1
|
Entezam M, Bagheri N, Soltani A, Hosseini SA, Khosravian P, Ferns GA, Ghatrehsamani M. Enhanced antitumor immunity in breast cancer: Synergistic effects of ADAM10/ADAM17 inhibition, metabolic modulation, and camptothecin-loaded selenium nanoparticles. Int J Pharm 2025; 669:125037. [PMID: 39675534 DOI: 10.1016/j.ijpharm.2024.125037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND In this study, we investigate the impact of a multi-targeted therapeutic approach that includes camptothecin (CPT), a potent chemotherapeutic topoisomerase inhibitor; metformin (Met), a metabolic modulator with emerging anti-tumor effects; and GW280264X, an inhibitor of ADAM 10/ADAM 17 enzymes, which are associated with tumor invasion and immune response. The study aims to assess the combined effects of these agents in enhancing CD8+ T cell-mediated anti-tumor immunity and suppressing cancer cell growth in triple-negative breast cancer (TNBC) models, both in vitro and in vivo. METHODS Cell viability was performed on the 4 T1 human TNBC cell line. Furthermore, we examined c-MYC protein expression by western blot, TOX and NR4A expression by Real-time PCR, and the number of CD8+ CD28+ T cells by immunofluorescence assay to demonstrate the anticancer effects of combined of CPT, Met and GW280264X in BC growth, exhaustion and senescence of T cells. RESULTS Regarding cell viability, HA-Se@CPT + Met and HA-Se@CPT + Met + GW280264X treatments decreased 4 T1 cell growth (p < 0.001). Combination therapy of Met, HA-Se@CPT, and GW280264X significantly reduced tumor volume and weight in vivo. This treatment also increased the number of CD8+ CD28+ T cells in the tumor microenvironment (TME) of BC (p < 0.0001) and decreased the expression of TOX and NR4A (p < 0.0001, p < 0.01). Furthermore, decreased expression of c-MYC as an oncogene protein was seen in the single and combined treatment by HA-Se@CPT and GW280264X (p < 0.05). CONCLUSION These findings suggest that of HA-Se@CPT, Met, and GW280264X may inhibit tumor progression in BC by improving the function and infiltration of CD8+ T cells. Their effect is more pronounced when used in combination.
Collapse
Affiliation(s)
- Mahshad Entezam
- Department of Microbiology and Immunology, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Soltani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sayedeh Azimeh Hosseini
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Science, Shahrekord, Iran
| | - Pegah Khosravian
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex, UK
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
2
|
Baeza-Morales A, Medina-García M, Martínez-Peinado P, Pascual-García S, Pujalte-Satorre C, López-Jaén AB, Martínez-Espinosa RM, Sempere-Ortells JM. The Antitumour Mechanisms of Carotenoids: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1060. [PMID: 39334719 PMCID: PMC11428676 DOI: 10.3390/antiox13091060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Carotenoids, known for their antioxidant properties, have garnered significant attention for their potential antitumour activities. This comprehensive review aims to elucidate the diverse mechanisms by which carotenoids exert antitumour effects, focusing on both well-established and novel findings. We explore their role in inducing apoptosis, inhibiting cell cycle progression and preventing metastasis by affecting oncogenic and tumour suppressor proteins. The review also explores the pro-oxidant function of carotenoids within cancer cells. In fact, although their overall contribution to cellular antioxidant defences is well known and significant, some carotenoids can exhibit pro-oxidant effects under certain conditions and are able to elevate reactive oxygen species (ROS) levels in tumoural cells, triggering mitochondrial pathways that would lead to cell death. The final balance between their antioxidant and pro-oxidant activities depends on several factors, including the specific carotenoid, its concentration and the redox environment of the cell. Clinical trials are discussed, highlighting the conflicting results of carotenoids in cancer treatment and the importance of personalized approaches. Emerging research on rare carotenoids like bacterioruberin showcases their superior antioxidant capacity and selective cytotoxicity against aggressive cancer subtypes, such as triple-negative breast cancer. Future directions include innovative delivery systems, novel combinations and personalized treatments, aiming to enhance the therapeutic potential of carotenoids. This review highlights the promising yet complex landscape of carotenoid-based cancer therapies, calling for continued research and clinical exploration.
