not only play an integral role in the drug resistance process by regulating the Wnt/β-catenin or PI3K/Akt signaling but are also involved in a variety of malignant biological behaviors such as glioma proliferation, migration, invasion, and tumor apoptosis. Therefore, the present review systematically assesses the existing research evidence on the malignant progression and drug resistance of glioma, focusing on the critical role and potential function of lncRNAs in the Wnt/β-catenin and PI3K/Akt classical pathways to promote and encourage further research in this field.
Collapse
Affiliation(s)
- Hanyun Li
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jilan Liu
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Xianyun Qin
- Department of Medical Research Center, Affiliated Hospital of Jining Medical University, Jining, 272029, Shandong, China
| | - Jikui Sun
- Department of Neurosurgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Neurosurgery, Jinan, 250014, China.
| | - Yan Liu
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
- School of Mental Health, Jining Medical University, Jining, 272013, China.
| | - Feng Jin
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, 266042, China.
| |
Collapse
|
13
|
Buda P, Michalski P, Warmusz O, Michalska-Bańkowska A, Sirek T, Ossowski P, Bogdał P, Strojny D, Pisany-Syska A, Grabarek BO. Influence of adalimumab on interleukin 12/23 signalling pathways in human keratinocytes treated with lipopolysaccharide A. Postepy Dermatol Alergol 2023; 40:647-654. [PMID: 38028419 PMCID: PMC10646715 DOI: 10.5114/ada.2023.129272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/18/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The interleukin-12/23 (IL-12/23) signalling pathway plays an important role in the pathogenesis of psoriasis. In addition, even molecularly targeted therapy has been reported to lose adequate response to treatment. Aim To determine the expression patterns of mRNAs and miRNAs related to IL-12/23 signalling pathways in the human keratinocyte culture exposed to liposaccharide A (LPS) and then adalimumab in comparison with untreated cells. Material and methods Human, adult, low-Calcium, high-Temperature keratinocyte (HaCaT) cultures were exposed to 1 µg/ml LPS for 8 h, and then adalimumab was added to the cultures at a concentration of 8 µg/ml and incubated for 2, 8, and 24 h. We used mRNA and miRNA microarray, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay techniques. Results STAT1, STAT3, STAT5, IL-6, IL-6R, SOCS3, and JAK3 genes differentiated HaCaT cultures with the drug from controls regardless of the time the cells were exposed to the drug. The addition of adalimumab to a culture previously exposed to LPS resulted in silencing of SOCS3 and IL-6 expression compared to the control, while for the other transcripts they were found to be overexpressed compared to the control culture. The assessment indicated the strongest connections between JAK3 and hsa-miR-373-5p (target score 96); SOCS3, STAT5, and hsa-miR-1827 (target score 96). Conclusions Our study indicates that adalimumab has the strongest modulating effect on mRNA and miRNA expression of JAK/STAT and IL-6-dependent IL-12/23 pathways.
Collapse
Affiliation(s)
- Paulina Buda
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| | - Piotr Michalski
- Department of Dermatology, Center for Child and Family Health, Sosnowiec, Poland
| | - Oliwia Warmusz
- Department of Histology and Cell Pathology in Zabrze, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Poland
| | - Anna Michalska-Bańkowska
- Department of Histology and Cell Pathology in Zabrze, School of Medicine with the Division of Dentistry, Medical University of Silesia in Katowice, Poland
| | - Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery, Bielsko-Biala, Poland
| | - Piotr Ossowski
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| | - Paweł Bogdał
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| | - Damian Strojny
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| | | | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Poland
| |
Collapse
|
14
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
15
|
LncRNA MSC-AS1, as an oncogene in melanoma, promotes the proliferation and glutaminolysis by regulating the miR-330-3p/YAP1 axis. Anticancer Drugs 2022; 33:1012-1023. [PMID: 36206100 DOI: 10.1097/cad.0000000000001390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Melanoma is a kind of aggressive skin neoplasms with high mortality. The purpose of this present research was to investigate the effects and potential mechanisms of long-noncoding RNA (lncRNA) MSC antisense RNA 1 (MSC-AS1) in melanoma. MSC-AS1, miR-330-3p and YAP1 expression levels in melanoma tissues and cells were assessed by quantitative real-time polymerase chain reaction. Melanoma cells were evaluated using cell count kit-8, clone formation and ELISA in vitro. The relationship among MSC-AS1, YAP1 and miR-330-3p was validated by pull-down and luciferase reporter assays. Finally, the role of MSC-AS1 in vivo was determined by the xenograft model. Results showed that lncRNA MSC-AS1 was upregulated in melanoma tissues and cells. High expression of MAS-AS1 was positively correlated with a poor prognosis. Pull-down and luciferase reporter demonstrated that miR-330-3p specifically binds directly to YAP1 and MSC-AS1, respectively. MSC-AS1 promoted the expression of YAP1 by downregulating miR-330-3p. Functional experiments suggested that knockdown of MSC-AS1 suppressed the proliferation of melanoma cells and decreased the levels of glutamine, glutamate and α-ketoglutarate, glutaminase and glutamine transporter alanine-serine-cysteine transporter 2. Upregulation of miR-330-3p alleviated the promotion effect of MSC-AS1 overexpression on the proliferation and glutaminolysis of melanoma cells. The above changes could be reversed by YAP1 overexpression. In addition, knockdown of MSC-AS1 dramatically restrained the growth of melanoma cells in xenograft model. In conclusion, our results revealed that MSC-AS1 facilitated the proliferation and glutaminolysis of melanoma cells by regulating miR-330-3p/YAP1 pathway, suggesting that MSC-AS1 could provide a new idea for the treatment of melanoma.
