1
|
Rosas PC, Solaro RJ. p21-Activated Kinase 1 (Pak1) as an Element in Functional and Dysfunctional Interplay Among the Myocardium, Adipose Tissue, and Pancreatic Beta Cells. Compr Physiol 2025; 15:e70006. [PMID: 40065530 PMCID: PMC11894248 DOI: 10.1002/cph4.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/22/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
This review focuses on p21-activated kinase 1 (Pak1), a multifunctional, highly conserved enzyme that regulates multiple downstream effectors present in many tissues. Upstream signaling via Ras-related small G-proteins, Cdc42/Rac1 promotes the activity of Pak1. Our hypothesis is that this signaling cascade is an important element in communication among the myocardium, adipose tissue, and pancreatic β-cells. Evidence indicates that a shared property of these tissues is that structure/function stability requires homeostatic Pak1 activity. Increases or decreases in Pak1 activity may promote dysfunction or increase susceptibility to stressors. Evidence that increased levels of Pak1 activity may be protective provides support for efforts to develop therapeutic approaches activating Pak1 with potential use in prevalent disorders associated with obesity, diabetes, and myocardial dysfunction. On the other hand, since increased Pak1 activity is associated with cancer progression, there has been a significant effort to develop Pak1 inhibitors. These opposing therapeutic approaches highlight the need for a deep understanding of Pak1 signaling in relation to the development of effective and selective therapies with minimal or absent off-target effects.
Collapse
Affiliation(s)
- Paola C. Rosas
- Department of Pharmacy Practice, College of PharmacyUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - R. John Solaro
- Department of Physiology and Biophysics, College of MedicineUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
2
|
Munoz M, Solis C, McCann M, Park J, Rafael-Clyke K, Chowdhury SAK, Jiang Y, Rosas PC. P21-activated kinase-1 signaling is required to preserve adipose tissue homeostasis and cardiac function. Mol Cell Biochem 2025; 480:249-263. [PMID: 38430300 PMCID: PMC11371416 DOI: 10.1007/s11010-024-04968-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
While P21-activated kinase-1 (PAK1) has been extensively studied in relation to cardiovascular health and glucose metabolism, its roles within adipose tissue and cardiometabolic diseases are less understood. In this study, we explored the effects of PAK1 deletion on energy balance, adipose tissue homeostasis, and cardiac function utilizing a whole-body PAK1 knockout (PAK1-/-) mouse model. Our findings revealed that body weight differences between PAK1-/- and WT mice emerged at 9 weeks of age, with further increases observed at 12 weeks. Furthermore, PAK1-/- mice displayed increased fat mass and decreased lean mass at 12 weeks, indicating a shift towards adiposity. In conjunction with the increased body weight, PAK1-/- mice had increased food intake and reduced energy expenditure. At a mechanistic level, PAK1 deletion boosted the expression of lipogenic markers while diminishing thermogenic markers expression in adipose tissues, contributing to reduced energy expenditure and the overall obesogenic phenotype. Moreover, our findings highlighted a significant impact on cardiac function following PAK1 deletion, including alterations in calcium kinetics and compromised systolic and lusitropy functions. In summary, our study emphasizes the significant role of PAK1 in weight regulation and cardiac function, enriching our comprehension of heart health and metabolism. These findings could potentially facilitate the identification of novel therapeutic targets in cardiometabolic diseases.
