1
|
Hale FB, Harris AL. Understanding the Health Benefits of Tai Chi Practice for Managing Pain After Breast Cancer Treatment. Nurs Womens Health 2025:S1751-4851(25)00077-7. [PMID: 40258394 DOI: 10.1016/j.nwh.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/11/2024] [Accepted: 03/21/2025] [Indexed: 04/23/2025]
Abstract
This short review summarizes a recent U.S.-based study in which researchers evaluated the impact of tai chi mind-body exercises on health outcomes of breast cancer survivors. The researchers examined the efficacy of a tai chi intervention for managing aromatase inhibitor arthralgia in patients with breast cancer. They concluded that mind-body-related practices likely contributed to improved health outcomes. Nurses can guide patients about the impact that mind-body practices may have on the health and well-being of breast cancer survivors.
Collapse
|
2
|
Gargano A, Greco I, Lupia C, Alcaro S, Ambrosio FA. Rosmarinus officinalis L. as Fascinating Source of Potential Anticancer Agents Targeting Aromatase and COX-2: An Overview. Molecules 2025; 30:1733. [PMID: 40333668 PMCID: PMC12029578 DOI: 10.3390/molecules30081733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/05/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Cancer is the second leading cause of death in the world, with scientific evidence indicating that the enzymes aromatase and cyclooxygenase 2 are upregulated in several types of cancer. Over the past 30 years, natural compounds have played a crucial role in cancer chemotherapy, and to date, many phytocompounds have been reported to interact with these enzymes, inhibiting their activity. Notably, several phytocompounds found in Rosmarinus officinalis L., a medicinal plant native to the Mediterranean region and cultivated around the world, have shown the ability to interact with these enzymes. This review examines the role of the main compounds contained in Rosmarinus officinalis L. as potential anticancer agents acting on aromatase and cyclooxygenase-2.
Collapse
Affiliation(s)
- Adriana Gargano
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Ilario Greco
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
| | - Carmine Lupia
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy;
- National Etnobotanical Conservatory, Castelluccio Superiore, 85040 Potenza, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
- Associazione CRISEA—Centro di Ricerca e Servizi Avanzati per l’Innovazione Rurale, Loc. Condoleo, 88055 Belcastro, Italy
- Net4Science Academic Spin-Off, Università “Magna Græcia” of Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università degli Studi “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Viale Europa, 88100 Catanzaro, Italy; (A.G.); (I.G.); (F.A.A.)
| |
Collapse
|
3
|
Fan D, Wang X, Ling X, Li H, Zhang L, Zheng W, Wu Z, Ai L. Utilisation of the Innovative [18F]-Labelled Radiotracer [18F]-BIBD-071 Within HR+ Breast Cancer Xenograft Mouse Models. Pharmaceuticals (Basel) 2025; 18:66. [PMID: 39861129 PMCID: PMC11768299 DOI: 10.3390/ph18010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/04/2025] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Aromatase plays a crucial role in the conversion of androgens to oestrogens and is often overexpressed in hormone-dependent tumours, particularly breast cancer. [18F]BIBD-071, which has excellent binding affinity for aromatase and good pharmacokinetics, has potential for the diagnosis and treatment of aromatase-related diseases. The MCF-7 cell line, which is hormone receptor-positive (HR+), was used in the assessment of the novel [18F]-labelled radiotracer [18F]BIBD-071 via positron emission tomography (PET) imaging of an HR+ breast cancer xenograft model. Methods: [18F]BIBD-071 was synthesised, radiolabelled, and then subjected to in vitro stability testing. MCF-7 cells were cultured and implanted into BALB/c nude mice to establish subcutaneous tumour models. MicroPET/CT imaging was conducted after injection of the tracer at 1 and 2 h, and a blocking study was also conducted using the aromatase inhibitor letrozole. A block experiment was used to prove the specificity of the probe. Biodistribution studies were performed at 0.5, 1, and 2 h post injection (p.i.). Immunofluorescence was used to assess aromatase expression in MCF-7 cells. Results: [18F]BIBD-071 showed excellent in vitro stability and specific uptake in an MCF-7 xenograft tumour model. MicroPET/CT imaging at 1 and 2 h p.i. revealed excellent tumour visualisation with a favourable tumour-to-background ratio. Biodistribution data revealed high tracer uptake in the liver, small intestine, and stomach, with significant washout from the bloodstream and tumour over time. The tumour uptakes at 0.5 h, 1 h, and 2 h were 3.84 ± 0.13, 2.5 ± 0.17, and 2.54 ± 0.32, respectively. The tumour uptake significantly decreased between 0.5 h and 1 h (p < 0.0001), whereas there was no significant difference between 1 and 2 h. The tumour/background ratios at 0.5 h, 1 h, and 2 h were 1.19 ± 0.03, 1.12 ± 0.17, and 1.42 ± 0.11, respectively. Immunofluorescence confirmed robust aromatase expression in MCF-7 cells, which was correlated with [18F]BIBD-071 tumour uptake. Conclusions: [18F]BIBD-071 is a promising PET tracer for diagnosing and monitoring HR+ breast cancer, warranting further research into hormone-dependent cancers.