Collapse
|
16
|
lncRNA MSC-AS1/miRNA-429 Axis Mediates Growth and Metastasis of Nasopharyngeal Carcinoma via JAK1/STAT3 Signaling Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1447207. [PMID: 36213586 PMCID: PMC9536983 DOI: 10.1155/2022/1447207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/14/2022] [Indexed: 12/24/2022]
Abstract
Objective. We attempted to clarify the effect of lncRNA MSC-AS1 on carcinogenic and development of nasopharyngeal carcinoma (NPC) and the related mechanisms. Methods. The levels of MSC-AS1 and miR-429 were estimated in NPC tissues and cells using qRT-PCR. Correlation analysis, dual-luciferase report, and RNA pull down assay assessed the action association of MSC-AS1 and miR-429. MTT, colony formation, cell wound scratch, and transwell assays were used to assess the proliferation, invasion, and migration of C666-1 cells. Metastasis-related protein expressions and activation of the JAK1/STAT3 pathway were confirmed by western blot and immunohistochemistry. Results. The expression of MSC-AS1 presented significant upregulation, and miR-429 expression was markedly downregulated in NPC tissues and cells. The level of MSC-AS1 had negative relation to the miR-429 level. Knockdown of MSC-AS1 suppressed the proliferation, invasion, and migration of C666-1 cells. On the contrary, overexpressing of MSC-AS1 exerts the opposite effects on C666-1 cell growth and migration. miR-429 was determined as functional downstream of MSC-AS1. The suppressive function of MSC-AS1 knockdown was predominately abolished by the miR-429 inhibitor. miR-429 was an antitumor gene inhibiting NPC growth and metastasis through JAK1/STAT3 pathway. In C666-1 cells, the elevated cell growth and migration induced by the miR-429 inhibitor were significantly reversed by si-JAK1 transfection. Conclusions. High expression of MSC-AS1 exerted a carcinogenic effect on NPC cell growth and metastasis by inhibiting miR-429 and activating the JAK1/STAT3 pathway.
Collapse
|
17
|
Li S, Xie X, Peng F, Du J, Peng C. Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review). Int J Oncol 2022; 61:101. [PMID: 35796022 PMCID: PMC9291250 DOI: 10.3892/ijo.2022.5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022] Open
Abstract
Gliomas are a primary types of intracranial malignancies and are characterized by a poor prognosis due to aggressive recurrence profiles. Temozolomide (TMZ) is an auxiliary alkylating agent that is extensively used in conjunction with surgical resection and forms the mainstay of clinical treatment strategies for gliomas. However, the frequent occurrence of TMZ resistance in clinical practice limits its therapeutic efficacy. Accumulating evidence has demonstrated that long non‑coding RNAs (lncRNAs) can play key and varied roles in glioma progression. lncRNAs have been reported to inhibit glioma progression by targeting various signaling pathways. In addition, the differential expression of lncRNAs has also been found to mediate the resistance of glioma to several chemotherapeutic agents, particularly to TMZ. The present review article therefore summarizes the findings of previous studies in an aim to report the significance and function of lncRNAs in regulating the chemoresistance of gliomas. The present review may provide further insight into the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Dr Fu Peng or Professor Junrong Du, Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Renmin South Road, Chengdu, Sichuan 610041, P.R. China, E-mail: , E-mail:
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Dr Fu Peng or Professor Junrong Du, Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Renmin South Road, Chengdu, Sichuan 610041, P.R. China, E-mail: , E-mail:
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
18
|
Shi J, Yang N, Han M, Qiu C. Emerging roles of ferroptosis in glioma. Front Oncol 2022; 12:993316. [PMID: 36072803 PMCID: PMC9441765 DOI: 10.3389/fonc.2022.993316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Glioma is the most common primary malignant tumor in the central nervous system, and directly affects the quality of life and cognitive function of patients. Ferroptosis, is a new form of regulated cell death characterized by iron-dependent lipid peroxidation. Ferroptosis is mainly due to redox imbalance and involves multiple intracellular biology processes, such as iron metabolism, lipid metabolism, and antioxidants synthesis. Induction of ferroptosis could be a new target for glioma treatment, and ferroptosis-related processes are associated with chemoresistance and radioresistance in glioma. In the present review, we provide the characteristics, key regulators and pathways of ferroptosis and the crosstalk between ferroptosis and other programmed cell death in glioma, we also proposed the application and prospect of ferroptosis in the treatment of glioma.
