1
|
Yan L, Su P, Sun X. Role of multi‑omics in advancing the understanding and treatment of prostate cancer (Review). Mol Med Rep 2025; 31:130. [PMID: 40116118 PMCID: PMC11938414 DOI: 10.3892/mmr.2025.13495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/27/2025] [Indexed: 03/23/2025] Open
Abstract
The application of multi‑omics methodologies, encompassing genomics, transcriptomics, proteomics, metabolomics and integrative genomics, has markedly enhanced the understanding of prostate cancer (PCa). These methods have facilitated the identification of molecular pathways and biomarkers crucial for the early detection, prognostic evaluation and personalized treatment of PCa. Studies using multi‑omics technologies have elucidated how alterations in gene expression and protein interactions contribute to PCa progression and treatment resistance. Furthermore, the integration of multi‑omics data has been used in the identification of novel therapeutic targets and the development of innovative treatment modalities, such as precision medicine. The evolving landscape of multi‑omics research holds promise for not only deepening the understanding of PCa biology but also for fostering the development of more effective and tailored therapeutic interventions, ultimately improving patient outcomes. The present review aims to synthesize current findings from multi‑omics studies associated with PCa and to assess their implications for the improvement of patient management and therapeutic outcomes. The insights provided may guide future research directions and clinical practices in the fight against PCa.
Collapse
Affiliation(s)
- Li Yan
- Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Pengxiao Su
- Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| | - Xiaoke Sun
- Department of Urology, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, P.R. China
| |
Collapse
|
2
|
Lv K, Pan H, Yao H. Research on correlations of miR-374a-5p expression with progression and prognosis of prostate cancer. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2025:1-12. [PMID: 40122099 DOI: 10.1080/15257770.2025.2481947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/06/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Prostate cancer (PCa) is a frequently occurring malignant tumor affecting male reproductive system. miR-374a-5p was identified to participate in regulation of several tumors. The aim of the research was to discuss the influence for miR-374a-5p upon PCa progression and prognosis. A total of 112 PCa and 110 benign prostatic hyperplasia tissue samples were collected for the study. Real-time quantitative polymerase chain reaction was adopted to examine miR-374a-5p level in PCa tissues and cells. Kaplan-Meier and Cox model were applied to evaluate prognostic significance of miR-374a-5p for PCa. CCK8 and Transwell assays were carried out to analyze the efficacy of miR-374a-5p in PCa cell proliferation, migration and invasion. miR-374a-5p was under-expressed in PCa tissues and cells. Low expression of miR-374a-5p is linked to less favorable prognosis in PCa sufferers. Additionally, Cox analysis revealed that miR-374a-5p and TNM stage were two independent prognostic factors for PCa. Cellular assays showed that upregulating miR-374a-5p suppressed PCa cell proliferation, migration, and invasion. Conversely, knockdown of miR-374a-5p facilitated PCa cell proliferation, migration, and invasion. miR-374a-5p expression decreased in PCa and was remarkably related to poor prognosis in PCa patients. miR-374a-5p acts in PCa by inhibiting cell proliferation, migration, and invasion. Consequently, miR-374a-5p has potential to act as a prognostic biomarker and a target for clinical therapeutic intervention in PCa.