Collapse
Affiliation(s)
- Di Fan
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; (D.F.); (X.W.); (H.L.)
| | - Xin Wang
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; (D.F.); (X.W.); (H.L.)
| | - Xueyuan Ling
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China;
| | - Hongbin Li
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; (D.F.); (X.W.); (H.L.)
| | - Lu Zhang
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.)
| | - Wei Zheng
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.)
| | - Zehui Wu
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; (L.Z.); (W.Z.)
| | - Lin Ai
- Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing 100071, China; (D.F.); (X.W.); (H.L.)
| |
Collapse
|
4
|
Liu S, Liu D, Bender CM, Erickson KI, Sereika SM, Shaffer JR, Weeks DE, Conley YP. Associations between DNA methylation and cognitive function in early-stage hormone receptor-positive breast cancer patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.17.24317299. [PMID: 39606386 PMCID: PMC11601744 DOI: 10.1101/2024.11.17.24317299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Approximately one-third of breast cancer (BC) patients show poorer cognitive function (CF) before receiving adjuvant therapy compared with age-matched healthy controls. However, the biological mechanisms driving CF variation in the context of BC remain unclear. In this study, we aimed to identify genes and biological pathways associated with CF in postmenopausal women with early-stage hormone receptor-positive (HR+) BC using DNA methylation (DNAm) data, a dynamic regulator of gene activity. Methods Epigenome-wide association studies (EWAS) and differentially methylated region analyses were performed for each CF phenotype (seven objective domains and one subjective phenotype) using DNAm data from whole blood samples (n=109) taken at time of enrollment. Post-EWAS functional analyses were performed to enhance the understanding of the CF-related cytosine-phosphate-guanine (CpG) sites. Results When adjusting for age, verbal IQ scores, and global DNAm signature, cg10331779 near CTNND2 (p-value= 9.65 × 10 -9 ) and cg25906741 in MLIP (p-value= 2.01 × 10 -8 ) were associated with processing speed and subjective CF, respectively, while regions in/near SLC6A11 , PRKG1/CSTF2T , and FAM3B for processing speed, and regions in/near PI4KB and SGCE/PEG10 for mental flexibility were differentially methylated. In addition, beta-estradiol was identified as a common upstream regulator for all the CF phenotypes, suggesting an essential role of estrogen in explaining variation in CF of HR+ BC patients. Conclusions In our EWAS of 8 CF phenotypes, we found two epigenome-wide significant signals, one at cg10331779 near CTNND2 with processing speed and the other at cg25906741 in MLIP with subjective CF. We also found three differentially methylated regions associated with processing speed and two associated with mental flexibility. These findings need replication in larger cohorts.
Collapse
|
5
|
Adawy HA, Tawfik SS, Elgazar AA, Selim KB, Goda FE. Design, synthesis, and in vitro and in vivo biological evaluation of triazolopyrimidine hybrids as multitarget directed anticancer agents. RSC Adv 2024; 14:35239-35254. [PMID: 39512645 PMCID: PMC11542607 DOI: 10.1039/d4ra06704e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024] Open
Abstract
In response to the urgent need for new anti-proliferative agents, four novel series of triazolopyrimidine compounds (7a-e, 9a-d, 11a-f, and 13a-e) were synthesized and evaluated for in vitro anticancer efficacy against HCT116, HeLa, and MCF-7 cell lines. Compound 13c emerged as the most potent, with IC50 values of 6.10, 10.33, and 2.42 μM respectively, while 11e and 7c also showed strong activity. In multi-target suppression tests, 13c exhibited the highest inhibition against EGFR, TOP-II, HER-2, and ARO (IC50: 0.087, 31.56, 0.078, and 0.156 μM, respectively). Flow cytometry revealed 13c's ability to suppress the S-phase cell population in MCF-7 cells. In vivo studies of 13c demonstrated significant tumor growth inhibition, comparable to the positive control. Molecular docking studies supported the experimental findings, confirming the binding of the novel motifs to the target enzymes' active sites. This comprehensive evaluation highlights the potential of these triazolopyrimidine compounds, particularly 13c, as promising anticancer agents, warranting further investigation.
Collapse
Affiliation(s)
- Heba A Adawy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Samar S Tawfik
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Abdullah A Elgazar
- Department of Pharmacognosy, Faculty of Pharmacy, Kafrelsheikh University Kafr El Sheikh Egypt
| | - Khalid B Selim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Fatma E Goda
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University Mansoura 35516 Egypt
| |
Collapse
|
6
|
Bhatia N, Thareja S. Aromatase inhibitors for the treatment of breast cancer: An overview (2019-2023). Bioorg Chem 2024; 151:107607. [PMID: 39002515 DOI: 10.1016/j.bioorg.2024.107607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
Aromatase inhibition is considered a legitimate approach for the treatment of ER-positive (ER+) breast cancer as it accounts for more than 70% of breast cancer cases. Aromatase inhibitor therapy has been demonstrated to be highly effective in decreasing tumour size, increasing survival rates, and lowering the chance of cancer recurrence. The present review deliberates the pathophysiology and the role of aromatase in estrogen biosynthesis. Estrogen biosynthesis, various androgens, and their function in the human body have also been discussed. The salient aspects of the aromatase active site, its mode of action, and AIs, along with their intended interactions with presently FDA-approved inhibitors, have been briefly discussed. It has been detailed how different reported AIs were designed, their SAR investigations, in silico analysis, and biological evaluations. Various AIs from multiple origins, such as synthetic and semi-synthetic, have also been discussed.