Collapse
Affiliation(s)
- Jiaqi Shi
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Qiu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chen Qiu,
| |
Collapse
|
19
|
Mafi A, Rahmati A, Babaei Aghdam Z, Salami R, Salami M, Vakili O, Aghadavod E. Recent insights into the microRNA-dependent modulation of gliomas from pathogenesis to diagnosis and treatment. Cell Mol Biol Lett 2022; 27:65. [PMID: 35922753 PMCID: PMC9347108 DOI: 10.1186/s11658-022-00354-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Gliomas are the most lethal primary brain tumors in adults. These highly invasive tumors have poor 5-year survival for patients. Gliomas are principally characterized by rapid diffusion as well as high levels of cellular heterogeneity. However, to date, the exact pathogenic mechanisms, contributing to gliomas remain ambiguous. MicroRNAs (miRNAs), as small noncoding RNAs of about 20 nucleotides in length, are known as chief modulators of different biological processes at both transcriptional and posttranscriptional levels. More recently, it has been revealed that these noncoding RNA molecules have essential roles in tumorigenesis and progression of multiple cancers, including gliomas. Interestingly, miRNAs are able to modulate diverse cancer-related processes such as cell proliferation and apoptosis, invasion and migration, differentiation and stemness, angiogenesis, and drug resistance; thus, impaired miRNAs may result in deterioration of gliomas. Additionally, miRNAs can be secreted into cerebrospinal fluid (CSF), as well as the bloodstream, and transported between normal and tumor cells freely or by exosomes, converting them into potential diagnostic and/or prognostic biomarkers for gliomas. They would also be great therapeutic agents, especially if they could cross the blood–brain barrier (BBB). Accordingly, in the current review, the contribution of miRNAs to glioma pathogenesis is first discussed, then their glioma-related diagnostic/prognostic and therapeutic potential is highlighted briefly.
Collapse
Affiliation(s)
- Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rahmati
- Department of Hematology and Blood Banking, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Basic Science, Neyshabur University of Medical Science, Neyshabur, Iran
| | - Zahra Babaei Aghdam
- Imaging Sciences Research Group, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Esmat Aghadavod
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran. .,Department of Clinical Biochemistry, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
20
|
Polysaccharides Extracted from Angelica sinensis (Oliv.) Diels Relieve the Malignant Characteristics of Glioma Cells through Regulating the MiR-373-3p-Mediated TGF- β/Smad4 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7469774. [PMID: 35855826 PMCID: PMC9288290 DOI: 10.1155/2022/7469774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/18/2022] [Indexed: 11/18/2022]
Abstract
Objectives Angelica sinensis polysaccharide (ASP) is a traditional herbal medicine accompanied by antitumor potential. This study aims to explore the therapeutic potential of ASP on glioma, as well as the underlying mechanisms involving microRNA-373-3p (miR-373-3p) and the TGF-β/Smad4 signaling pathway. Methods U251 cells (a human glioma cell line) were treated with different concentrations of ASP. miR-373-3p was silenced in U251 cells by the transfection of the miR-373-3p inhibitor. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. Cell migration and invasion were detected by wound healing and transwell assays, respectively. The miR-373-3p expression was measured by RT-qPCR. The protein expressions of TGF-β and Smad4 were evaluated by both western blotting and immunofluorescence. Results ASP inhibited the viability, migration, and invasion, and enhanced the apoptosis of U251 cells in a dose-dependent manner. ASP increased miR-373-3p expression and decreased TGF-β and Smad4 expressions in U251 cells. Silencing of miR-373-3p weakened the effects of ASP on inhibiting cell viability, migration, and invasion, as well as promoting cell apoptosis. In addition, deleting miR-373-3p weakened the inhibiting effects of ASP on the TGF-β/Smad4 pathway in U251 cells. Conclusions ASP suppresses the malignant progression of glioma via regulating the miR-373-3p-mediated TGF-β/Smad4 pathway.