Collapse
Affiliation(s)
- Ke Lv
- Urology Surgery, Affiliated Hospital of Jiangnan University, Wuxi City, China
| | - Haiyan Pan
- Urology Surgery, Affiliated Hospital of Jiangnan University, Wuxi City, China
| | - Hui Yao
- Urology Surgery, Affiliated Hospital of Jiangnan University, Wuxi City, China
| |
Collapse
|
3
|
Wu H, Liao X, Wu T, Xie B, Ding S, Chen Y, Song L, Wei B. Mechanism of MiR-145a-3p/Runx2 pathway in dexamethasone impairment of MC3T3-E1 osteogenic capacity in mice. PLoS One 2024; 19:e0309951. [PMID: 39561180 PMCID: PMC11575826 DOI: 10.1371/journal.pone.0309951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/21/2024] [Indexed: 11/21/2024] Open
Abstract
OBJECTIVE In this experiment, we screened key miRNAs involved in the dexamethasone-induced decrease in osteogenic capacity of mouse precursor osteoblasts MC3T3-E1 over and investigated their specific regulatory mechanisms. METHODS In this experiment, cell counting kit assay was utilized to act on MC3T3-E1 cells at 0, 5μM, 10μM, 15μM concentrations of dexamethasone for 24h, 48h and 72h to observe the changes in cell viability in order to select the appropriate dexamethasone concentration. Apoptosis and reactive oxygen species were detected by flow cytometry. The transcription of osteogenesis-related genes (Runx2, ALP, OCN, OPN, OPG, COL1A1) and protein expression levels (Runx2, ALP, OCN, OPN) were detected by Western Blot and qRT-PCR to validate the changes in cellular osteogenesis. The differentially expressed miRNAs related to MC3T3-E1 osteogenic differentiation after dexamethasone action were screened out. The expression levels of selected target miRNAs were verified in the experimental group and the control group by qRT-PCR. The miRNA inhibitor was transfected to knock down miRNA in dexamethasone-induced MC3T3-E1 injury. Alkaline phosphatase staining and flow cytometry were performed to detect apoptosis and reactive oxygen species changes. transcript and protein expression levels of osteogenesis-related genes in mouse MC3T3-E1 were detected by qRT-PCR and Western blot experiments. By miRNA target gene prediction, luciferase reporter gene experiments, qRT-PCR and Western blot experiments were used to verify whether the selected target miRNAs targeted the target gene. RESULTS First, it was determined that 10μM dexamethasone solution was effective in inducing a decrease in osteogenic function in mouse MC3T3-E1 by CCK8 experiments, which showed a significant decrease in alkaline phosphatase activity, a decrease in calcium nodules as shown by alizarin red staining, an increase in apoptosis and reactive oxygen species as detected by flow cytometry, as well as a decrease in the expression of osteogenesis-related genes and proteins. Five target miRNAs were identified: miR-706, miR-296-3p, miR-7011-5p, miR-145a-3p, and miR-149-3p. miR-145a-3p, which had the most pronounced and stable expression trend and was the most highly expressed miRNA, was chosen as the target of this experiment by qRT-PCR analysis. -145a-3p, as the subject of this experiment. Knockdown of miR-145a-3p in MC3T3-E1 cells after dexamethasone action significantly improved the expression of their impaired osteogenic indicators. It was shown that after knocking down the target miRNA, alkaline phosphatase staining was significantly increased compared with the dexamethasone-stimulated group and approached the level of the blank control group. Meanwhile, the expression of osteogenic function-related proteins and genes also increased in the dexamethasone-stimulated group after knocking down miR-145a-3p, and approached the level of the blank control group. A direct targeting relationship between miR-145a-3p and Runx2 was indeed confirmed by luciferase reporter gene assays, qRT-PCR and Western blot experiments. CONCLUSIONS The results indicated that dexamethasone impaired the osteogenic differentiation ability of MC3T3-E1 cells by inducing the up-regulation of miR-145a-3p expression. MiR-145a-3p inhibited the osteogenic differentiation ability of MC3T3-E1 cells by targeting and suppressing the expression level of Runx2 protein. Inhibition of miR-145a-3p levels significantly improved the osteogenic differentiation ability of MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hang Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xinghua Liao
- Central People's Hospital of Zhanjiang, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tingrui Wu
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bin Xie
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Sicheng Ding
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yiren Chen
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lijun Song
- Reproductive Medicine Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Bo Wei
- Orthopedics Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
4
|
Luo X, Wen W. MicroRNA in prostate cancer: from biogenesis to applicative potential. BMC Urol 2024; 24:244. [PMID: 39506720 PMCID: PMC11539483 DOI: 10.1186/s12894-024-01634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Prostate cancer is the most common solid malignant tumor in men, characterized by high morbidity and mortality. While current screening tools, such as prostate-specific antigen (PSA) testing and digital rectal examination, are available for early detection of prostate cancer, their sensitivity and specificity are limited. Tissue puncture biopsy, although capable of offering a definitive diagnosis, has poor positive predictive rates and burdens the patient more. Therefore, more reliable molecular diagnostic tools for prostate cancer urgently need to be developed. In recent years, microRNAs (miRNAs) have attracted much attention in prostate cancer research. miRNAs are extensively engaged in biological processes such as cell proliferation, differentiation, apoptosis, migration, and invasion by modulating gene expression post-transcriptionally. Dysregulation of miRNA expression in cancer is considered a critical factor in tumorigenesis and progression. This review first briefly introduces the biogenesis of miRNAs and their functions in cancer, then focuses on tumor-promoting miRNAs and tumor-suppressor miRNAs in prostate cancer. Finally, the potential application of miRNAs as multifunctional tools for cancer diagnosis, prognostic assessment, and therapy is discussed in detail. The concluding section summarizes the major points of the review and the challenges ahead.