Collapse
Affiliation(s)
- Neha Bhatia
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India
| | - Suresh Thareja
- Department of Pharmaceutical Sciences and Natural Products, School of Health Sciences, Central University of Punjab, Bathinda, Punjab 151401, India.
| |
Collapse
|
7
|
Cui M, Liu Y, Liu Y, Li T, Chen X, Da L. Oral nano-formulations for endocrine therapy of endometrioid adenocarcinomas. Biomed Pharmacother 2024; 179:117328. [PMID: 39243435 DOI: 10.1016/j.biopha.2024.117328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Endometrial cancer is one of the three major malignant tumors of the reproductive system that threaten women's lives and health. The incidence of this disease is on the rise globally. Most cases of endometrial cancer comprise endometrioid adenocarcinomas, whose treatment is challenged by factors such as their high recurrence rate and the need to preserve fertility among young patients. Thus, oral endocrine therapy has become the main treatment modality. The main drugs used in oral endocrine therapy are progestins, selective estrogen receptor antagonists, and aromatase inhibitors. However, their clinical use is hindered by their low solubility and low oral utilization. The rapid development of nanotechnology allows the combination of these drugs with oral nano-formulations to create a good carrier. Such nanocarriers, including nanospheres, nanocapsules, and micelles can protect the drug against clearance and increase the site specificity of drug delivery. This paper reviews the pathogenesis of endometrioid endometrial cancer (EEC) and oral nano-formulations for endocrine therapy.
Collapse
Affiliation(s)
- Minghua Cui
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yuehui Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Yangyang Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Laboratory Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Tao Li
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Department of Acupuncture and Massage, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Xin Chen
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China; Gynecology Department, Affliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, China.
| | - Liu Da
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China.
| |
Collapse
|
8
|
Liang J, Li Y, Wan P, Zhang W, Han J, Zhang M, Li B, Jin T. CYP19A1 polymorphisms and bladder cancer risk in the Chinese Han population. Expert Rev Mol Diagn 2024; 24:743-752. [PMID: 39086208 DOI: 10.1080/14737159.2024.2387652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
BACKGROUND The expression of CYP19A1 has implications for the prognosis of female bladder cancer. However, this study aimed to explore the association between single nucleotide polymorphisms (SNPs) in CYP19A1 and bladder cancer risk, as no prior research has addressed this association. RESEARCH DESIGN AND METHODS We selected and genotyped five CYP19A1 SNPs (rs4646, rs6493487, rs1062033, rs17601876, and rs3751599) in 217 patients and 550 controls using the Agena MassARRAY system. Logistic regression analysis was employed to calculate the odds ratio (OR) and 95% confidence intervals (CIs). Bioinformatics predicted SNP functions and CYP19A1 involving pathways. RESULTS Our study revealed a significant association between bladder cancer risk and four SNPs (rs4646 (AC vs. CC: OR = 1.71, FDR-p = 0.005), rs6493487 (G vs. A: OR = 0.68, FDR-p = 0.011), rs1062033 (G vs. C: OR = 0.36, FDR-p < 0.001), and rs17601876 (GA vs. GG: OR = 1.66, FDR-p = 0.008)) in CYP19A1. The three SNPs (rs4646, rs1062033, and rs17601876) were significantly correlated with CYP19A1 expression levels in normal whole blood (p < 0.05). Moreover, CYP19A1 was found to primarily participate in the steroid hormone biosynthesis and metabolic pathways. CONCLUSIONS Consequently, CYP19A1 gene polymorphisms may play a crucial role in the genetic susceptibility to bladder cancer.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yongfei Li
- Department of Clinical Medicine, Jining Medical University, Jining, Shandong, China
| | - Panpan Wan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Wenjing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Junhui Han
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Man Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Bin Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Tianbo Jin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, Northwest University, Xi'an, Shaanxi, China
- School of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Sabale P, Sayyad N, Ali A, Sabale V, Kaleem M, Asar TO, Ali A, Mujtaba MA, Anwer MK. Design, synthesis, molecular docking and in vitro anticancer activities of 1-(4-(benzamido)phenyl)-3-arylurea derivatives. RSC Adv 2024; 14:23785-23795. [PMID: 39077323 PMCID: PMC11284930 DOI: 10.1039/d4ra02882a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/13/2024] [Indexed: 07/31/2024] Open
Abstract
In both premenopausal and postmenopausal women, oestrogens play a critical role in the development of breast cancer. Aromatase is an enzyme that catalyses the final step in the biosynthesis of estrogen and has emerged as a promising target for therapeutic intervention. This study aimed to design and evaluate novel 1-(4-(benzamido)phenyl)-3-arylurea derivatives as potential aromatase inhibitors. Through molecular docking, promising leads were identified and synthesized. Spectroscopic techniques confirmed their structural integrity. Cytotoxicity against various cancer cell lines was assessed using MTT assay. Docking investigations against the aromatase enzyme (3s7s) elucidated binding interactions and energies. Compound 6g, exhibiting a binding energy of -8.6 kcal mol-1 and interacting with ALA306 and THR310 residues, showed the most promising activity. It demonstrated GI50 values ranging from 14.46 μM, 13.97 μM, 11.35 μM, 11.58 μM, and 15.77 μM against A-498, NCI-H23, MDAMB-231, MCF-7, and A-549 respectively. Lastly, the physicochemical, and ADMET properties of the compound were predicted. These findings highlight the potential of 1-(4-(benzamido)phenyl)-3-arylureas as a new class of antitumor agents targeting aromatase. Their versatility and superior activity compared to standard chemotherapeutic agents, like doxorubicin, warrant further investigation for the development of broader-spectrum anticancer drugs.