Collapse
|
21
|
Fan Z, Wang Y, Niu R. Identification of the three subtypes and the prognostic characteristics of stomach adenocarcinoma: analysis of the hypoxia-related long non-coding RNAs. Funct Integr Genomics 2022; 22:919-936. [PMID: 35665866 DOI: 10.1007/s10142-022-00867-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/29/2022]
Abstract
Stomach adenocarcinoma (STAD) is one of the most commonly diagnosed cancers. This study analyzed the subtypes and characteristics of STAD subtypes by analyzing hypoxia pathway-related lncRNAs. Potential hub lncRNAs were found and a prognostic model was constructed. Expression profiling data and clinical information of STAD were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Metabolic pathway scores were calculated using single-sample gene set enrichment analysis (ssGSEA) method. Tumor immune microenvironment scores of the samples were assessed by ESTIMATE, MCP-counter, and ssGSEA. Functional analysis of lncRNAs, construction of risk models, and drug sensitivity analysis were performed. Pathway analysis revealed that the hypoxia pathway was a prognostic risk factor. Molecular subtypes were developed based on the hypoxia score-related lncRNAs. Three molecular subtypes (C1, C2, and C3) for gastric STAD were determined. The worst prognosis was in the C2, which was also characterized by the maximum hypoxia pathway-related scores and the maximum immune score. A majority of the immune checkpoints and chemokines were high-expressed in the C2 subtype. Mutations in the C2 subtype were significantly lower than the C1 and C3 subtypes. The subtypes differed in terms of functional and metabolic pathways. Eight hub indicator lncRNAs (MSC-AS1, AC037198.1, LINC00968, AL139393.3, LINC02544, BOLA3-AS1, MIR1915HG, and AC107021.2) capable of predicting patient prognosis were identified. Three hypoxia lncRNA-related molecular subtypes characterized by different prognostic and immune conditions were identified. The results maybe can provide a theoretical basis to improve the clinical diagnosis and treatment of STAD.
Collapse
Affiliation(s)
- Zehua Fan
- Information Institute, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan City, 420100, Hubei Province, China. .,School of Information Engineering, Tarim University, 705 Hongqiao Road, Alar City, 659002, Xinjiang Uygur Autonomous Region, China.
| | - Yanqun Wang
- Information Institute, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan City, 420100, Hubei Province, China.,School of Information Engineering, Tarim University, 705 Hongqiao Road, Alar City, 659002, Xinjiang Uygur Autonomous Region, China
| | - Rong Niu
- Information Institute, Huazhong Agricultural University, 1 Shizishan Street, Hongshan District, Wuhan City, 420100, Hubei Province, China.,School of Information Engineering, Tarim University, 705 Hongqiao Road, Alar City, 659002, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
22
|
Zeng Z, Chen Y, Geng X, Zhang Y, Wen X, Yan Q, Wang T, Ling C, Xu Y, Duan J, Zheng K, Sun Z. NcRNAs: Multi‑angle participation in the regulation of glioma chemotherapy resistance (Review). Int J Oncol 2022; 60:76. [PMID: 35506469 PMCID: PMC9083885 DOI: 10.3892/ijo.2022.5366] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/13/2022] [Indexed: 11/23/2022] Open
Abstract
As the most common primary tumour of the central nervous system, gliomas have a high recurrence rate after surgical resection and are resistant to chemotherapy, particularly high‑grade gliomas dominated by glioblastoma multiforme (GBM). The prognosis of GBM remains poor despite improvements in treatment modalities, posing a serious threat to human health. At present, although drugs such as temozolomide, cisplatin and bevacizumab, are effective in improving the overall survival of patients with GBM, most patients eventually develop drug resistance, leading to poor clinical prognosis. The development of multidrug resistance has therefore become a major obstacle to improving the effectiveness of chemotherapy for GBM. The ability to fully understand the underlying mechanisms of chemotherapy resistance and to develop novel therapeutic targets to overcome resistance is critical to improving the prognosis of patients with GBM. Of note, growing evidence indicates that a large number of abnormally expressed noncoding RNAs (ncRNAs) have a central role in glioma chemoresistance and may target various mechanisms to modulate chemosensitivity. In the present review, the roles and molecular mechanisms of ncRNAs in glioma drug resistance were systematically summarized, the potential of ncRNAs as drug resistance markers and novel therapeutic targets of glioma were discussed and prospects for glioma treatment were outlined. ncRNAs are a research direction for tumor drug resistance mechanisms and targeted therapies, which not only provides novel perspectives for reversing glioma drug resistance but may also promote the development of precision medicine for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Zhaomu Zeng