Collapse
Affiliation(s)
- Xu Luo
- Department of Urology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P.R. China
| | - Wei Wen
- Department of Urology, West China Tianfu Hospital, Sichuan University, Chengdu, 610213, P.R. China.
| |
Collapse
|
5
|
Armstrong L, Willoughby CE, McKenna DJ. The Suppression of the Epithelial to Mesenchymal Transition in Prostate Cancer through the Targeting of MYO6 Using MiR-145-5p. Int J Mol Sci 2024; 25:4301. [PMID: 38673886 PMCID: PMC11050364 DOI: 10.3390/ijms25084301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Aberrant expression of miR-145-5p has been observed in prostate cancer where is has been suggested to play a tumor suppressor role. In other cancers, miR-145-5p acts as an inhibitor of epithelial-to-mesenchymal transition (EMT), a key molecular process for tumor progression. However, the interaction between miR-145-5p and EMT remains to be elucidated in prostate cancer. In this paper the link between miR-145-5p and EMT in prostate cancer was investigated using a combination of in silico and in vitro analyses. miR-145-5p expression was significantly lower in prostate cancer cell lines compared to normal prostate cells. Bioinformatic analysis of The Cancer Genome Atlas prostate adenocarcinoma (TCGA PRAD) data showed significant downregulation of miR-145-5p in prostate cancer, correlating with disease progression. Functional enrichment analysis significantly associated miR-145-5p and its target genes with EMT. MYO6, an EMT-associated gene, was identified and validated as a novel target of miR-145-5p in prostate cancer cells. In vitro manipulation of miR-145-5p levels significantly altered cell proliferation, clonogenicity, migration and expression of EMT-associated markers. Additional TCGA PRAD analysis suggested miR-145-5p tumor expression may be useful predictor of disease recurrence. In summary, this is the first study to report that miR-145-5p may inhibit EMT by targeting MYO6 in prostate cancer cells. The findings suggest miR-145-5p could be a useful diagnostic and prognostic biomarker for prostate cancer.
Collapse
Affiliation(s)
| | | | - Declan J. McKenna
- Genomic Medicine Research Group, Ulster University, Cromore Road, Coleraine BT52 1SA, UK; (L.A.); (C.E.W.)
