1
|
Ozkara G, Ceviz AB, Eronat AP, Pehlevan Karabiyik F, Candan G, Ozturk O, Yilmaz-Aydogan H. Cytotoxic and anti-migratory effects of polyphenolic compounds on breast cancer cells by altering Jam-A, LFA-1, and VLA-4 gene expression. Nat Prod Res 2025:1-12. [PMID: 40292555 DOI: 10.1080/14786419.2025.2494629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025]
Abstract
This study represents the initial research of the effects of a combination of the largest number (13) of different polyphenic substances (PFK5120), formulated based on the propolis content on cell viability, migration and expression of lymphocyte function-associated antigen-1 (LFA-1), very late antigen-4 (VLA-4) and junction adhesion molecule A (Jam-A) in breast cancer (BC) cells. PFK5120 negatively affected cell viability at a 5% concentration as compared with unexposed ones (p < 0.001). Treatment with 20% PFK5120 for 48h down-regulated Jam-A in MCF-7 and MCF-10A, up-regulated LFA-1 in MCF-10A and MDA-MB-231, and down-regulated VLA-4 in MCF-10A and MDA-MB-231 (p < 0.001). Furthermore, migration was found to be inhibited by PFK5120 at varying doses and times. Migration was completely inhibited by 35% PFK5120 treatment in MDA-MB-231, while even lower concentrations (10%) were effective in MCF-7. Current findings indicate that PFK5120 represents a valuable natural component of BC therapy through its cytotoxic and anti-migratory effects.
Collapse
Affiliation(s)
- Gulcin Ozkara
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
- Faculty of Medicine, Department of Medical Biology, Bezmialem Vakif University, Istanbul, Turkey
| | - Ayse Begum Ceviz
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
- Faculty of Medicine, Department of Medical Genetics, Istanbul Health & Technology University, Istanbul, Turkey
| | - Allison Pinar Eronat
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Halic University, Istanbul, Turkey
| | - Funda Pehlevan Karabiyik
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
- Departments of Medical Laboratory Techniques, Vocational School of Health Services, Istanbul Gelisim University, Istanbul, Turkey
| | - Gonca Candan
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
| | - Oguz Ozturk
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
| | - Hulya Yilmaz-Aydogan
- Aziz Sancar Institute of Experimental Medicine, Department of Molecular Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
2
|
Yin B, Wang X, Liu Y, Fang J, Wang WX. How fish intestinal cells responded to dietary methylmercury exposure? A single-cell transcriptomic analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125967. [PMID: 40043872 DOI: 10.1016/j.envpol.2025.125967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/26/2025] [Accepted: 03/02/2025] [Indexed: 03/15/2025]
Abstract
Fish intestine is not only an important digestive and immune organ, but also serves as the first barrier to defend against methylmercury (MeHg) toxicity. Numerous studies have examined the responses of intestine to MeHg, whereas the heterogeneous responses of intestinal cells have not been addressed. In this study, the gilthead seabream were exposed to dietary MeHg, and the gene expression profiles of different intestinal cell populations were examined using scRNA-seq technique. We demonstrated that among the 14 cell types identified, enterocytes, macrophages, T cells and goblet cells were the primary target cell populations exhibiting specific responses to MeHg. Enterocytes appeared to play the most important role in the MeHg transport across the intestinal epithelium as well as intracellular storage. The immune pathways of macrophages and T cells were suppressed by MeHg, which also interfered with the mucus production and secretion in the goblet cells. Furthermore, MeHg not only affected the cell-cell adhesion of the target cells, but also resulted in disorder of lipid metabolism and immune function, thereby leading to increased susceptibility to pathogenic infections. This study provides an important understanding of the specific responses of intestinal cells to MeHg exposure at the cellular level.