Collapse
Affiliation(s)
- Prafulla Sabale
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Mahatma Jyotiba Fuley Shaikshanik Parisar Nagpur-440033 India +919158537050
| | - Nusrat Sayyad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University Mahatma Jyotiba Fuley Shaikshanik Parisar Nagpur-440033 India +919158537050
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Vidya Sabale
- Department of Pharmaceutics, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur Maharashtra 440037 India
| | - Mohammed Kaleem
- Department of Pharmacology, Dadasaheb Balpande College of Pharmacy, Rashtrasant Tukadoji Maharaj Nagpur University Nagpur Maharashtra 440037 India
| | - Turky Omar Asar
- Department of Biology, College of Science and Arts at Alkamil, University of Jeddah Saudi Arabia
| | - Amena Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P.O. Box 11099 Taif 21944 Saudi Arabia
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University Arar Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University P.O. Box 173 Al-Kharj 11942 Saudi Arabia
| |
Collapse
|
10
|
Costa NDSD, Lima LS, Galiciolli MEA, Ribeiro DHF, Ribeiro MM, Garica GDPJ, Marçal IS, Silva JFD, Pereira ME, Oliveira CS, Guiloski IC. Drug-induced osteoporosis and mechanisms of bone tissue regeneration through trace elements. J Trace Elem Med Biol 2024; 84:127446. [PMID: 38615498 DOI: 10.1016/j.jtemb.2024.127446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Osteoporosis is associated with an imbalance in bone formation, with certain drugs used in disease treatment being implicated in its development. Supplementation with trace elements may contribute to bone regeneration, offering an alternative approach by enhancing bone mineral density (BMD) and thereby thwarting the onset of osteoporosis. This review aims to assess the mechanisms through which trace elements such as copper (Cu), iron (Fe), selenium (Se), manganese (Mn), and zinc (Zn) are linked to increased bone mass, thus mitigating the effects of pharmaceuticals. Our findings underscore that the use of drugs such as aromatase inhibitors (AIs), proton pump inhibitors (PPIs), antiretrovirals, glucocorticoids, opioids, or anticonvulsants can result in decreased BMD, a primary contributor to osteoporosis. Research indicates that essential elements like Cu, Fe, Se, Mn, and Zn, through various mechanisms, can bolster BMD and forestall the onset of the disease, owing to their protective effects. Consequently, our study recommends a minimum daily intake of these essential minerals for patients undergoing treatment with the aforementioned drugs, as the diverse mechanisms governing the effects of trace elements Cu, Fe, Mn, Se, and Zn facilitate bone remodeling.
Collapse
Affiliation(s)
- Nayara de Souza da Costa
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Luíza Siqueira Lima
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Maria Eduarda Andrade Galiciolli
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Deborah Helen Fabiano Ribeiro
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Milena Mariano Ribeiro
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Gisele de Paula Júlia Garica
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Isabela Saragioto Marçal
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Juliana Ferreira da Silva
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Meire Ellen Pereira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Cláudia Sirlene Oliveira
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisas Pelé Pequeno Príncipe, Curitiba 80035-000, Brazil; Faculdades Pequeno Príncipe, Curitiba 80230-020, Brazil.
| |
Collapse
|
11
|
Rega C, Kozik Z, Yu L, Tsitsa I, Martin LA, Choudhary J. Exploring the Spatial Landscape of the Estrogen Receptor Proximal Proteome With Antibody-Based Proximity Labeling. Mol Cell Proteomics 2024; 23:100702. [PMID: 38122900 PMCID: PMC10831774 DOI: 10.1016/j.mcpro.2023.100702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/07/2023] [Accepted: 12/17/2023] [Indexed: 12/23/2023] Open
Abstract
Estrogen receptor α (ERα) drives the transcription of genes involved in breast cancer (BC) progression, relying on coregulatory protein recruitment for its transcriptional and biological activities. Mutation of ERα as well as aberrant recruitment of its regulatory proteins contribute to tumor adaptation and drug resistance. Therefore, understanding the dynamic changes in ERα protein interaction networks is crucial for elucidating drug resistance mechanisms in BC. Despite progress in studying ERα-associated proteins, capturing subcellular transient interactions remains challenging and, as a result, significant number of important interactions remain undiscovered. In this study, we employed biotinylation by antibody recognition (BAR), an innovative antibody-based proximity labeling (PL) approach, coupled with mass spectrometry to investigate the ERα proximal proteome and its changes associated with resistance to aromatase inhibition, a key therapy used in the treatment of ERα-positive BC. We show that BAR successfully detected most of the known ERα interactors and mainly identified nuclear proteins, using either an epitope tag or endogenous antibody to target ERα. We further describe the ERα proximal proteome rewiring associated with resistance applying BAR to a panel of isogenic cell lines modeling tumor adaptation in the clinic. Interestingly, we find that ERα associates with some of the canonical cofactors in resistant cells and several proximal proteome changes are due to increased expression of ERα. Resistant models also show decreased levels of estrogen-regulated genes. Sensitive and resistant cells harboring a mutation in the ERα (Y537C) revealed a similar proximal proteome. We provide an ERα proximal protein network covering several novel ERα-proximal partners. These include proteins involved in highly dynamic processes such as sumoylation and ubiquitination difficult to detect with traditional protein interaction approaches. Overall, we present BAR as an effective approach to investigate the ERα proximal proteome in a spatial context and demonstrate its application in different experimental conditions.