Collapse
Affiliation(s)
- Andrés Baeza-Morales
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Miguel Medina-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Pascual Martínez-Peinado
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Sandra Pascual-García
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Carolina Pujalte-Satorre
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Ana Belén López-Jaén
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| | - Rosa María Martínez-Espinosa
- Biochemistry and Molecular Biology and Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Ap. 99, E-03080 Alicante, Spain;
- Applied Biochemistry Research Group, Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Ap. 99, E-03080 Alicante, Spain
| | - José Miguel Sempere-Ortells
- Immunology, Cellular and Developmental Biology Group, Department of Biotechnology, University of Alicante, Ap. 99, E-03080 Alicante, Spain; (A.B.-M.); (M.M.-G.); (P.M.-P.); (S.P.-G.); (C.P.-S.); (A.B.L.-J.)
| |
Collapse
|
3
|
Płonka-Czerw J, Żyrek L, Latocha M. Changes in the Sensitivity of MCF-7 and MCF-7/DX Breast Cancer Cells to Cytostatic in the Presence of Metformin. Molecules 2024; 29:3531. [PMID: 39124936 PMCID: PMC11313889 DOI: 10.3390/molecules29153531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Multidrug resistance is a serious problem in modern medicine and the reason for the failure of various therapies. A particularly important problem is the occurrence of multidrug resistance in cancer therapies which affects many cancer patients. Observations on the effect of metformin-a well-known hypoglycemic drug used in the treatment of type 2 diabetes-on cancer cells indicate the possibility of an interaction of this substance with drugs already used and, as a result, an increase in the sensitivity of cancer cells to cytostatics. The aim of this study was to evaluate the effect of metformin on the occurrence of multidrug resistance of breast cancer cells. The MCF-7-sensitive cell line and the MCF-7/DX cytostatic-resistant cell line were used for this study. WST-1 and LDH assays were used to evaluate the effects of metformin and doxorubicin on cell proliferation and viability. The effect of metformin on increasing the sensitivity of MCF-7 and MCF-7/DX cells to doxorubicin was evaluated in an MDR test. The participation of metformin in increasing the sensitivity of resistant cells to the effect of the cytostatic (doxorubicin) has been demonstrated.
Collapse
Affiliation(s)
- Justyna Płonka-Czerw
- Department of Cell Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jedności 8, 41-200 Sosnowiec, Poland; (L.Ż.); (M.L.)
| | | | | |
Collapse
|
4
|
Mokhtarian R, Rajabi S, Zahedian S, Jafarinejad-Farsangi S, Hadizadeh M, Sadeghinejad M. The effect of saffron and its extracts on the treatment of breast cancer: A narrative review. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:629-640. [PMID: 38367937 DOI: 10.1016/j.pharma.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024]
Abstract
Breast cancer (BC) is the most prevalent malignancy in women and the second most common disease worldwide, affecting approximately one million individuals annually. Despite the efficacy of conventional chemotherapy, medication resistance and adverse effects limit its effectiveness, leading researchers to explore alternative treatments, including herbal remedies. Saffron, a well-known spice derived from the Crocus sativus L. plant, has shown potential as a BC treatment. The active components of saffron exhibit anti-cancer properties by inducing apoptosis, inhibiting cell division, and modulating signaling pathways implicated in cancer development, such as PI3K/AKT, NF-κB, and MAPK. Clinical findings suggest that saffron can alleviate chemotherapy-induced symptoms, reduce serum tumor marker levels, and enhance quality of life. Preliminary clinical trials are investigating the safety and efficacy of saffron in treating BC, with recent evidence indicating that recommended doses of saffron supplementation are well-tolerated and safe. This review provides an overview of the anti-tumor effects of saffron and its unique chemical composition in BC. However, further research and clinical studies are imperative to fully comprehend the potential of saffron in adjuvant therapy for BC patients.