Collapse
Affiliation(s)
- Marcos Munoz
- Divison of Endocrinology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Christopher Solis
- Department of Health, Nutrition & Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Maximilian McCann
- Department of Ophthalmology & Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Jooman Park
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Koreena Rafael-Clyke
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Shamim A K Chowdhury
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology & Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Paola C Rosas
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Rosas PC, Neves LAA, Patel N, Tran D, Pereira CH, Bonilla KR, Zheng J, Sun J, Alvarado FJ, Banach K. Early pathological mechanisms in a mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2024; 327:H1524-H1543. [PMID: 39485297 PMCID: PMC11684889 DOI: 10.1152/ajpheart.00318.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/11/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) constitutes more than half of all HF cases, yet evidence-based therapies remain lacking due to limited understanding of its underlying pathological mechanisms. Our study aimed to uncover early pathological mechanisms in HFpEF by exposing mice to dietary conditions resembling a Western diet-rich in fats, salt, and low in fiber-alongside excess mineralocorticoids to replicate significant aspects of human HFpEF. Echocardiography was performed at both 3-wk and 6-wk intervals postchallenge, revealing cardiac alterations as early as 3 wk. While ejection fraction remained preserved, mice exhibited signs of diastolic dysfunction, reduced stroke volume, and left atrial enlargement. In addition, changes in pulmonary flow velocities were noted by the 3-wk mark, suggesting elevated pulmonary pressure. Extracardiac comorbidities included organ congestion, increased adiposity, impaired glucose tolerance, and hypercholesterolemia. Molecular analyses unveiled evidence of low-grade inflammation, oxidative stress, and impaired NO-cGMP-PKG signaling, contributing to the observed decrease in titin phosphorylation, thereby impacting myocardial stiffness. In addition, impaired nitric oxide (NO) signaling might have influenced the alterations observed in coronary flow reserve. Moreover, dysregulation of calcium signaling in cardiomyocytes and reduced sarcoplasmic reticulum (SR) load were observed. Interestingly, elevated phosphorylation of cMyBP-C was linked to preserved ejection fraction despite reduced SR load. We also observed intestinal atrophy, possibly due to a high-fat diet, low dietary fiber intake, and diminished gut perfusion, potentially contributing to systemic low-grade inflammation. These findings reveal how excess mineralocorticoid salt-induced hypertension and dietary factors, like high-fat and low-fiber intake, contribute to cardiac dysfunction and metabolic disturbances, offering insights into early HFpEF pathology in this model.NEW & NOTEWORTHY Our study demonstrates that feeding mice a Western diet rich in fat and salt and low in fiber alongside excess mineralocorticoids replicates aspects of human HFpEF. Cardiac alterations including diastolic dysfunction and decreased stroke volume with preserved ejection fraction were observed. Extracardiac effects included organ congestion, adiposity, glucose intolerance, and intestinal atrophy. Molecular analysis revealed inflammation, oxidative stress, impaired NO-cGMP-PKG signaling pathways, and altered calcium signaling in cardiomyocytes, shedding light on early pathological changes in HFpEF.
Collapse
Grants
- HL155762 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL155762 NHLBI NIH HHS
- R01 HL132871 NHLBI NIH HHS
- R01 HL164453 NHLBI NIH HHS
- S10 OD027016 NIH HHS
- HL155241-02S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL161070 NHLBI NIH HHS
- HL164453 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL167195 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- K01 HL155241 NHLBI NIH HHS
- HL161070 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155241 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- CDA849387 American Heart Association (AHA)
- R01 HL167195 NHLBI NIH HHS
- University of Illinois
Collapse
Affiliation(s)
- Paola C Rosas
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Liomar A A Neves
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
- AbbVie Inc, Chicago, Illinois, United States
| | - Nisha Patel
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Duyen Tran
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Carlos H Pereira
- Department of Internal Medicine/Cardiology, Rush University Medical Center, Chicago, Illinois, United States
| | - Karina R Bonilla
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Jingjing Zheng
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, United States
- UIC Cancer Center, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, United States
| | - Kathrin Banach
- Department of Internal Medicine/Cardiology, Rush University Medical Center, Chicago, Illinois, United States
| |
Collapse
|
4
|
Arslan I. Natural PAK1 inhibitors: potent anti-inflammatory effectors for prevention of pulmonary fibrosis in COVID-19 therapy. Nat Prod Res 2024; 38:3644-3656. [PMID: 37690001 DOI: 10.1080/14786419.2023.2254454] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/11/2023]
Abstract
One of the main efforts of scientists to study drug development is the discovery of novel antiviral agents that could be beneficial in the struggle against viruses that cause diseases in humans. Natural products are complex metabolites that are designed and synthesised by different sources in an attempt to optimise nature. Recently, natural products are still a source of biologically active molecules, facilitating drug discovery. A p21-activating kinase PAK1 is a key regulator of cytoskeletal actin assembly, phenotypic signalling, and transcription process which affects a wide range of cellular processes such as cell motility, invasion, metastasis, cell growth, angiogenesis, and cell cycle progression. Most recently, PAK1 was shown to be involved in the progression of coronavirus-caused pulmonary inflammation (lung fibrosis), but clinical data is not currently available yet. This review highlights the naturally occurring compounds that inhibit the oncogenic, melanogenic, and ageing kinase PAK1. Additionally, the potent anti-inflammatory effects of natural products in an attempt to prevent pulmonary fibrosis in COVID-19 have also been discussed.