Collapse
Affiliation(s)
- Camilla Rega
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom.
| | - Zuzanna Kozik
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Lu Yu
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Ifigenia Tsitsa
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom
| | - Lesley-Ann Martin
- Division of Breast Cancer Research, The Institute of Cancer Research, London, United Kingdom
| | - Jyoti Choudhary
- Division of Cancer Biology, The Institute of Cancer Research, London, United Kingdom.
| |
Collapse
|
12
|
Qiao K, Liang Z, Wang A, Wu Q, Yang S, Ma Y, Li S, Schiwy S, Jiang J, Zhou S, Ye Q, Hollert H, Gui W. Waterborne Tebuconazole Exposure Induces Male-Biased Sex Differentiation in Zebrafish ( Danio rerio) Larvae via Aromatase Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16764-16778. [PMID: 37890152 DOI: 10.1021/acs.est.3c03181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Tebuconazole is a widely used fungicide for various crops that targets sterol 14-α-demethylase (CYP51) in fungi. However, attention has shifted to aromatase (CYP19) due to limited research indicating its reproductive impact on aquatic organisms. Herein, zebrafish were exposed to 0.5 mg/L tebuconazole at different developmental stages. The proportion of males increased significantly after long-term exposure during the sex differentiation phase (0-60, 5-60, and 19-60 days postfertilization (dpf)). Testosterone levels increased and 17β-estradiol and cyp19a1a expression levels decreased during the 5-60 dpf exposure, while the sex ratio was equally distributed on coexposure with 50 ng/L 17β-estradiol. Chemically activated luciferase gene expression bioassays determined that the male-biased sex differentiation was not caused by tebuconazole directly binding to sex hormone receptors. Protein expression and phosphorylation levels were specifically altered in the vascular endothelial growth factor signaling pathway despite excluding the possibility of tebuconazole directly interacting with kinases. Aromatase was selected for potential target analysis. Molecular docking and aromatase activity assays demonstrated the interactions between tebuconazole and aromatase, highlighting that tebuconazole poses a threat to fish populations by inducing a gender imbalance.
Collapse
Affiliation(s)
- Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zhuoying Liang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Qiong Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Patent Examination Cooperation (Henan) Center of the Patent Office, CNIPA, Zhengzhou 450046, P. R. China
| | - Siyu Yang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| | - Sabrina Schiwy
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Jinhua Jiang
- Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, P. R. China
| | - Shengli Zhou
- Zhejiang Province Environmental Monitoring Center, Hangzhou 310012, P. R. China
| | - Qingfu Ye
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Henner Hollert
- Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
- Department Environmental Media Related Ecotoxicology, Fraunhofer Institute for Molecular Biology and Applied Ecology IME, 57392 Schmallenberg, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt am Main, Germany
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, P. R. China
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
13
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
14
|
Sergeeva E, Ruksha T, Fefelova Y. Effects of Obesity and Calorie Restriction on Cancer Development. Int J Mol Sci 2023; 24:ijms24119601. [PMID: 37298551 DOI: 10.3390/ijms24119601] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
The risk of malignant tumor development is increasing in the world. Obesity is an established risk factor for various malignancies. There are many metabolic alterations associated with obesity which promote cancerogenesis. Excessive body weight leads to increased levels of estrogens, chronic inflammation and hypoxia, which can play an important role in the development of malignancies. It is proved that calorie restriction can improve the state of patients with various diseases. Decreased calorie uptake influences lipid, carbohydrate and protein metabolism, hormone levels and cell processes. Many investigations have been devoted to the effects of calorie restriction on cancer development in vitro and in vivo. It was revealed that fasting can regulate the activity of the signal cascades including AMP-activated protein kinase (AMPK), mitogen-activated protein kinase (MAPK), p53, mTOR, insulin/ insulin-like growth factor 1 (IGF1) and JAK-STAT. Up- or down-regulation of the pathways results in the decrease of cancer cell proliferation, migration and survival and the increase of apoptosis and effects of chemotherapy. The aim of this review is to discuss the connection between obesity and cancer development and the mechanisms of calorie restriction influence on cancerogenesis that stress the importance of further research of calorie restriction effects for the inclusion of this approach in clinical practice.
Collapse
Affiliation(s)
- Ekaterina Sergeeva
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Tatiana Ruksha
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| | - Yulia Fefelova
- Department of Pathological Physiology, Krasnoyarsk State Medical University, No. 1 P. Zheleznyaka Str., 660022 Krasnoyarsk, Russia
| |
Collapse
|
15
|
Liu L, Mo M, Chen X, Chao D, Zhang Y, Chen X, Wang Y, Zhang N, He N, Yuan X, Chen H, Yang J. Targeting inhibition of prognosis-related lipid metabolism genes including CYP19A1 enhances immunotherapeutic response in colon cancer. J Exp Clin Cancer Res 2023; 42:85. [PMID: 37055842 PMCID: PMC10100168 DOI: 10.1186/s13046-023-02647-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Lipid metabolic reprogramming in colon cancer shows a potential impact on tumor immune microenvironment and is associated with response to immunotherapy. Therefore, this study aimed to develop a lipid metabolism-related prognostic risk score (LMrisk) to provide new biomarkers and combination therapy strategies for colon cancer immunotherapy. METHODS Differentially expressed lipid metabolism-related genes (LMGs) including cytochrome P450 (CYP) 19A1 were screened to construct LMrisk in TCGA colon cancer cohort. The LMrisk was then validated in three GEO datasets. The differences of immune cell infiltration and immunotherapy response between LMrisk subgroups were investigated via bioinformatic analysis. These results were comfirmed by in vitro coculture of colon cancer cells with peripheral blood mononuclear cells, human colon cancer tissue microarray analysis, multiplex immunofluorescence staining and mouse xenograft models of colon cancer. RESULTS Six LMGs including CYP19A1, ALOXE3, FABP4, LRP2, SLCO1A2 and PPARGC1A were selected to establish the LMrisk. The LMrisk was positively correlated with the abundance of macrophages, carcinoma-associated fibroblasts (CAFs), endothelial cells and the levels of biomarkers for immunotherapeutic response including programmed cell death ligand 1 (PD-L1) expression, tumor mutation burden and microsatellite instability, but negatively correlated with CD8+ T cell infiltration levels. CYP19A1 protein expression was an independent prognostic factor, and positively correlated with PD-L1 expression in human colon cancer tissues. Multiplex immunofluorescence analyses revealed that CYP19A1 protein expression was negatively correlated with CD8+ T cell infiltration, but positively correlated with the levels of tumor-associated macrophages, CAFs and endothelial cells. Importantly, CYP19A1 inhibition downregulated PD-L1, IL-6 and TGF-β levels through GPR30-AKT signaling, thereby enhancing CD8+ T cell-mediated antitumor immune response in vitro co-culture studies. CYP19A1 inhibition by letrozole or siRNA strengthened the anti-tumor immune response of CD8+ T cells, induced normalization of tumor blood vessels, and enhanced the efficacy of anti-PD-1 therapy in orthotopic and subcutaneous mouse colon cancer models. CONCLUSION A risk model based on lipid metabolism-related genes may predict prognosis and immunotherapeutic response in colon cancer. CYP19A1-catalyzed estrogen biosynthesis promotes vascular abnormality and inhibits CD8+ T cell function through the upregulation of PD-L1, IL-6 and TGF-β via GPR30-AKT signaling. CYP19A1 inhibition combined with PD-1 blockade represents a promising therapeutic strategy for colon cancer immunotherapy.