Collapse
Affiliation(s)
- Roya Mokhtarian
- Division of Cellular and Molecular Biology, Department of Biology, NourDanesh Institute of Higher Education, Meymeh, Isfahan, Iran
| | - Soodeh Rajabi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
| | - Setareh Zahedian
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Saeideh Jafarinejad-Farsangi
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Masoumeh Sadeghinejad
- Department of Kinesiology and Applied Physiology, College of Health Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
5
|
Li H, Li J, Zhang Y, Zhao C, Ge J, Sun Y, Fu H, Li Y. The therapeutic effect of traditional Chinese medicine on breast cancer through modulation of the Wnt/β-catenin signaling pathway. Front Pharmacol 2024; 15:1401979. [PMID: 38783943 PMCID: PMC11111876 DOI: 10.3389/fphar.2024.1401979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer, the most prevalent malignant tumor among women globally, is significantly influenced by the Wnt/β-catenin signaling pathway, which plays a crucial role in its initiation and progression. While conventional chemotherapy, the standard clinical treatment, suffers from significant drawbacks like severe side effects, high toxicity, and limited prognostic efficacy, Traditional Chinese Medicine (TCM) provides a promising alternative. TCM employs a multi-targeted therapeutic approach, which results in fewer side effects and offers a high potential for effective treatment. This paper presents a detailed analysis of the therapeutic impacts of TCM on various subtypes of breast cancer, focusing on its interaction with the Wnt/β-catenin signaling pathway. Additionally, it explores the effectiveness of both monomeric and compound forms of TCM in the management of breast cancer. We also discuss the potential of establishing biomarkers for breast cancer treatment based on key proteins within the Wnt/β-catenin signaling pathway. Our aim is to offer new insights into the prevention and treatment of breast cancer and to contribute to the standardization of TCM.
Collapse
Affiliation(s)
- Hongkun Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yifan Zhang
- College of Acupuncture-Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Chengcheng Zhao
- Experimental Teaching and Practical Training Center, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jun Ge
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yujiao Sun
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hui Fu
- College of Integrated Chinese and Western Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yingpeng Li
- College of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
6
|
Fakhri S, Moradi SZ, Faraji F, Kooshki L, Webber K, Bishayee A. Modulation of hypoxia-inducible factor-1 signaling pathways in cancer angiogenesis, invasion, and metastasis by natural compounds: a comprehensive and critical review. Cancer Metastasis Rev 2024; 43:501-574. [PMID: 37792223 DOI: 10.1007/s10555-023-10136-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023]
Abstract
Tumor cells employ multiple signaling mediators to escape the hypoxic condition and trigger angiogenesis and metastasis. As a critical orchestrate of tumorigenic conditions, hypoxia-inducible factor-1 (HIF-1) is responsible for stimulating several target genes and dysregulated pathways in tumor invasion and migration. Therefore, targeting HIF-1 pathway and cross-talked mediators seems to be a novel strategy in cancer prevention and treatment. In recent decades, tremendous efforts have been made to develop multi-targeted therapies to modulate several dysregulated pathways in cancer angiogenesis, invasion, and metastasis. In this line, natural compounds have shown a bright future in combating angiogenic and metastatic conditions. Among the natural secondary metabolites, we have evaluated the critical potential of phenolic compounds, terpenes/terpenoids, alkaloids, sulfur compounds, marine- and microbe-derived agents in the attenuation of HIF-1, and interconnected pathways in fighting tumor-associated angiogenesis and invasion. This is the first comprehensive review on natural constituents as potential regulators of HIF-1 and interconnected pathways against cancer angiogenesis and metastasis. This review aims to reshape the previous strategies in cancer prevention and treatment.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Farahnaz Faraji
- Department of Pharmaceutics, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6714415153, Iran
| | - Kassidy Webber
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL, 34211, USA.