| |
Collapse
|
6
|
Thapa R, Afzal O, Afzal M, Gupta G, Bhat AA, Hassan Almalki W, Kazmi I, Alzarea SI, Saleem S, Arora P, Singh SK, Dua K. From LncRNA to metastasis: The MALAT1-EMT axis in cancer progression. Pathol Res Pract 2024; 253:154959. [PMID: 38029713 DOI: 10.1016/j.prp.2023.154959] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Cancer is a complex disease that causes abnormal genetic changes and unchecked cellular growth. It also causes a disruption in the normal regulatory processes that leads to the creation of malignant tissue. The complex interplay of genetic, environmental, and epigenetic variables influences its etiology. Long non-coding RNAs (LncRNAs) have emerged as pivotal contributors within the intricate landscape of cancer biology, orchestrating an array of multifaceted cellular processes that substantiate the processes of carcinogenesis and metastasis. Metastasis is a crucial driver of cancer mortality. Among these, MALAT1 (Metastasis-Associated Lung Adenocarcinoma Transcript 1) has drawn a lot of interest for its function in encouraging metastasis via controlling the Epithelial-Mesenchymal Transition (EMT) procedure. MALAT1 exerts a pivotal influence on the process of EMT, thereby promoting metastasis to distant organs. The mechanistic underpinning of this phenomenon involves the orchestration of an intricate regulatory network encompassing transcription factors, signalling cascades, and genes intricately associated with the EMT process by MALAT1. Its crucial function in transforming tumor cells into an aggressive phenotype is highlighted by its capacity to influence the expression of essential EMT effectors such as N-cadherin, E-cadherin, and Snail. An understanding of the MALAT1-EMT axis provides potential therapeutic approaches for cancer intervention. Targeting MALAT1 or its downstream EMT effectors may reduce the spread of metastatic disease and improve the effectiveness of already available therapies. Understanding the MALAT1-EMT axis holds significant clinical implications. Therefore, directing attention towards MALAT1 or its downstream mediators could present innovative therapeutic strategies for mitigating metastasis and improving patient prognosis. This study highlights the importance of MALAT1 in cancer biology and its potential for cutting back on metastatic disease with novel treatment strategies.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health. College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Poonam Arora
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
7
|
Le Hars M, Castro-Vega LJ, Rajabi F, Tabatadze D, Romero M, Pinskaya M, Groisman I. Pro-tumorigenic role of lnc-ZNF30-3 as a sponge counteracting miR-145-5p in prostate cancer. Biol Direct 2023; 18:38. [PMID: 37434219 PMCID: PMC10334624 DOI: 10.1186/s13062-023-00393-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Prostate cancer remains one of the deadliest neoplasms in developed countries. Identification of new molecular markers that predict the onset and progression of the disease could improve its clinical management. Low miR-145-5p expression is consistently found in primary tumors and metastases, but the regulatory mechanisms governing its functions remain largely unknown. METHODS Bioinformatics analysis was conducted to identify [1] a set of novel potential competing endogenous lncRNAs for sponging of miRNA-145-5p in prostate cancer and [2] miR-145-5p and other EMT-related miRNAs response elements in lnc-ZNF30-3. Quantification of miR-145-5p, lnc-ZNF30-3, and TWIST1 expression levels in tumor tissues in RNA sequencing datasets of our and TCGA PRAD cohorts revealed a correlation with clinical outcome of prostate cancer patients. Biochemical and cell biology approaches, such as RNA pull-down, western blot, immunostaining, and wound healing assays were used for evaluation of the impact of TWIST1/miR-145/ lnc-ZNF30-3 interactions in prostate cancer cells altered in miRNA and lncRNA expression. RESULTS We identified a few potential lncRNA sponges of miR-145-5p, including lnc-ZNF30-3. It contains five response elements for miR-145-5p, but also other miRNAs targeting EMT transcription factors. Lnc-ZNF30-3 is significantly upregulated in prostate cancer cell lines and tumor tissues, and its high expression is correlated with poor patient prognosis. We demonstrated that lnc-ZNF30-3 is associated with AGO2 and specifically interacts with the miR-145-5p seed region. Knockdown of lnc-ZNF30-3 results in decreased migration of prostate cancer cells and downregulation of EMT drivers such as TWIST1 and ZEB1 at both the RNA and protein levels. These phenotypic and molecular features of lnc-ZNF30-3-depleted cells are partially rescued by miR-145-5p inhibition. CONCLUSIONS Collectively, our results point to lnc-ZNF30-3 as a novel competing endogenous lncRNA for miR-145-5p and other miRNAs that target TWIST1 as well as other EMT transcription factors. Prostate cancer patients with high lncRNA expression in primary tumors show lower survival rate suggesting that lnc-ZNF30-3 may contribute to prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Matthieu Le Hars
- Institut Curie, Sorbonne Universités, Paris Sciences et Lettres Research University, CNRS UMR3244, Paris, France
| | - Luis Jaime Castro-Vega
- Paris Brain Institute (ICM), Hôpital Pitié-Salpêtrière, Inserm U1127, CNRS UMR7225, Sorbonne Universités, Paris, France
| | - Fatemeh Rajabi
- Institut Curie, Sorbonne Universités, Paris Sciences et Lettres Research University, CNRS UMR3244, Paris, France
- Cancer Genomics lab, Inserm U981, Gustave Roussy Cancer Center Grand Paris, Villejuif, France
| | | | - Martha Romero
- Department of Pathology, Hospital Universitario-Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Marina Pinskaya
- Institut Curie, Sorbonne Universités, Paris Sciences et Lettres Research University, CNRS UMR3244, Paris, France.