Collapse
Affiliation(s)
- Lilong Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Min Mo
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Xuehan Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Dongchen Chao
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Yufan Zhang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Xuewei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yang Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Nan Zhang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Nan He
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Xi Yuan
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China
| | - Honglei Chen
- Department of Pathology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, 185 Donghu Road, Wuhan, 430071, China.
| |
Collapse
|
16
|
Acar Çevik U, Celik I, Işık A, Ahmad I, Patel H, Özkay Y, Kaplancıklı ZA. Design, synthesis, molecular modeling, DFT, ADME and biological evaluation studies of some new 1,3,4-oxadiazole linked benzimidazoles as anticancer agents and aromatase inhibitors. J Biomol Struct Dyn 2023; 41:1944-1958. [PMID: 35037830 DOI: 10.1080/07391102.2022.2025906] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Breast cancer is the most frequent female cancer and second cause of cancer-related deaths among women around the world. Two thirds of breast cancer patients have hormone-dependent tumors, which is very likely be treated with hormonal therapy. Aromatase is involved in the biosynthesis of estrogen thus a critical target for breast cancer. In this study, in order to identify new aromatase enzyme inhibitors, a series of benzimidazole-1,3,4-oxadiazole derivatives were synthesized and characterized by 1H NMR, 13C NMR, and MS spectra analyses. In the in vitro anticancer assay, all the compounds tested anticancer activities using MTT-based assay against five cancer cell lines (MCF-7, A549, HeLa, C6, and HepG2). Among them, compound 5a exhibited the most potent activity with IC50 values of 5.165 ± 0.211 μM and 5.995 ± 0.264 μM against MCF-7 and HepG2 cell lines. Compound 5a was included in the BrdU test to determine the DNA synthesis inhibition effects for both cell types. Furthermore, compound 5c was also found to be more effective than doxorubicin on the HeLa cell line. The selectivity of anticancer activity was evaluated in NIH3T3 cell line. In vitro, enzymatic inhibition assays of aromatase enzyme were performed for compound 5a acting on the MCF-7 cell line. For compound 5a, in silico molecular docking and dynamics simulations against aromatase enzyme was performed to determine possible protein-ligand interactions and stability. DFT study was performed to evaluate the quantum mechanical and electronic properties of compound 5a. Finally, the theoretical ADME properties of the potential aromatase inhibitor compound 5a were analyzed by calculations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ulviye Acar Çevik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri, Turkey
| | - Ayşen Işık
- Department of Biochemistry, Faculty of Science, Selçuk University, Konya, Turkey
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Yusuf Özkay
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Doping and Narcotic Compounds Analysis Laboratory, Anadolu University, Eskişehir, Turkey
| | - Zafer Asım Kaplancıklı
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
17
|
Lee YT, Tan YJ, Oon CE. Benzimidazole and its derivatives as cancer therapeutics: The potential role from traditional to precision medicine. Acta Pharm Sin B 2023; 13:478-497. [PMID: 36873180 PMCID: PMC9978992 DOI: 10.1016/j.apsb.2022.09.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/11/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer is the second leading cause of mortality globally which remains a continuing threat to human health today. Drug insensitivity and resistance are critical hurdles in cancer treatment; therefore, the development of new entities targeting malignant cells is considered a high priority. Targeted therapy is the cornerstone of precision medicine. The synthesis of benzimidazole has garnered the attention of medicinal chemists and biologists due to its remarkable medicinal and pharmacological properties. Benzimidazole has a heterocyclic pharmacophore, which is an essential scaffold in drug and pharmaceutical development. Multiple studies have demonstrated the bioactivities of benzimidazole and its derivatives as potential anticancer therapeutics, either through targeting specific molecules or non-gene-specific strategies. This review provides an update on the mechanism of actions of various benzimidazole derivatives and the structure‒activity relationship from conventional anticancer to precision healthcare and from bench to clinics.