| |
Collapse
|
7
|
Liang H, Yin G, Shi G, Liu Z, Liu X, Li J. Echinacoside regulates PI3K/AKT/HIF-1α/VEGF cross signaling axis in proliferation and apoptosis of breast cancer. Anal Biochem 2024; 684:115360. [PMID: 37865269 DOI: 10.1016/j.ab.2023.115360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
CONTEXT Echinacoside (ECH) is a natural anti-cancer compound and is of great value in cancer treatment. However, the mechanism underlying this effect on breast cancer (BC) was unclear. OBJECTIVE To explore the mechanism of ECH treating BC by network pharmacology and experimental validation. MATERIALS & METHODS Several databases were searched to screen potential targets of ECH and obtain information on targets related to BC. STRING was applied to construct a Protein-protein interaction (PPI) network. DAVID was applied for Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Gene Expression Profiling Interactive Analysis (GEPIA) was searched for the relationship between the expression profile and overall survival of major targets in normal breast and BC tissues. Finally, the results of network pharmacology analysis were validated by experiments. RESULTS Seventeen targets of ECH overlapped with targets in BC. Ten hub targets were determined through PPI. By GO and KEGG analysis 15 entries and 25 pathways were obtained, in which phosphatidylinositol 3-kinase (PI3K), protein kinase B (AKT), hypoxia inducible factor-1 (HIF-1) and vascular endothelial growth factor (VEGF) played greater roles. Validation of key targets in the GEPIA database showed that PIK3R1 and PIK3CD remained consistent with the results of the study. Experiments in vitro showed ECH inhibited proliferation, induced apoptosis and reduced mRNA levels and protein expression of PI3K, AKT, hypoxia inducible factor-1α (HIF-1α) and vascular endothelial growth factor A (VEGFA) in MCF-7 cells. Furthermore, experiments in vivo revealed that ECH significantly reduced tumor growth, promoted apoptosis and decreased the related mRNA levels and protein expression, suggesting ECH works on BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. DISCUSSION & CONCLUSION In summary, ECH played an important role in anti-BC by regulating PI3K/AKT/HIF-1α/VEGF signaling pathway. Furthermore, ECH had multi-target and multi-pathway effects, which may be a promising natural compound for treating BC.
Collapse
Affiliation(s)
- Hongyi Liang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Guangxi Shi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Zhiyong Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China
| | - Xiaofei Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
| | - Jingwei Li
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
8
|
Bao X, Hu J, Zhao Y, Jia R, Zhang H, Xia L. Advances on the anti-tumor mechanisms of the carotenoid Crocin. PeerJ 2023; 11:e15535. [PMID: 37404473 PMCID: PMC10315134 DOI: 10.7717/peerj.15535] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/19/2023] [Indexed: 07/06/2023] Open
Abstract
Saffron is located in the upper part of the crocus stigma of iridaceae, which has a long history of medicinal use. Crocin (molecular formula C44H64O24) is a natural floral glycoside ester compound extracted from saffron, which is a type carotenoid. Modern pharmacological studies have shown that crocin has multiple therapeutic effects including anti-inflammatory, anti-oxidant, anti-hyperlipidemic and anti-stone effects. In recent years, crocin has been widely noticed due to its considerable anti-tumor effects manifested by the induction of tumor cell apoptosis, inhibition of tumor cell proliferation, inhibition of tumor cell invasion and metastasis, enhancement of chemotherapy sensitivity and improvement of immune status. The anti-tumor effects have been shown in various malignant tumors such as gastric cancer, liver cancer, cervical cancer, breast cancer and colorectal cancer. In this review, we compiled recent studies on the anti-tumor effects of crocin and summarized its anti-tumor mechanism for developing ideas of treating malignancies and exploring anti-tumor drugs.
Collapse
Affiliation(s)
- Xingxun Bao
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinhua Hu
- Shandong Provincial Hospital, Jinan, China
| | - Yan Zhao
- The Third Hospital of Jinan, Jinan, China
| | - Ruixue Jia
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | | | - Lei Xia
- Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Bashraheel SS, Kheraldine H, Khalaf S, Moustafa AEA. Metformin and HER2-positive breast cancer: Mechanisms and therapeutic implications. Biomed Pharmacother 2023; 162:114676. [PMID: 37037091 DOI: 10.1016/j.biopha.2023.114676] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023] Open
Abstract
Due to the strong association between diabetes and cancer incidents, several anti-diabetic drugs, including metformin, have been examined for their anticancer activity. Metformin is a biguanide antihyperglycemic agent used as a first-line drug for type II diabetes mellitus. It exhibits anticancer activity by impacting different molecular pathways, such as AMP-inducible protein kinase (AMPK)-dependent and AMPK-independent pathways. Additionally, Metformin indirectly inhibits IGF-1R signaling, which is highly activated in breast malignancy. On the other hand, breast cancer is one of the major causes of cancer-related morbidity and mortality worldwide, where the human epidermal growth factor receptor-positive (HER2-positive) subtype is one of the most aggressive ones with a high rate of lymph node metastasis. In this review, we summarize the association between diabetes and human cancer, listing recent evidence of metformin's anticancer activity. A special focus is dedicated to HER2-positive breast cancer with regards to the interaction between HER2 and IGF-1R. Then, we discuss combination therapy strategies of metformin and other anti-diabetic drugs in HER2-positive breast cancer.