Collapse
Affiliation(s)
- Bingxin Yin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Junhao Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Xiong Wang
- Research Centre for the Oceans and Human Health, City University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
3
|
Jiang J, Liu F, Cui D, Xu C, Chi J, Yan T, Guo F. Novel molecular mechanisms of immune evasion in hepatocellular carcinoma: NSUN2-mediated increase of SOAT2 RNA methylation. Cancer Commun (Lond) 2025. [PMID: 40227950 DOI: 10.1002/cac2.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a deadly malignancy known for its ability to evade immune surveillance. NOP2/Sun RNA methyltransferase family member 2 (NSUN2), an RNA methyltransferase involved in carcinogenesis, has been associated with immune evasion and energy metabolism reprogramming. This study aimed to examine the molecular mechanisms underlying the involvement of NSUN2 in immune evasion and metabolic reprogramming of HCC. METHODS Single-cell transcriptomic sequencing was applied to examine cellular composition changes, particularly immune cell dynamics, in HCC and adjacent normal tissues. Bulk RNA-seq and proteomics identified key genes and proteins. Methylation sequencing and methylated RNA immunoprecipitation (MeRIP) were carried out to characterize the role of NSUN2 in 5-methylcytosine (m5C) modification of sterol O-acyltransferase 2 (SOAT2). Clinical samples from 30 HCC patients were analyzed using reverse transcription-quantitative polymerase chain reaction and Western blotting. Gene expression was manipulated using CRISPR/Cas9 and lentiviral vectors. In vitro co-culture models and metabolomics were used to study HCC cell-T cell interactions, energy metabolism, and immune evasion. Tumor growth in an orthotopic mouse model was monitored by bioluminescence imaging, with subsequent measurements of tumor weight, volume, and immunohistochemical staining. RESULTS Single-cell transcriptomic analysis identified a marked increase in malignant cells in HCC tissues. Cell communication analysis indicated that tumor cells might promote cancer progression by evading immune clearance. Multi-omics analyses identified NSUN2 as a key regulator in HCC development. MeRIP confirmed that NSUN2 facilitated the m5C modification of SOAT2. Analysis of human HCC tissue samples demonstrated pronounced upregulation of NSUN2 and SOAT2, along with elevated m5C levels in HCC tissues. In vitro experiments uncovered that NSUN2 augmented the reprogramming of energy metabolism and repressed the activity and cytotoxicity of CD8+ T cells, contributing to immune evasion. In vivo studies further substantiated the role of NSUN2 in fostering immune evasion and tumor formation of HCC by modulating the m5C modification of SOAT2. CONCLUSIONS The findings highlight the critical role of NSUN2 in driving HCC progression through the regulation of m5C modification on SOAT2. These findings present potential molecular markers for HCC diagnosis and therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Jinhua Jiang
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Feng Liu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Dan Cui
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Caixia Xu
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Jiachang Chi
- Department of Interventional Oncology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, P. R. China
| | - Tinghua Yan
- The First Clinical Medical College of Jinan University, Guangzhou, Guangdong, P. R. China
| | - Fang Guo
- Key Laboratory of Systems Biomedicine, Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
4
|
Shi J, Chen Q, Lai J, Zhu J, Zhang R, Mazid MA, Li D, Su H, Qin D. Impact of c-JUN deficiency on thalamus development in mice and human neural models. Cell Biosci 2024; 14:149. [PMID: 39707500 DOI: 10.1186/s13578-024-01303-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 09/04/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND c-Jun is a key regulator of gene expression. Through the formation of homo- or heterodimers, c-JUN binds to DNA and regulates gene transcription. While c-Jun plays a crucial role in embryonic development, its impact on nervous system development in higher mammals, especially for some deep structures, for example, thalamus in diencephalon, remains unclear. METHODS To investigate the influence of c-JUN on early nervous system development, c-Jun knockout (KO) mice and c-JUN KO H1 embryonic stem cells (ESCs)-derived neural progenitor cells (NPCs), cerebral organoids (COs), and thalamus organoids (ThOs) models were used. We detected the dysplasia via histological examination and immunofluorescence staining, omics analysis, and loss/gain of function analysis. RESULTS At embryonic day 14.5, c-Jun knockout (KO) mice exhibited sparseness of fibers in the brain ventricular parenchyma and malformation of the thalamus in the diencephalon. The absence of c-JUN accelerated the induction of NPCs but impaired the extension of fibers in human neuronal cultures. COs lacking c-JUN displayed a robust PAX6+/NESTIN+ exterior layer but lacked a fibers-connected core. Moreover, the subcortex-like areas exhibited defective thalamus characteristics with transcription factor 7 like 2-positive cells. Notably, in guided ThOs, c-JUN KO led to inadequate thalamus patterning with sparse internal nerve fibers. Chromatin accessibility analysis confirmed a less accessible chromatin state in genes related to the thalamus. Overexpression of c-JUN rescued these defects. RNA-seq identified 18 significantly down-regulated genes including RSPO2, WNT8B, MXRA5, HSPG2 and PLAGL1 while 24 genes including MSX1, CYP1B1, LMX1B, NQO1 and COL2A1 were significantly up-regulated. CONCLUSION Our findings from in vivo and in vitro experiments indicate that c-JUN depletion impedes the extension of nerve fibers and renders the thalamus susceptible to dysplasia during early mouse embryonic development and human ThO patterning. Our work provides evidence for the first time that c-JUN is a key transcription regulator that play important roles in the thalamus/diencephalon development.