Collapse
Affiliation(s)
- Yeuan Ting Lee
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Yi Jer Tan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Chern Ein Oon
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| |
Collapse
|
18
|
Expression and Function of StAR in Cancerous and Non-Cancerous Human and Mouse Breast Tissues: New Insights into Diagnosis and Treatment of Hormone-Sensitive Breast Cancer. Int J Mol Sci 2023; 24:ijms24010758. [PMID: 36614200 PMCID: PMC9820903 DOI: 10.3390/ijms24010758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Breast cancer (BC) is primarily triggered by estrogens, especially 17β-estradiol (E2), which are synthesized by the aromatase enzyme. While all steroid hormones are derived from cholesterol, the rate-limiting step in steroid biosynthesis is mediated by the steroidogenic acute regulatory (StAR) protein. Herein, we demonstrate that StAR mRNA expression was aberrantly high in human hormone-dependent BC (MCF7, MDA-MB-361, and T-47D), modest in hormone-independent triple negative BC (TNBC; MDA-MB-468, BT-549, and MDA-MB-231), and had little to none in non-cancerous mammary epithelial (HMEC, MCF10A, and MCF12F) cells. In contrast, these cell lines showed abundant expression of aromatase (CYP19A1) mRNA. Immunofluorescence displayed qualitatively similar patterns of both StAR and aromatase expression in various breast cells. Additionally, three different transgenic (Tg) mouse models of spontaneous breast tumors, i.e., MMTV-Neu, MMTV-HRAS, and MMTV-PyMT, demonstrated markedly higher expression of StAR mRNA/protein in breast tumors than in normal mammary tissue. While breast tumors in these mouse models exhibited higher expression of ERα, ERβ, and PR mRNAs, their levels were undetected in TNBC tumors. Accumulation of E2 in plasma and breast tissues, from MMTV-PyMT and non-cancerous Tg mice, correlated with StAR, but not with aromatase, signifying the importance of StAR in governing E2 biosynthesis in mammary tissue. Treatment with a variety of histone deacetylase inhibitors (HDACIs) in primary cultures of enriched breast tumor epithelial cells, from MMTV-PyMT mice, resulted in suppression of StAR and E2 levels. Importantly, inhibition of StAR, concomitant with E2 synthesis, by various HDACIs, at clinical and preclinical doses, in MCF7 cells, indicated therapeutic relevance of StAR in hormone-dependent BCs. These findings provide insights into the molecular events underlying the differential expression of StAR in human and mouse cancerous and non-cancerous breast cells/tissues, highlighting StAR could serve not only as a novel diagnostic maker but also as a therapeutic target for the most prevalent hormone-sensitive BCs.
Collapse
|
19
|
Boligala GP, Yang MV, van Wunnik JC, Pruitt K. Nuclear Dishevelled: An enigmatic role in governing cell fate and Wnt signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119305. [PMID: 35688346 DOI: 10.1016/j.bbamcr.2022.119305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity and subsequent work has now demonstrated its importance in critical and diverse aspects of biology. Since those early discoveries, Dishevelled has been shown to coordinate a plethora of developmental and cellular processes that range from controlling cell polarity during gastrulation to partnering with chromatin modifying enzymes to regulate histone methylation at genomic loci. While the role of DVL in development is well-respected and the cytosolic function of DVL has been studied more extensively, its nuclear role continues to remain murky. In this review we highlight some of the seminal discoveries that have contributed to the field, but the primary focus is to discuss recent advances with respect to the nuclear role of Dishevelled. This nuclear function of Dishevelled is a dimension which is proving to be increasingly important yet remains enigmatic.
Collapse
Affiliation(s)
- Geetha Priya Boligala
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Mingxiao V Yang
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jenna C van Wunnik
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
20
|
Manna PR, Ahmed AU, Molehin D, Narasimhan M, Pruitt K, Reddy PH. Hormonal and Genetic Regulatory Events in Breast Cancer and Its Therapeutics: Importance of the Steroidogenic Acute Regulatory Protein. Biomedicines 2022; 10:biomedicines10061313. [PMID: 35740335 PMCID: PMC9220045 DOI: 10.3390/biomedicines10061313] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023] Open
Abstract
Estrogen promotes the development and survival of the majority of breast cancers (BCs). Aromatase is the rate-limiting enzyme in estrogen biosynthesis, and it is immensely expressed in both cancerous and non-cancerous breast tissues. Endocrine therapy based on estrogen blockade, by aromatase inhibitors, has been the mainstay of BC treatment in post-menopausal women; however, resistance to hormone therapy is the leading cause of cancer death. An improved understanding of the molecular underpinnings is the key to develop therapeutic strategies for countering the most prevalent hormone receptor positive BCs. Of note, cholesterol is the precursor of all steroid hormones that are synthesized in a variety of tissues and play crucial roles in diverse processes, ranging from organogenesis to homeostasis to carcinogenesis. The rate-limiting step in steroid biosynthesis is the transport of cholesterol from the outer to the inner mitochondrial membrane, a process that is primarily mediated by the steroidogenic acute regulatory (StAR) protein. Advances in genomic and proteomic technologies have revealed a dynamic link between histone deacetylases (HDACs) and StAR, aromatase, and estrogen regulation. We were the first to report that StAR is abundantly expressed, along with large amounts of 17β-estradiol (E2), in hormone-dependent, but not hormone-independent, BCs, in which StAR was also identified as a novel acetylated protein. Our in-silico analyses of The Cancer Genome Atlas (TCGA) datasets, for StAR and steroidogenic enzyme genes, revealed an inverse correlation between the amplification of the StAR gene and the poor survival of BC patients. Additionally, we reported that a number of HDAC inhibitors, by altering StAR acetylation patterns, repress E2 synthesis in hormone-sensitive BC cells. This review highlights the current understanding of molecular pathogenesis of BCs, especially for luminal subtypes, and their therapeutics, underlining that StAR could serve not only as a prognostic marker, but also as a therapeutic candidate, in the prevention and treatment of this life-threatening disease.