| | - Irina Groisman
- Institut Curie, Sorbonne Universités, Paris Sciences et Lettres Research University, CNRS UMR3244, Paris, France.
- Cancer Genomics lab, Inserm U981, Gustave Roussy Cancer Center Grand Paris, Villejuif, France.
| |
Collapse
|
8
|
Qu S, Huang X, Guo X, Zheng Z, Wei T, Chen B. Metastasis Related Epithelial-Mesenchymal Transition Signature Predicts Prognosis and Response to Chemotherapy in Acute Myeloid Leukemia. Drug Des Devel Ther 2023; 17:1651-1663. [PMID: 37305402 PMCID: PMC10257403 DOI: 10.2147/dddt.s415521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
Background Acute myeloid leukemia (AML) is a highly heterogenous disease with varying clinical outcomes among patients. Epithelial-mesenchymal transition (EMT) is an important mechanism underlying cancer metastasis and chemotherapy resistance. However, few EMT-based signatures have been established to predict AML prognosis and treatment efficacy. Methods By conducting comparative RNA-seq analysis, we discovered the differential expression of EMT genes between AML patients with relapse and those without relapse. Based on the prognostic analysis of the differentially expressed EMT genes, a metastasis-related EMT signature (MEMTs) was constructed. An analysis was conducted on both TARGET and TCGA cohorts to explore the possible association between MEMTs and prognosis in AML. Three separate chemotherapy treatment cohorts were utilized to assess the predictive efficacy of MEMTs for chemotherapy response. In addition, the potential correlation between MEMTs and the tumor microenvironment was also investigated. Finally, random forest analysis and functional experiments were conducted to verify the key MEMTs gene associated with AML metastasis. Results Based on expression and prognostic analysis, we constructed MEMTs that include three EMT genes (CDH2, LOX, and COL3A1). Our findings suggested that the MEMTs could act as a prognostic factor for AML patients, and furthermore, it proved to be a predictor of their response to chemotherapy. Specifically, high MEMTs was associated with worse prognosis and poor response to chemotherapy, while low MEMTs was linked to better prognosis and higher response rates. Random forest and functional experiments demonstrate that CDH2 is a key gene promoting leukemia cell metastasis among the three MEMTs genes. Conclusion The identification of MEMTs could potentially act as a predictor for the prognosis and the response to chemotherapy in AML patients. Individual tumor evaluation based on MEMTs could provide personalized treatment options for AML patients in the future.