Collapse
Affiliation(s)
- Idris Arslan
- Zonguldak Bülent Ecevit University, Faculty of Science, Molecular Biology and Genetics, Zonguldak, Turkey
| |
Collapse
|
5
|
Wu D, Yu HC, Cha HN, Park S, Lee Y, Yoon SJ, Park SY, Park BH, Bae EJ. PAK4 phosphorylates and inhibits AMPKα to control glucose uptake. Nat Commun 2024; 15:6858. [PMID: 39127697 PMCID: PMC11316743 DOI: 10.1038/s41467-024-51240-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Our recent studies have identified p21-activated kinase 4 (PAK4) as a key regulator of lipid catabolism in the liver and adipose tissue, but its role in glucose homeostasis in skeletal muscle remains to be explored. In this study, we find that PAK4 levels are highly upregulated in the skeletal muscles of diabetic humans and mice. Skeletal muscle-specific Pak4 ablation or administering the PAK4 inhibitor in diet-induced obese mice retains insulin sensitivity, accompanied by AMPK activation and GLUT4 upregulation. We demonstrate that PAK4 promotes insulin resistance by phosphorylating AMPKα2 at Ser491, thereby inhibiting AMPK activity. We additionally show that skeletal muscle-specific expression of a phospho-mimetic mutant AMPKα2S491D impairs glucose tolerance, while the phospho-inactive mutant AMPKα2S491A improves it. In summary, our findings suggest that targeting skeletal muscle PAK4 may offer a therapeutic avenue for type 2 diabetes.
Collapse
Affiliation(s)
- Dandan Wu
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hwang Chan Yu
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, 34141, Republic of Korea
| | - Hye-Na Cha
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Soyoung Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea
| | - Yoonji Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sun-Jung Yoon
- Department of Orthopedic Surgery, Jeonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - So-Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - Byung-Hyun Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejon, 34141, Republic of Korea.
| | - Eun Ju Bae
- School of Pharmacy and Institute of New Drug Development, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
6
|
Gharagozloo K, Mehdizadeh M, Heckman G, Rose RA, Howlett J, Howlett SE, Nattel S. Heart Failure With Preserved Ejection Fraction in the Elderly Population: Basic Mechanisms and Clinical Considerations. Can J Cardiol 2024; 40:1424-1444. [PMID: 38604339 DOI: 10.1016/j.cjca.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) refers to a clinical condition in which the signs of heart failure, such as pulmonary congestion, peripheral edema, and increased natriuretic peptide levels, are present despite normal ejection fractions and the absence of other causes (eg, pericardial disease). The ejection fraction cutoff for the definition of HFpEF has varied in the past, but recent society guidelines have settled on a consensus of 50%. HFpEF is particularly common in the elderly population. The aim of this narrative review is to summarize the available literature regarding HFpEF in elderly patients in terms of evidence for the age dependence, specific clinical features, and underlying mechanisms. In the clinical arena, we review the epidemiology, discuss distinct clinical phenotypes typically seen in elderly patients, the importance of frailty, the role of biomarkers, and the role of medical therapies (including sodium-glucose cotransport protein 2 inhibitors, renin-angiotensin-aldosterone system blockers, angiotensin receptor/neprilysin inhibitors, diuretics, and β-adrenergic receptor blockers). We then go on to discuss the basic mechanisms implicated in HFpEF, including cellular senescence, fibrosis, inflammation, mitochondrial dysfunction, enhanced production of reactive oxygen species, abnormal cellular calcium handling, changes in microRNA signalling, insulin resistance, and sex hormone changes. Finally, we review knowledge gaps and promising areas of future investigation. Improved understanding of the specific clinical manifestations of HFpEF in elderly individuals and of the fundamental mechanisms that contribute to the age-related risk of HFpEF promises to lead to novel diagnostic and treatment approaches that will improve outcomes for this common cardiac disorder in a vulnerable population.