Collapse
Affiliation(s)
- Pulak R. Manna
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Correspondence: ; Tel.: +1-806-743-3573; Fax: +1-806-743-3143
| | - Ahsen U. Ahmed
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA;
| | - Deborah Molehin
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - Madhusudhanan Narasimhan
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Kevin Pruitt
- Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (D.M.); (K.P.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
21
|
Targeting Estrogens and Various Estrogen-Related Receptors against Non-Small Cell Lung Cancers: A Perspective. Cancers (Basel) 2021; 14:cancers14010080. [PMID: 35008242 PMCID: PMC8750572 DOI: 10.3390/cancers14010080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/16/2021] [Indexed: 12/20/2022] Open
Abstract
Non-small cell lung cancers (NSCLCs) account for ~85% of lung cancer cases worldwide. Mammalian lungs are exposed to both endogenous and exogenous estrogens. The expression of estrogen receptors (ERs) in lung cancer cells has evoked the necessity to evaluate the role of estrogens in the disease progression. Estrogens, specifically 17β-estradiol, promote maturation of several tissue types including lungs. Recent epidemiologic data indicate that women have a higher risk of lung adenocarcinoma, a type of NSCLC, when compared to men, independent of smoking status. Besides ERs, pulmonary tissues both in healthy physiology and in NSCLCs also express G-protein-coupled ERs (GPERs), epidermal growth factor receptor (EGFRs), estrogen-related receptors (ERRs) and orphan nuclear receptors. Premenopausal females between the ages of 15 and 50 years synthesize a large contingent of estrogens and are at a greater risk of developing NSCLCs. Estrogen-ER/GPER/EGFR/ERR-mediated activation of various cell signaling molecules regulates NSCLC cell proliferation, survival and apoptosis. This article sheds light on the most recent achievements in the elucidation of sequential biochemical events in estrogen-activated cell signaling pathways involved in NSCLC severity with insight into the mechanism of regulation by ERs/GPERs/EGFRs/ERRs. It further discusses the success of anti-estrogen therapies against NSCLCs.
Collapse
|
22
|
de Sire A, Lippi L, Ammendolia A, Cisari C, Venetis K, Sajjadi E, Fusco N, Invernizzi M. Physical Exercise with or without Whole-Body Vibration in Breast Cancer Patients Suffering from Aromatase Inhibitor—Induced Musculoskeletal Symptoms: A Pilot Randomized Clinical Study. J Pers Med 2021; 11:jpm11121369. [PMID: 34945841 PMCID: PMC8707128 DOI: 10.3390/jpm11121369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/28/2021] [Accepted: 12/10/2021] [Indexed: 12/29/2022] Open
Abstract
In this study, we aimed to assess the safety and efficacy of physical exercise, with or without whole-body vibration (WBV), in patients with aromatase inhibitor-induced musculoskeletal symptoms (AIMSS). Eligible patients were adults (≥18 years) with a history of breast cancer and current AIMSS. Enrolled patients (n = 22) were randomly assigned 1:1 to receive physical exercise combined with WBV or sham WBV for 4 weeks. The primary endpoint was pain intensity measured by numerical pain rating scale (NPRS). The secondary endpoints were muscle strength, physical function, physical performance, and quality of life. The WBV group (mean age: 51.73 ± 10.73 years; body mass index (BMI): 25.56 ± 5.17 kg/m2) showed a statistically significant pain reduction (NPRS: 6.82 ± 1.17 vs. 5.73 ± 1.01; p = 0.031), whereas patients in the sham WBV group (mean age: 58.55 ± 9.71 years; BMI: 27.31 ± 3.84 kg/m2), did not reach statistical significance (NPRS: 6.91 ± 2.02 vs. 5.91 ± 2.51; p = 0.07). Concurrently, muscle strength, physical performance, and quality of life significantly improved in both groups, without significant differences between groups. No dropouts and no side effects were recorded. Both patients and the physical therapist reported a high level of satisfaction with the intervention. Our findings suggest that physical exercise and WBV combination might be a safe therapeutic option for improving the rehabilitative management of patients with AIMSS.
Collapse
Affiliation(s)
- Alessandro de Sire
- Physical and Rehabilitative Medicine Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
- Correspondence: (A.d.S.); (L.L.); Tel.: +39-096-171-2819 (A.d.S.); +39-032-1373-4800 (L.L.)
| | - Lorenzo Lippi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (C.C.); (M.I.)
- Correspondence: (A.d.S.); (L.L.); Tel.: +39-096-171-2819 (A.d.S.); +39-032-1373-4800 (L.L.)
| | - Antonio Ammendolia
- Physical and Rehabilitative Medicine Unit, Department of Medical and Surgical Sciences, University of Catanzaro “Magna Graecia”, 88100 Catanzaro, Italy;
| | - Carlo Cisari
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (C.C.); (M.I.)
| | - Konstantinos Venetis
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.S.); (N.F.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20144 Milan, Italy
| | - Elham Sajjadi
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.S.); (N.F.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20144 Milan, Italy
| | - Nicola Fusco
- Department of Oncology and Hemato-Oncology, University of Milan, 20122 Milan, Italy; (K.V.); (E.S.); (N.F.)
- Division of Pathology, IEO, European Institute of Oncology IRCCS, 20144 Milan, Italy
| | - Marco Invernizzi
- Physical and Rehabilitative Medicine, Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (C.C.); (M.I.)
- Translational Medicine, Dipartimento Attività Integrate Ricerca e Innovazione (DAIRI), Azienda Ospedaliera SS, Antonio e Biagio e Cesare Arrigo, 15121 Alessandria, Italy
| |
Collapse
|