Collapse
Affiliation(s)
| | - Hadeel Kheraldine
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Sarah Khalaf
- College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical Research Center, QU Health, Qatar University, PO. Box 2713, Doha, Qatar; Oncology Department, McGill University, Montreal, Quebec H3A 0G4, Canada.
| |
Collapse
|
10
|
Abdu S, Juaid N, Amin A, Moulay M, Miled N. Therapeutic Effects of Crocin Alone or in Combination with Sorafenib against Hepatocellular Carcinoma: In Vivo & In Vitro Insights. Antioxidants (Basel) 2022; 11:antiox11091645. [PMID: 36139719 PMCID: PMC9495549 DOI: 10.3390/antiox11091645] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
This study investigated the therapeutic effects of the phytochemical crocin alone or in combination with sorafenib both in rats chemically induced with hepatocellular carcinoma (HCC) and in human liver cancer cell line (HepG2). Male rats were randomly divided into five groups, namely, control group, HCC induced group, and groups treated with sorafenib, crocin or both crocin and sorafenib. HCC was induced in rats with a single intraperitoneal injection of diethylnitrosamine (DEN), then 2-acetylaminofluorene (2-AAF). The HCC-induced rats showed a significant decrease in body weight compared to animals treated with either or both examined drugs. Serum inflammatory markers (C-reactive protein (CRP); interleukin-6 (IL-6); lactate dehydrogenase (LDH), and oxidative stress markers were significantly increased in the HCC group and were restored upon treatment with either or both of therapeutic molecules. Morphologically, the HCC-induced rats manifested most histopathological features of liver cancer. Treatment with either or both of crocin and sorafenib successfully restored normal liver architecture. The expression of key genes involved in carcinogenesis (TNFα, p53, VEGF and NF-κB) was highly augmented upon HCC induction and was attenuated post-treatment with either or both examined drugs. Treatment with both crocin and sorafenib improved the histopathological and inflammation parameters as compared to single treatments. The in vivo anti-cancer effects of crocin and/or sorafenib were supported by their respective cytotoxicity on HepG2 cells. Crocin and sorafenib displayed an anti-tumor synergetic effect on HepG2 cells. The present findings demonstrated that a treatment regimen with crocin and sorafenib reduced liver toxicity, impeded HCC development, and improved the liver functions.
Collapse
Affiliation(s)
- Suzan Abdu
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Nouf Juaid
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Correspondence: (N.J.); (N.M.)
| | - Amr Amin
- Biology Department, UAE University, Al Ain 15551, United Arab Emirates
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Mohamed Moulay
- Embryonic Stem Cell Research Unit, King Fahd Medical Research Center, King Abdul Aziz University, Jeddah 22252, Saudi Arabia
| | - Nabil Miled
- Department of Biological Sciences, University of Jeddah, Jeddah 23445, Saudi Arabia
- Functional Genomics and Plant Physiology Research Unit, Higher Institute of Biotechnology Sfax, University of Sfax, BP261 Road Soukra Km4, Sfax 3038, Tunisia
- Correspondence: (N.J.); (N.M.)