Collapse
Affiliation(s)
- Kimia Gharagozloo
- Montreal Heart Institute Research Center and Université de Montréal, Montréal, Quebec, Canada; McGill University Departments of Pharmacology and Therapeutics, Montréal, Quebec, Canada
| | - Mozhdeh Mehdizadeh
- Montreal Heart Institute Research Center and Université de Montréal, Montréal, Quebec, Canada; McGill University Departments of Pharmacology and Therapeutics, Montréal, Quebec, Canada
| | - George Heckman
- Schlegel Research Institute for Aging and University of Waterloo, Waterloo, Ontario, Canada
| | - Robert A Rose
- Department of Cardiac Sciences, Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jonathan Howlett
- Libin Cardiovascular Institute and Department of Cardiac Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Susan E Howlett
- Departments of Pharmacology and Medicine (Geriatric Medicine), Dalhousie University, Halifax, Nova Scotia, Canada
| | - Stanley Nattel
- Montreal Heart Institute Research Center and Université de Montréal, Montréal, Quebec, Canada; McGill University Departments of Pharmacology and Therapeutics, Montréal, Quebec, Canada; Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
7
|
Solís C, Warren CM, Dittloff K, DiNello E, Solaro RJ, Russell B. Cardiomyocyte external mechanical unloading activates modifications of α-actinin differently from sarcomere-originated unloading. FEBS J 2023; 290:5322-5339. [PMID: 37551968 PMCID: PMC11285078 DOI: 10.1111/febs.16925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/09/2023]
Abstract
Loss of myocardial mass in a neonatal rat cardiomyocyte culture is studied to determine whether there is a distinguishable cellular response based on the origin of mechano-signals. The approach herein compares the sarcomeric assembly and disassembly processes in heart cells by imposing mechano-signals at the interface with the extracellular matrix (extrinsic) and at the level of the myofilaments (intrinsic). Experiments compared the effects of imposed internal (inside/out) and external (outside/in) loading and unloading on modifications in neonatal rat cardiomyocytes. Unloading of the cellular substrate by myosin inhibition (1 μm mavacamten), or cessation of cyclic strain (1 Hz, 10% strain) after preconditioning, led to significant disassembly of sarcomeric α-actinin by 6 h. In myosin inhibition, this was accompanied by redistribution of intracellular poly-ubiquitin K48 to the cellular periphery relative to the poly-ubiquitin K48 reservoir at the I-band. Moreover, loading and unloading of the cellular substrate led to a three-fold increase in post-translational modifications (PTMs) when compared to the myosin-specific activation or inhibition. Specifically, phosphorylation increased with loading while ubiquitination increased with unloading, which may involve extracellular signal-regulated kinase 1/2 and focal adhesion kinase activation. The identified PTMs, including ubiquitination, acetylation, and phosphorylation, are proposed to modify internal domains in α-actinin to increase its propensity to bind F-actin. These results demonstrate a link between mechanical feedback and sarcomere protein homeostasis via PTMs of α-actinin that exemplify how cardiomyocytes exhibit differential responses to the origin of force. The implications of sarcomere regulation governed by PTMs of α-actinin are discussed with respect to cardiac atrophy and heart failure.