- Department of Surgery, School of Clinical Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yueyue Chen
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Xiuchao Geng
- Department of Nursing, School of Medicine, Taizhou University, Jiaojiang, Zhejiang 318000, P.R. China
| | - Yuhao Zhang
- Department of Neurosurgery, Zhejiang Provincial People's Hospital, Affiliated to Hangzhou Medical College, Hangzhou, Zhejiang 310000, P.R. China
| | - Xichao Wen
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Qingyu Yan
- Office of Academic Research, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Tingting Wang
- Department of Breast Surgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Chen Ling
- Central Laboratory, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Yan Xu
- Clinical Laboratory, Affiliated Hospital of Jinggangshan University, Ji'an, Jiangxi 343100, P.R. China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| | - Kebin Zheng
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, Hebei 071000, P.R. China
| | - Zhiwei Sun
- Department of Surgery, School of Clinical Medicine, Hebei University, Baoding, Hebei 071000, P.R. China
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|
23
|
Ye T, Chen R, Zhou Y, Zhang J, Zhang Z, Wei H, Xu Y, Wang Y, Zhang Y. Salvianolic acid A (Sal A) suppresses malignant progression of glioma and enhances temozolomide (TMZ) sensitivity via repressing transgelin-2 (TAGLN2) mediated phosphatidylinositol-3-kinase (PI3K) / protein kinase B (Akt) pathway. Bioengineered 2022; 13:11646-11655. [PMID: 35505656 PMCID: PMC9276020 DOI: 10.1080/21655979.2022.2070963] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glioma originated from excessively proliferative and highly invaded glial cells is a common intracranial malignant tumor with poor prognosis. Resistance to temozolomide (TMZ) is a clinical challenge in glioma treatment due to the fact that chemoresistance remains a main obstacle in the improvement of drug efficacy. Salvianolic acid A (Sal A), originated from traditional Chinese herbal medicine Salvia miltiorrhiza, possesses anti-tumor effects and could facilitate the delivery of drugs to brain tumor tissues. In the present work, effects of Sal A on the viability, proliferation, migration, invasion and apoptosis of human glioma cell line U87 cells as well as influence of Sal A on TMZ resistance were measured, so as to identify the biological function of Sal A in the malignant behaviors and chemoresistance of glioma cells. Additionally, activation of TAGLN2/PI3K/Akt pathway in glioma cells was also detected to investigate whether Sal A could regulate TAGLN2/PI3K/Akt to manipulate the progression of glioma and TMZ resistance. Results discovered that Sal A treatment reduced the viability, repressed the proliferation, migration and invasion of glioma cells as well as promoted the apoptosis of glioma cells. Besides, Sal A treatment suppressed TAGLN2/PI3K/Akt pathway in glioma cells. Sal A treatment strengthened the suppressing effect of TMZ on glioma cell proliferation and reinforced the promoting effect of TMZ on glioma cell apoptosis, which were abolished by upregulation of TAGLN2. To conclude, Sal A treatment could suppress the malignant behaviors of glioma cells and improve TMZ sensitivity through inactivating TAGLN2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Tingting Ye
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Rongrong Chen
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yu Zhou
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Juan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Zhongqin Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Hui Wei
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yan Xu
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yulan Wang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| | - Yinlan Zhang
- Department of Neurosurgery, First Affiliated Hospital of Anhui Medical University, Hefei, 230031, China
| |
Collapse
|
24
|
Integration of synthetic and natural derivatives revives the therapeutic potential of temozolomide against glioma- an in vitro and in vivo perspective. Life Sci 2022; 301:120609. [DOI: 10.1016/j.lfs.2022.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/02/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
|
25
|