| |
Collapse
|
11
|
Boozari M, Hosseinzadeh H. Crocin molecular signaling pathways at a glance: A comprehensive review. Phytother Res 2022; 36:3859-3884. [PMID: 35989419 DOI: 10.1002/ptr.7583] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/16/2022] [Accepted: 07/07/2022] [Indexed: 11/09/2022]
Abstract
Crocin is a hydrophilic carotenoid that is synthesized in the flowers of the Crocus genus. Numerous in vitro and in vivo research projects have been published about the biological and pharmacological properties and toxicity of crocin. Crocin acts as a memory enhancer, anxiolytic, aphrodisiac, antidepressant, neuroprotective, and so on. Here, we introduce an updated and comprehensive review of crocin molecular mechanisms based on previously examined and mentioned in the literature. Different studies confirmed the significant effect of crocin to control pathological conditions, including oxidative stress, inflammation, metabolic disorders, neurodegenerative disorders, and cancer. The neuroprotective effect of crocin could be related to the activation of phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)/mammalian target of rapamycin (mTOR), Notch, and cyclic-AMP response element-binding protein signaling pathways. The crocin also protects the cardiovascular system through the inhibitory effect on toll-like receptors. The regulatory effect of crocin on PI3K/AKT/mTOR, AMP-activated protein kinase, mitogen-activated protein kinases (MAPK), and peroxisome proliferator-activated receptor pathways can play an effective role in the treatment of metabolic disorders. The crocin has anticancer activity through the PI3K/AKT/mTOR, MAPK, vascular endothelial growth factor, Wnt/β-catenin, and Janus kinases-signal transducer and activator of transcription suppression. Also, the nuclear factor-erythroid factor 2-related factor 2 and p53 signaling pathway activation may be effective in the anticancer effect of crocin. Finally, among signaling pathways regulated by crocin, the most important ones seem to be those related to the regulatory effect on the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Motahareh Boozari
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
12
|
Suwei D, Yanbin X, Jianqiang W, Xiang M, Zhuohui P, Jianping K, Yunqing W, Zhen L. Metformin inhibits melanoma cell metastasis by suppressing the miR-5100/SPINK5/STAT3 axis. Cell Mol Biol Lett 2022; 27:48. [PMID: 35705923 PMCID: PMC9199130 DOI: 10.1186/s11658-022-00353-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/31/2022] [Indexed: 02/06/2023] Open
Abstract
Melanoma is the most lethal skin cancer characterized by its high metastatic potential. It is urgent to find novel therapy strategies to overcome this feature. Metformin has been confirmed to suppress invasion and migration of various types of cancer. However, additional mechanisms underlying the antimetastatic effect of metformin on melanoma require further investigation. Here, we performed microarray analysis and uncovered an altered mRNA and miRNA expression profile between melanoma and nevus. Luciferase reporter assay confirmed that miR-5100 targets SPINK5 to activate STAT3 phosphorylation. Migration and wound healing assays showed that the miR-5100/SPINK5/STAT3 axis promotes melanoma cell metastasis; the mechanism was proven by initiation of epithelial–mesenchymal transition. Co-immunoprecipitation (Co-IP) further confirmed an indirect interaction between SPINK5 and STAT3. Furthermore, metformin dramatically inhibited miR-5100/SPINK5/STAT3 pathway, and decreased B16-F10 cell metastasis to lung in C57 mouse module. Intriguingly, pretreatment of metformin before melanoma cell injection improved this effect further. These findings exposed the underlying mechanisms of action of metformin and update the use of this drug to prevent metastasis in melanoma.
Collapse
Affiliation(s)
- Dong Suwei
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.,Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Xiao Yanbin
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Wang Jianqiang
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China
| | - Ma Xiang
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Peng Zhuohui
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Kang Jianping
- Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University, Kunming, 650118, People's Republic of China
| | - Wang Yunqing
- Department of Orthopaedics, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Li Zhen
- Department of Medical Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China. .,The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| |
Collapse
|
13
|
Scordamaglia D, Cirillo F, Talia M, Santolla MF, Rigiracciolo DC, Muglia L, Zicarelli A, De Rosis S, Giordano F, Miglietta AM, De Francesco EM, Vella V, Belfiore A, Lappano R, Maggiolini M. Metformin counteracts stimulatory effects induced by insulin in primary breast cancer cells. J Transl Med 2022; 20:263. [PMID: 35672854 PMCID: PMC9172136 DOI: 10.1186/s12967-022-03463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background Metabolic disorders are associated with increased incidence, aggressive phenotype and poor outcome of breast cancer (BC) patients. For instance, hyperinsulinemia is an independent risk factor for BC and the insulin/insulin receptor (IR) axis is involved in BC growth and metastasis. Of note, the anti-diabetic metformin may be considered in comprehensive therapeutic approaches in BC on the basis of its antiproliferative effects obtained in diverse pre-clinical and clinical studies. Methods Bioinformatics