Collapse
Affiliation(s)
- Christopher Solís
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - Chad M Warren
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - Kyle Dittloff
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - Elisabeth DiNello
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - R John Solaro
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| | - Brenda Russell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, IL, USA
| |
Collapse
|
8
|
Halas M, Langa P, Warren CM, Goldspink PH, Wolska BM, Solaro RJ. Effects of Sarcomere Activators and Inhibitors Targeting Myosin Cross-Bridges on Ca 2+-Activation of Mature and Immature Mouse Cardiac Myofilaments. Mol Pharmacol 2022; 101:286-299. [PMID: 35236770 PMCID: PMC9092471 DOI: 10.1124/molpharm.121.000420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
We tested the hypothesis that isoform shifts in sarcomeres of the immature heart modify the effect of cardiac myosin-directed sarcomere inhibitors and activators. Omecamtiv mecarbil (OM) activates tension and is in clinical trials for the treatment of adult acute and chronic heart failure. Mavacamten (Mava) inhibits tension and is in clinical trials to relieve hypercontractility and outflow obstruction in advanced genetic hypertrophic cardiomyopathy (HCM), which is often linked to mutations in sarcomeric proteins. To address the effect of these agents in developing sarcomeres, we isolated heart fiber bundles, extracted membranes with Triton X-100, and measured tension developed over a range of Ca2+ concentrations with and without OM or Mava treatment. We made measurements in fiber bundles from hearts of adult nontransgenic (NTG) controls expressing cardiac troponin I (cTnI), and from hearts of transgenic (TG-ssTnI) mice expressing the fetal/neonatal form, slow skeletal troponin I (ssTnI). We also compared fibers from 7- and 14-day-old NTG mice expressing ssTnI and cTnI. These studies were repeated with 7- and 14-day-old transgenic mice (TG-cTnT-R92Q) expressing a mutant form of cardiac troponin T (cTnT) linked to HCM. OM increased Ca2+-sensitivity and decreased cooperative activation in both ssTnI- and cTnI-regulated myofilaments with a similar effect: reducing submaximal tension in immature and mature myofilaments. Although Mava decreased tension similarly in cTnI- and ssTnI-regulated myofilaments controlled either by cTnT or cTnT-R92Q, its effect involved a depressed Ca2+-sensitivity in the mature cTnT-R92 myofilaments. Our data demonstrate an influence of myosin and thin-filament associated proteins on the actions of myosin-directed agents such as OM and Mava. SIGNIFICANCE STATEMENT: The effects of myosin-targeted activators and inhibitors on Ca2+-activated tension in developing cardiac sarcomeres presented here provide novel, ex vivo evidence as to their actions in early-stage cardiac disorders. These studies advance understanding of the molecular mechanisms of these agents, which are important in preclinical studies employing sarcomere Ca2+-response as a screening approach. The data also inform the use of commonly immature cardiac myocytes generated from human-inducible pluripotent stem cells in screening for sarcomere activators and inhibitors.
Collapse
Affiliation(s)
- Monika Halas
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine (M.H., P.L., C.M.W., P.H.G., B.M.W., R.J.S.) and Department of Medicine, Division of Cardiology (B.M.W.), University of Illinois at Chicago, Chicago, Illinois
| | - Paulina Langa
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine (M.H., P.L., C.M.W., P.H.G., B.M.W., R.J.S.) and Department of Medicine, Division of Cardiology (B.M.W.), University of Illinois at Chicago, Chicago, Illinois
| | - Chad M Warren
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine (M.H., P.L., C.M.W., P.H.G., B.M.W., R.J.S.) and Department of Medicine, Division of Cardiology (B.M.W.), University of Illinois at Chicago, Chicago, Illinois
| | - Paul H Goldspink
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine (M.H., P.L., C.M.W., P.H.G., B.M.W., R.J.S.) and Department of Medicine, Division of Cardiology (B.M.W.), University of Illinois at Chicago, Chicago, Illinois
| | - Beata M Wolska
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine (M.H., P.L., C.M.W., P.H.G., B.M.W., R.J.S.) and Department of Medicine, Division of Cardiology (B.M.W.), University of Illinois at Chicago, Chicago, Illinois
| | - R John Solaro
- Department of Physiology and Biophysics and the Center for Cardiovascular Research, College of Medicine (M.H., P.L., C.M.W., P.H.G., B.M.W., R.J.S.) and Department of Medicine, Division of Cardiology (B.M.W.), University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
9
|
Chowdhury SAK, Rosas PC. Echocardiographic Characterization of Left Ventricular Structure, Function, and Coronary Flow in Neonate Mice. J Vis Exp 2022:10.3791/63539. [PMID: 35467668 PMCID: PMC9155257 DOI: 10.3791/63539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024] Open
Abstract
Echocardiography is a non-invasive procedure that enables the evaluation of structural and functional parameters in animal models of cardiovascular disease and is used to assess the impact of potential treatments in preclinical studies. Echocardiographic studies are usually conducted in young adult mice (i.e., 4-6 weeks of age). The evaluation of early neonatal cardiovascular function is not usually performed because of the small size of the mouse pups and the associated technical difficulties. One of the most important challenges is that the short length of the pups' limbs prevents them from reaching the electrodes in the echocardiography platform. Body temperature is the other challenge, as pups are very susceptible to changes in temperature. Therefore, it is important to establish a practical guide for performing echocardiographic studies in small mouse pups to help researchers detect early pathological changes and study the progression of cardiovascular disease over time. The current work describes a protocol for performing echocardiography in mouse pups at the early age of 7 days old. The echocardiographic characterization of cardiac morphology, function, and coronary flow in neonatal mice is also described.