Paskeh MDA, Mehrabi A, Gholami MH, Zabolian A, Ranjbar E, Saleki H, Ranjbar A, Hashemi M, Ertas YN, Hushmandi K, Mirzaei S, Ashrafizadeh M, Zarrabi A, Samarghandian S. EZH2 as a new therapeutic target in brain tumors: Molecular landscape, therapeutic targeting and future prospects. Biomed Pharmacother 2022; 146:112532. [PMID: 34906772 DOI: 10.1016/j.biopha.2021.112532] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022] Open
Abstract
Brain tumors are responsible for high mortality and morbidity worldwide. The brain tumor treatment depends on identification of molecular pathways involved in progression and malignancy. Enhancer of zeste homolog 2 (EZH2) has obtained much attention in recent years in field of cancer therapy due to its aberrant expression and capacity in modulating expression of genes by binding to their promoter and affecting methylation status. The present review focuses on EZH2 signaling in brain tumors including glioma, glioblastoma, astrocytoma, ependymomas, medulloblastoma and brain rhabdoid tumors. EZH2 signaling mainly participates in increasing proliferation and invasion of cancer cells. However, in medulloblastoma, EZH2 demonstrates tumor-suppressor activity. Furthermore, EZH2 can regulate response of brain tumors to chemotherapy and radiotherapy. Various molecular pathways can function as upstream mediators of EZH2 in brain tumors including lncRNAs and miRNAs. Owing to its enzymatic activity, EZH2 can bind to promoter of target genes to induce methylation and affects their expression. EZH2 can be considered as an independent prognostic factor in brain tumors that its upregulation provides undesirable prognosis. Both anti-tumor agents and gene therapies such as siRNA have been developed for targeting EZH2 in cancer therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Atefeh Mehrabi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Ehsan Ranjbar
- Yadegar-e-Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Adnan Ranjbar
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri 38039, Turkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
26
|
Wang Y, Zhao M, Zhang Y. Integrated Analysis of Single-Cell RNA-seq and Bulk RNA-seq in the Identification of a Novel ceRNA Network and Key Biomarkers in Diabetic Kidney Disease. Int J Gen Med 2022. [DOI: 10.2147/ijgm.s351971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
27
|
Fu Y, Liu Y, Nasiroula A, Wang Q, Cao X. Long non‑coding RNA HCG22 inhibits the proliferation, invasion and migration of oral squamous cell carcinoma cells by downregulating miR‑425‑5p expression. Exp Ther Med 2022; 23:246. [PMID: 35222723 PMCID: PMC8815030 DOI: 10.3892/etm.2022.11171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yating Fu
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Ying Liu
- Department of General Special Requirements, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Aheli Nasiroula
- Department of General Special Requirements, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| | - Qichao Wang
- Department of Oncology II, Dalian Fifth People's Hospital, Dalian, Liaoning 116021, P.R. China
| | - Xinhua Cao
- Department of Radiology, Urumqi Stomatological Hospital, Urumqi, Xinjiang Uygur Autonomous Region 830011, P.R. China
| |
Collapse
|
28
|
Zhao N, Zhang J, Zhao Q, Chen C, Wang H. Mechanisms of Long Non-Coding RNAs in Biological Characteristics and Aerobic Glycolysis of Glioma. Int J Mol Sci 2021; 22:ijms222011197. [PMID: 34681857 PMCID: PMC8541290 DOI: 10.3390/ijms222011197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 02/06/2023] Open
Abstract
Glioma is the most common and aggressive tumor of the central nervous system. The uncontrolled proliferation, cellular heterogeneity, and diffusive capacity of glioma cells contribute to a very poor prognosis of patients with high grade glioma. Compared to normal cells, cancer cells exhibit a higher rate of glucose uptake, which is accompanied with the metabolic switch from oxidative phosphorylation to aerobic glycolysis. The metabolic reprogramming of cancer cell supports excessive cell proliferation, which are frequently mediated by the activation of oncogenes or the perturbations of tumor suppressor genes. Recently, a growing body of evidence has started to reveal that long noncoding RNAs (lncRNAs) are implicated in a wide spectrum of biological processes in glioma, including malignant phenotypes and aerobic glycolysis. However, the mechanisms of diverse lncRNAs in the initiation and progression of gliomas remain to be fully unveiled. In this review, we summarized the diverse roles of lncRNAs in shaping the biological features and aerobic glycolysis of glioma. The thorough understanding of lncRNAs in glioma biology provides opportunities for developing diagnostic biomarkers and novel therapeutic strategies targeting gliomas.