analysis were performed using the information provided by The Invasive Breast Cancer Cohort of The Cancer Genome Atlas (TCGA) project. The naturally immortalized BC cell line, named BCAHC-1, as well as cancer-associated fibroblasts (CAFs) derived from BC patients were used as model systems. In order to identify further mechanisms that characterize the anticancer action of metformin in BC, we performed gene expression and promoter studies as well as western blotting experiments. Moreover, cell cycle analysis, colony and spheroid formation, actin cytoskeleton reorganization, cell migration and matrigel drops evasion assays were carried out to provide novel insights on the anticancer properties of metformin. Results We first assessed that elevated expression and activation of IR correlate with a worse prognostic outcome in estrogen receptor (ER)-positive BC. Thereafter, we established that metformin inhibits the insulin/IR-mediated activation of transduction pathways, gene changes and proliferative responses in BCAHC-1 cells. Then, we found that metformin interferes with the insulin-induced expression of the metastatic gene CXC chemokine receptor 4 (CXCR4), which we found to be associated with poor disease-free survival in BC patients exhibiting high levels of IR. Next, we ascertained that metformin prevents a motile phenotype of BCAHC-1 cells triggered by the paracrine liaison between tumor cells and CAFs upon insulin activated CXCL12/CXCR4 axis. Conclusions Our findings provide novel mechanistic insights regarding the anti-proliferative and anti-migratory effects of metformin in both BC cells and important components of the tumor microenvironment like CAFs. Further investigations are warranted to corroborate the anticancer action of metformin on the tumor mass toward the assessment of more comprehensive strategies halting BC progression, in particular in patients exhibiting metabolic disorders and altered insulin/IR functions. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03463-y.
Collapse
|
14
|
Bakshi HA, Quinn GA, Nasef MM, Mishra V, Aljabali AAA, El-Tanani M, Serrano-Aroca Á, Webba Da Silva M, McCarron PA, Tambuwala MM. Crocin Inhibits Angiogenesis and Metastasis in Colon Cancer via TNF-α/NF-kB/VEGF Pathways. Cells 2022; 11:1502. [PMID: 35563808 PMCID: PMC9104358 DOI: 10.3390/cells11091502] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and metastasis play pivotal roles in the progression of cancer. We recently discovered that crocin, a dietary carotenoid derived from the Himalayan crocus, inhibited the growth of colon cancer cells. However, the exact role of crocin on the angiogenesis and metastasis in colorectal cancer remains unclear. In the present study, we demonstrated that crocin significantly reduces the viability of colon cancer cells (HT-29, Caco-2) and human umbilical vein endothelial cells (HUVEC), but was not toxic to human colon epithelial (HCEC) cells. Furthermore, pre-treatment of human carcinoma cells (HT-29 and Caco-2) with crocin inhibited cell migration, invasion, and angiogenesis in concentration -dependent manner. Further studies demonstrated that crocin inhibited TNF-α, NF-κB and VEGF pathways in colon carcinoma cell angiogenesis and metastasis. Crocin also inhibited cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVEC) in a concentration -dependent manner. We also observed that crocin significantly reduced the secretion of VEGF and TNF-α induced activation of NF-kB by human colon carcinoma cells. In the absence of TNF-α, a concentration-dependent reduction in NF-kB was observed. Many of these observations were confirmed by in vivo angiogenesis models, which showed that crocin significantly reduced the progression of tumour growth. Collectively, these finding suggest that crocin inhibits angiogenesis and colorectal cancer cell metastasis by targeting NF-kB and blocking TNF-α/NF-κB/VEGF pathways.
Collapse
Affiliation(s)
- Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Gerry A. Quinn
- School of Biomedical Sciences, Ulster University, Coleraine BT52 1SA, UK;
| | - Mohamed M. Nasef
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK;
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India;
| | - Alaa A. A. Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 566, Jordan;
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Mateus Webba Da Silva
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Paul A. McCarron
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK; (M.W.D.S.); (P.A.M.)
| |
Collapse
|
15
|
Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J 2022; 479:583-607. [PMID: 35244142 PMCID: PMC9022985 DOI: 10.1042/bcj20210134] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022]
Abstract
For a century, since the pioneering work of Otto Warburg, the interwoven relationship between metabolism and cancer has been appreciated. More recently, with obesity rates rising in the U.S. and worldwide, epidemiologic evidence has supported a link between obesity and cancer. A substantial body of work seeks to mechanistically unpack the association between obesity, altered metabolism, and cancer. Without question, these relationships are multifactorial and cannot be distilled to a single obesity- and metabolism-altering hormone, substrate, or factor. However, it is important to understand the hormone-specific associations between metabolism and cancer. Here, we review the links between obesity, metabolic dysregulation, insulin, and cancer, with an emphasis on current investigational metabolic adjuncts to standard-of-care cancer treatment.