Collapse
Affiliation(s)
- Jiantao Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Qing Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianheng Lai
- Guangdong Engineering Technology Research Center of Biological Targeting Diagnosis, Therapy and Rehabilitation, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jieying Zhu
- CAS Key Laboratory of Regenerative Biology, Center for Cell Lineage and Development, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ran Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dongwei Li
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Technology Research Center of Biological Targeting Diagnosis, Therapy and Rehabilitation, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.
- Guangdong Engineering Research Center of Early Clinical Trials of Biotechnology Drugs, The Fifth Affiliated Hospital,, Guangzhou Medical University, Guangzhou, China.
- Bioland Laboratory Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China.
| |
Collapse
|
5
|
Huth SW, Geri JB, Oakley JV, MacMillan DWC. μMap-Interface: Temporal Photoproximity Labeling Identifies F11R as a Functional Member of the Transient Phagocytic Surfaceome. J Am Chem Soc 2024; 146:32255-32262. [PMID: 39532068 DOI: 10.1021/jacs.4c11058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Phagocytosis is usually carried out by professional phagocytic cells in the context of pathogen response or wound healing. The transient surface proteins that regulate phagocytosis pose a challenging proteomics target; knowledge thereof could lead to new therapeutic insights. Herein, we describe a novel photocatalytic proximity labeling method: "μMap-Interface", allowing for spatiotemporal mapping of phagocytosis. Utilizing photocatalyst-conjugated IGG-opsonized beads and initiating phagocytosis in a synchronized manner, we capture phagocytic interactome "snapshots" at the interface of the phagocyte and its target. This allows profiling of the dynamic surface proteome of human macrophages during the engulfment process. We reveal previously known phagocytic mediators as well as potential novel interactors and validate their presence with super-resolution microscopy. This includes F11R, an important cancer target yet to be investigated in the context of phagocytosis. Further, we demonstrate that knocking down F11R leads to an increased degree of phagocytosis; this insight could contribute to explaining its oncogenic activity. Lastly, we show capture of orthogonal phagocytic surfaceomes across different cells, using a neutrophil-like model. We believe this method will enable new insights into phagocytic processes in a variety of contexts.
Collapse
Affiliation(s)
- Sean W Huth
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Jacob B Geri
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - James V Oakley
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - David W C MacMillan
- Merck Center for Catalysis at Princeton University, Princeton, New Jersey 08544, United States
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Daugherty-Lopès A, Pérez-Guijarro E, Gopalan V, Rappaport J, Chen Q, Huang A, Lam KC, Chin S, Ebersole J, Wu E, Needle GA, Church I, Kyriakopoulos G, Xie S, Zhao Y, Gruen C, Sassano A, Araya RE, Thorkelsson A, Smith C, Lee MP, Hannenhalli S, Day CP, Merlino G, Goldszmid RS. IMMUNE AND MOLECULAR CORRELATES OF RESPONSE TO IMMUNOTHERAPY REVEALED BY BRAIN-METASTATIC MELANOMA MODELS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609785. [PMID: 39372744 PMCID: PMC11451731 DOI: 10.1101/2024.08.26.609785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Despite the promising results of immune checkpoint blockade (ICB) therapy, outcomes for patients with brain metastasis (BrM) remain poor. Identifying resistance mechanisms has been hindered by limited access to patient samples and relevant preclinical models. Here, we developed two mouse melanoma BrM models that recapitulate the disparate responses to ICB seen in patients. We demonstrate that these models capture the cellular and molecular complexity of human disease and reveal key factors shaping the tumor microenvironment and influencing ICB response. BR1-responsive tumor cells express inflammatory programs that polarize microglia into reactive states, eliciting robust T cell recruitment. In contrast, BR3-resistant melanoma cells are enriched in neurological programs and exploit tolerance mechanisms to maintain microglia homeostasis and limit T cell infiltration. In humans, BR1 and BR3 expression signatures correlate positively or negatively with T cell infiltration and BrM patient outcomes, respectively. Our study provides clinically relevant models and uncovers mechanistic insights into BrM ICB responses, offering potential biomarkers and therapeutic targets to improve therapy efficacy.