Collapse
|
29
|
Nie Y, Li J, Wu W, Guo D, Lei X, Zhang T, Wang Y, Mao Z, Zhang X, Song W. A Novel Nine-lncRNA Risk Signature Correlates With Immunotherapy in Hepatocellular Carcinoma. Front Oncol 2021; 11:706915. [PMID: 34604045 PMCID: PMC8479152 DOI: 10.3389/fonc.2021.706915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/24/2021] [Indexed: 12/18/2022] Open
Abstract
Background Hepatocellular carcinoma is one of the most common malignant tumors with a very high mortality rate. The emergence of immunotherapy has brought hope for the cure of hepatocellular carcinoma. Only a small number of patients respond to immune checkpoint inhibitors, and ferroptosis and tertiary lymphoid structure contribute to the increased response rate of immune checkpoint inhibitors; thus, we first need to identify those who are sensitive to immunotherapy and then develop different methods to improve sensitivity for different groups. Methods The sequencing data of hepatocellular carcinoma from The Cancer Genome Atlas and Gene Expression Omnibus was downloaded to identify the immune-related long non-coding RNAs (lncRNAs). LncRNAs related to survival data were screened out, and a risk signature was established using Cox proportional hazard regression model. R software was used to calculate the riskScore of each patient, and the patients were divided into high- and low-risk groups. The prognostic value of riskScore and its application in clinical chemotherapeutic drugs were confirmed. The relationship between riskScore and immune checkpoint genes, ferroptosis genes, and genes related to tertiary lymphoid structure formation was analyzed by Spearman method. TIMER, CIBERSORT, ssGSEA, and ImmuCellAI were used to evaluate the relative number of lymphocytes in tumor. The Wilcoxon signed-rank test confirmed differences in immunophenoscore between the high- and low-risk groups. Results Data analysis revealed that our signature could well predict the 1-, 2-, 3-, and 5-year survival rates of hepatocellular carcinoma and to predict susceptible populations with Sorafenib. The risk signature were significantly correlated with immune checkpoint genes, ferroptosis genes, and tertiary lymphoid structure-forming genes, and predicted tumor-infiltrating lymphocyte status. There was a significant difference in IPS scores between the low-risk group and the high-risk group, while the low-risk group had higher scores. Conclusion The riskScore obtained from an immune-related lncRNA signature could successfully predict the survival time and reflect the efficacy of immune checkpoint inhibitors. More importantly, it is possible to select different treatments for different hepatocellular carcinoma patients that increase the response rate of immune checkpoint inhibitors and will help improve the individualized treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ye Nie
- Xi'an Medical University, Xi'an, China.,Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianhui Li
- Xi'an Medical University, Xi'an, China.,Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenlong Wu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dongnan Guo
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xinjun Lei
- Xi'an Medical University, Xi'an, China.,Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Tianchen Zhang
- Xi'an Medical University, Xi'an, China.,Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yanfang Wang
- Xi'an Medical University, Xi'an, China.,Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenzhen Mao
- Xi'an Medical University, Xi'an, China.,Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Wenjie Song
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
30
|
Ma Y, Jin Y, Li C, Liu Y, Wang D. LncRNA MSC-AS1 motivates the development of melanoma by binding to miR-302a-3p and recruiting IGF2BP2 to elevate LEF1 expression. Exp Dermatol 2021; 30:1764-1774. [PMID: 34218464 DOI: 10.1111/exd.14427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 12/17/2022]
Abstract
Melanoma is considered as the most common malignancy among skin cancers. The roles of many long non-coding RNAs (lncRNAs) have been clearly identified in multiple tumors. Nevertheless, lncRNA MSC antisense RNA 1 (MSC-AS1) has not been deeply investigated melanoma. In the present study, RT-qPCR and western blot analyses were used to measure the expression of RNAs and proteins. Functional and in vivo assays were implemented to detect the function of genes in melanoma. RNA pull-down, RIP and luciferase reporter assays were applied for determining interactions between RNA and protein molecules. It was observed that MSC-AS1 and lymphoid enhancer-binding factor 1 (LEF1) were remarkably up-regulated while microRNA-302a-3p (miR-302a-3p) down-regulated in melanoma cell lines. The silencing of MSC-AS1 hindered cell proliferation, migration and epithelial-mesenchymal transition (EMT) in vitro and tumor growth in vivo. Furthermore, MSC-AS1 regulated LEF1 expression through sponging miR-302a-3p and recruiting insulin like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Eventually, LEF1 overexpression rescued cell progression impaired by MSC-AS1 knock-down. In summary, our research identified the MSC-AS1/miR-302a-3p/IGF2BP2/LEF1 axis in melanoma development, which indicated that MSC-AS1 is a potential biomarker in the treatment of melanoma.