Collapse
Affiliation(s)
- Brooks P. Leitner
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Stephan Siebel
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Pediatrics, Yale School of Medicine, New Haven, CT, U.S.A
| | - Ngozi D. Akingbesote
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Xinyi Zhang
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| | - Rachel J. Perry
- Departments of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, U.S.A
- Departments of Internal Medicine, Yale School of Medicine, New Haven, CT, U.S.A
| |
Collapse
|
16
|
Nivetha R, Arvindhvv S, Baba AB, Gade DR, Gopal G, K C, Kallamadi KPR, Reddy GB, Nagini S. Nimbolide, a Neem Limonoid, Inhibits Angiogenesis in Breast Cancer by Abrogating Aldose Reductase Mediated IGF-1/PI3K/Akt Signaling. Anticancer Agents Med Chem 2022; 22:2619-2636. [DOI: 10.2174/1871520622666220204115151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 11/22/2022]
Abstract
Background & Objectives:
There is growing evidence to implicate the insulin/IGF-1R/PI3K/Akt signaling cascade in breast cancer development and the central role of aldose reductase (AR) in mediating the crosstalk between this pathway and angiogenesis. The current study was designed to investigate whether nimbolide, a neem limonoid, targets this oncogenic signaling network to prevent angiogenesis in breast cancer.
Methods:
Breast cancer cells (MCF-7, MDA-MB-231), EAhy926 endothelial cells, MDA-MB-231 xenografted nude mice, and tumour tissues from breast cancer patients were used for the study. Expression of AR and key players in IGF-1/PI3K/Akt signaling and angiogenesis was evaluated by qRT-PCR, immunoblotting, and immunohistochemistry. Molecular docking and simulation, overexpression, and knockdown experiments were performed to determine whether nimbolide targets AR and IGF-1R
Results:
Nimbolide inhibited AR with consequent blockade of the IGF-1/PI3K/Akt and HIF-1/VEGF signaling circuit by influencing the phosphorylation and intracellular localisation of key signaling molecules. Downregulation of DNMT-1, HDAC-6, miR-21, HOTAIR, and H19 with upregulation of miR-148a/miR-152 indicated that nimbolide regulates AR and IGF-1/PI3K/Akt signaling via epigenetic modifications. Coadministration of nimbolide with metformin and the chemotherapeutic drugs tamoxifen/cisplatin displayed higher efficacy than single agents in inhibiting IGF-1/PI3K/Akt/AR signaling. Grade-wise increases in IGF-1R and AR expression in breast cancer tissues underscore their value as biomarkers of progression.
Conclusions:
This study provides evidence for the anticancer effects of nimbolide in cellular and mouse models of breast cancer besides providing leads for new drug combinations. It has also opened up avenues for investigating potential molecules such as AR for therapeutic targeting of cancer.
Collapse
Affiliation(s)
- Ramesh Nivetha
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Soundararajan Arvindhvv
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Abdul Basit Baba
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| | - Deepak Reddy Gade
- Centre for Molecular Cancer Research, Vishnu Institute of Pharmaceutical Education and Research, Narsapur, India
| | - Gopisetty Gopal
- Department of Molecular Oncology, Cancer Institute (WIA), Adyar, Chennai 600020, Tamil Nadu, India
| | - Chitrathara K
- Department of Surgical & Gynecologic Oncology, VPS Lakeshore Hospital, Nettoor, Maradu, Kochi, Kerala 682040
| | | | - G. Bhanuprakash Reddy
- Department of Biochemistry, ICMR-National Institute of Nutrition, Hyderabad-500007, India
| | - Siddavaram Nagini
- Department of Biochemistry & Biotechnology, Faculty of Science, Annamalai University, Annamalainagar-608002, Tamil Nadu, India
| |
Collapse
|