Collapse
Affiliation(s)
- Shuang Qu
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Xiaoli Huang
- Department of Clinical Laboratory Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Xiaoling Guo
- Translational Medicine Centre, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zhihai Zheng
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Tiannan Wei
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| | - Biyun Chen
- Department of Hematology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
| |
Collapse
|
9
|
Peng S, Yi L, Liao L, Bin Y, Qu W, Hu H. Circ_0008285 knockdown represses tumor development by miR-384/RRM2 axis in hepatocellular carcinoma. Ann Hepatol 2022; 27:100743. [PMID: 35964907 DOI: 10.1016/j.aohep.2022.100743] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/23/2022] [Accepted: 07/23/2022] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND OBJECTIVES Circular RNA (circRNA) has attracted extensive attention in studies related to the malignant progression of cancer, including hepatocellular carcinoma (HCC). Therefore, its molecular mechanism in HCC needs to be further explored. MATERIALS AND METHODS The expression levels of circ_0008285, microRNA (miR)-384 and ribonucleotide reductase subunit M2 (RRM2) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Cell proliferation was analyzed using cell counting kit-8 assay and 5-ethynyl-2'-deoxyuridine assay, cell apoptosis was analyzed by flow cytometry, and cell migration and invasion were detected by transwell assay. Protein level was detected by western blot. The relationships between miR-384 and circ_0008285 or RRM2 were predicted by bioinformatics software and validated by dual luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS Circ_0008285 expression is elevated to HCC tissues and cell lines. Silencing of circ_0008285 inhibited the proliferation, migration and invasion of HCC cells but accelerated cell apoptosis in vitro and impeded HCC tumorigenesis in vivo. Mechanistically, circ_0008285 directly interacted with miR-384, and miR-384 silencing attenuated the effects of circ_0008285 interference on cell proliferation, migration, invasion, and apoptosis. RRM2 was a direct target of miR-384, and RRM2 overexpression reversed the effects of miR-384 overexpression on cell proliferation, migration, invasion, and apoptosis. In addition, circ_0008285 regulated RRM2 expression by sponging miR-384. CONCLUSION In this study, circ_0008285 could promote the malignant biological behaviors of HCC cells through miR-384/RRM2 axis and has the potential to become a therapeutic target for HCC, providing a new idea for targeted therapy of HCC.
Collapse
Affiliation(s)
- Shuang Peng
- Department of Infectious, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Hunan, China
| | - Lai Yi
- Department of Hematology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Hunan, China
| | - Lingzhi Liao
- Department of Pathology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Hunan, China
| | - Yuling Bin
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Hunan, China
| | - Weiming Qu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Hunan, China
| | - Hongsai Hu
- Department of Gastroenterology, The Affiliated Zhuzhou Hospital Xiangya Medical College CSU, Hunan, China.
| |
Collapse
|
10
|
Ohishi T, Hayakawa S, Miyoshi N. Involvement of microRNA modifications in anticancer effects of major polyphenols from green tea, coffee, wine, and curry. Crit Rev Food Sci Nutr 2022; 63:7148-7179. [PMID: 35289676 DOI: 10.1080/10408398.2022.2038540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epidemiological studies have shown that consumption of green tea, coffee, wine, and curry may contribute to a reduced risk of various cancers. However, there are some cancer site-specific differences in their effects; for example, the consumption of tea or wine may reduce bladder cancer risk, whereas coffee consumption may increase the risk. Animal and cell-based experiments have been used to elucidate the anticancer mechanisms of these compounds, with reactive oxygen species (ROS)-based mechanisms emerging as likely candidates. Chlorogenic acid (CGA), curcumin (CUR), epigallocatechin gallate (EGCG), and resveratrol (RSV) can act as antioxidants that activate AMP-activated protein kinase (AMPK) to downregulate ROS, and as prooxidants to generate ROS, leading to the downregulation of NF-κB. Polyphenols can modulate miRNA (miR) expression, with these dietary polyphenols shown to downregulate tumor-promoting miR-21. CUR, EGCG, and RSV can upregulate tumor-suppressing miR-16, 34a, 145, and 200c, but downregulate tumor-promoting miR-25a. CGA, EGCG, and RSV downregulate tumor-suppressing miR-20a, 93, and 106b. The effects of miRs may combine with ROS-mediated pathways, enhancing the anticancer effects of these polyphenols. More precise analysis is needed to determine how the different modulations of miRs by polyphenols relate to the cancer site-specific differences found in epidemiological studies related to the consumption of foods containing these polyphenols.
Collapse
Affiliation(s)
- Tomokazu Ohishi
- Institute of Microbial Chemistry (BIKAKEN), Numazu, Microbial Chemistry Research Foundation, Shizuoka, Japan
| | - Sumio Hayakawa
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Noriyuki Miyoshi
- Laboratory of Biochemistry, Graduate School of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|