Collapse
Affiliation(s)
- Yan Ma
- Department of Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu, China
| | - Yuanyuan Jin
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Can Li
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yilun Liu
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Dehuai Wang
- Department of Burn and Plastic Surgery, Chengdu Second People's Hospital, Chengdu, China
| |
Collapse
|
31
|
Wan J, Liu B. Construction of lncRNA-related ceRNA regulatory network in diabetic subdermal endothelial cells. Bioengineered 2021; 12:2592-2602. [PMID: 34124997 PMCID: PMC8806614 DOI: 10.1080/21655979.2021.1936892] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) were considered to be involved in vascular complications in diabetes mellitus, but still only limited knowledge in this regard has been obtained. Herein, we further explored the roles of lncRNAs and mRNAs in diabetic vasculopathy (DV) through conducting bioinformatics analysis using data set downloaded from GEO database. The differentially expressed lncRNAs and mRNAs were identified by edge package. GO enrichment analysis and KEGG pathway analysis were performed based on clusterprofiler package. The relationship between lncRNA and miRNA was predicted using starBase database, and the potential mRNAs targeted by miRNAs were predicted by TargetScan, miRTarbase and miRDB database. The string database was used to analyze the protein-protein interaction (PPI). As a result, a total of 12 lncRNAs and 711 mRNAs were found to be differentially expressed in the diabetic subdermal endothelial cells compared with normal controls. A ceRNA network was established, which was composed of seven lncRNA nodes, 49 miRNA nodes, 58 mRNA nodes and 183 edges, and MSC-AS1 and LINC01550 may serve as key nodes. GO function enrichment analysis showed enrichments of epithelial cell proliferation, intercellular junction, and cell adhesion molecule binding. KEGG pathway analysis revealed 33 enriched pathways. PPI protein interaction analysis identified 57 potential ceRNA-related proteins. Overall, this study suggests that multiple lncRNAs, specifically MSC-AS1 and LINC01550, may play an important role in DV development and they are like to be developed as the therapeutic targets for DV. However, further experiments in vitro and in vivo should be conducted to validate our results.
Collapse
Affiliation(s)
- Jiangbo Wan
- Department of Burns, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi China
| | - Bo Liu
- Department of Burns and Surgery, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, China
| |
Collapse
|
32
|
LncRNA MSC-AS1 Promotes Colorectal Cancer Progression by Regulating miR-325/TRIM14 Axis. JOURNAL OF ONCOLOGY 2021; 2021:9954214. [PMID: 34054957 PMCID: PMC8131164 DOI: 10.1155/2021/9954214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
Background LncRNA MSC-AS1 has been reported to be a tumor promoter in hepatocellular carcinoma. However, the function of MSC-AS1 in colorectal cancer (CRC) has not been elucidated. It is designed to study the expression level of MSC-AS1 and investigate its biological effect on the progression of CRC. Methods The expression patterns of MSC-AS1, miR-325, and TRIM14 were explored by RT-qPCR in CRC tissues and cells. The protein expression of TRIM14 was tested by Western blot assay. The association between MSC-AS1 expression and clinicopathological data was analyzed by chi-squared test. CCK-8 assay, colony formation, and Transwell assay were used to investigate the effect of MSC-AS1 on cell growth, invasion, and migration in CRC cells. The correlations among MSC-AS1, miR-325, and TRIM14 were analyzed by Pearson's correlation coefficient analysis. Results We found that MSC-AS1 and TRIM14 were upregulated in CRC tissues, while miR-325 was downregulated in CRC tissues. Functional experiments demonstrated that MSC-AS1 knockdown inhibited cell proliferation, migration, and invasion abilities in CRC cells. Additionally, miR-325 was proved to be a target miRNA of MSC-AS1, and TRIM14 might be a downstream gene of miR-325. Besides that, MSC-AS1 counteracted the inhibitory effect of miR-325 on the cell progression and TRIM14 expression. Conclusion Our results indicated that MSC-AS1 facilitated CRC progression by sponging miR-325 to upregulate TRIM14 expression. We suggested that MSC-AS1 might be a potential lncRNA-target for CRC therapy.
Collapse
|