Collapse
Affiliation(s)
- Shamim A K Chowdhury
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago
| | - Paola C Rosas
- Department of Physiology and Biophysics, Center for Cardiovascular Research, College of Medicine, University of Illinois at Chicago;
| |
Collapse
|
10
|
p21-Activated kinase 1 (PAK1) in aging and longevity: An overview. Ageing Res Rev 2021; 71:101443. [PMID: 34390849 DOI: 10.1016/j.arr.2021.101443] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
The p21-activated kinases (PAKs) belong to serine/threonine kinases family, regulated by ∼21 kDa small signaling G proteins RAC1 and CDC42. The mammalian PAK family comprises six members (PAK1-6) that are classified into two groups (I and II) based on their domain architecture and regulatory mechanisms. PAKs are implicated in a wide range of cellular functions. PAK1 has recently attracted increasing attention owing to its involvement in oncogenesis, tumor progression, and metastasis as well as several life-limiting diseases and pathological conditions. In Caenorhabditis elegans, PAK1 functions limit the lifespan under basal conditions by inhibiting forkhead transcription factor DAF-16. Interestingly, PAK depletion extended longevity and attenuated the onset of age-related phenotypes in a premature-aging mouse model and delayed senescence in mammalian fibroblasts. These observations implicate PAKs as not only oncogenic but also aging kinases. Therefore, PAK-targeting genetic and/or pharmacological interventions, particularly PAK1-targeting, could be a viable strategy for developing cancer therapies with relatively no side effects and promoting healthy longevity. This review describes PAK family proteins, their biological functions, and their role in regulating aging and longevity using C. elegans. Moreover, we discuss the effect of small-molecule PAK1 inhibitors on the lifespan and healthspan of C. elegans.
Collapse
|
11
|
Capote AE, Batra A, Warren CM, Chowdhury SAK, Wolska BM, Solaro RJ, Rosas PC. B-arrestin-2 Signaling Is Important to Preserve Cardiac Function During Aging. Front Physiol 2021; 12:696852. [PMID: 34512376 PMCID: PMC8430342 DOI: 10.3389/fphys.2021.696852] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/26/2021] [Indexed: 12/25/2022] Open
Abstract
Experiments reported here tested the hypothesis that β-arrestin-2 is an important element in the preservation of cardiac function during aging. We tested this hypothesis by aging β-arrestin-2 knock-out (KO) mice, and wild-type equivalent (WT) to 12-16months. We developed the rationale for these experiments on the basis that angiotensin II (ang II) signaling at ang II receptor type 1 (AT1R), which is a G-protein coupled receptor (GPCR) promotes both G-protein signaling as well as β-arrestin-2 signaling. β-arrestin-2 participates in GPCR desensitization, internalization, but also acts as a scaffold for adaptive signal transduction that may occur independently or in parallel to G-protein signaling. We have previously reported that biased ligands acting at the AT1R promote β-arrestin-2 signaling increasing cardiac contractility and reducing maladaptations in a mouse model of dilated cardiomyopathy. Although there is evidence that ang II induces maladaptive senescence in the cardiovascular system, a role for β-arrestin-2 signaling has not been studied in aging. By echocardiography, we found that compared to controls aged KO mice exhibited enlarged left atria and left ventricular diameters as well as depressed contractility parameters with preserved ejection fraction. Aged KO also exhibited depressed relaxation parameters when compared to WT controls at the same age. Moreover, cardiac dysfunction in aged KO mice was correlated with alterations in the phosphorylation of myofilament proteins, such as cardiac myosin binding protein-C, and myosin regulatory light chain. Our evidence provides novel insights into a role for β-arrestin-2 as an important signaling mechanism that preserves cardiac function during aging.
Collapse
Affiliation(s)
- Andrielle E. Capote
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Ashley Batra
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Chad M. Warren
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Shamim A. K. Chowdhury
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Beata M. Wolska
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Medicine, Division of Cardiology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - R. John Solaro
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Paola C. Rosas
- Department of Physiology & Biophysics, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|