Collapse
Affiliation(s)
- Amélie Daugherty-Lopès
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Eva Pérez-Guijarro
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vishaka Gopalan
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jessica Rappaport
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Quanyi Chen
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD, USA
| | - April Huang
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Kelly Government Solutions, Bethesda, MD, USA
| | - Khiem C. Lam
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sung Chin
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Jessica Ebersole
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Emily Wu
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gabriel A. Needle
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Isabella Church
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - George Kyriakopoulos
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Shaojun Xie
- CCR-SF Bioinformatics Team, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Yongmei Zhao
- CCR-SF Bioinformatics Team, Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, NIH, Frederick, MD 21701, USA
| | - Charli Gruen
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Antonella Sassano
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Romina E. Araya
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Andres Thorkelsson
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Cari Smith
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21701, USA
| | - Maxwell P. Lee
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chi-Ping Day
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Glenn Merlino
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Romina S. Goldszmid
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
7
|
Bao C, Feng JJ, Cui J, Guo T, He YS, Wei ZY, Qian CJ, Jin YY, Chen JH. F11R RNA trinucleotide over-edited by ADAR in gastric and colorectal cancers: Cross-cohort validation, gene expression regulation, and diagnostic significance. Biochem Biophys Res Commun 2024; 726:150213. [PMID: 38964186 DOI: 10.1016/j.bbrc.2024.150213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 05/31/2024] [Accepted: 05/31/2024] [Indexed: 07/06/2024]
Abstract
The F11 receptor (F11R) gene encoding junctional adhesion molecule A has been associated with gastric cancer (GC) and colorectal cancer (CRC), in which its role and regulation remain to be further elucidated. Recently F11R was also identified as a potential target of adenosine-to-inosine (A-to-I) mediated by the adenosine deaminases acting on RNA (ADARs). Herein, using RNA-Seq and experimental validation, our current study revealed an F11R RNA trinucleotide over-edited by ADAR, with its regulation of gene expression and clinical significance in four GC and three CRC cohorts. Our results found an over-edited AAA trinucleotide in an AluSg located in the F11R 3'-untranslated region (3'-UTR), which showed editing levels correlated with elevated ADAR expression across all GC and CRC cohorts in our study. Overexpression and knockdown of ADAR in GC and CRC cells, followed by RNA-Seq and Sanger sequencing, confirmed the ADAR-mediated F11R 3'-UTR trinucleotide editing, which potentially disrupted an RBM45 binding site identified by crosslinking immunoprecipitation sequencing (CLIP-seq) and regulated F11R expression in luciferase reporter assays. Moreover, the F11R trinucleotide editing showed promising predictive performance for diagnosing GC and CRC across GC and CRC cohorts. Our findings thus highlight both the potential biological and clinical significance of an ADAR-edited F11R trinucleotide in GC and CRC, providing new insights into its application as a novel diagnostic biomarker for both cancers.
Collapse
Affiliation(s)
- Chuanqing Bao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Jun-Jie Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jing Cui
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China
| | - Tao Guo
- Department of Gastrointestinal Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China; Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Cheng-Jia Qian
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi, China; Joint Primate Research Center for Chronic Diseases, Jiangnan University and Institute of Zoology, Guangdong Academy of Science, Guangzhou, China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
8
|
Rahman MF, Kurlovs AH, Vodnala M, Meibalan E, Means TK, Nouri N, de Rinaldis E, Savova V. Immune disease dialogue of chemokine-based cell communications as revealed by single-cell RNA sequencing meta-analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.17.603936. [PMID: 39071425 PMCID: PMC11275869 DOI: 10.1101/2024.07.17.603936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Immune-mediated diseases are characterized by aberrant immune responses, posing significant challenges to global health. In both inflammatory and autoimmune diseases, dysregulated immune reactions mediated by tissue-residing immune and non-immune cells precipitate chronic inflammation and tissue damage that is amplified by peripheral immune cell extravasation into the tissue. Chemokine receptors are pivotal in orchestrating immune cell migration, yet deciphering the signaling code across cell types, diseases and tissues remains an open challenge. To delineate disease-specific cell-cell communications involved in immune cell migration, we conducted a meta-analysis of publicly available single-cell RNA sequencing (scRNA-seq) data across diverse immune diseases and tissues. Our comprehensive analysis spanned multiple immune disorders affecting major organs: atopic dermatitis and psoriasis (skin), chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis (lung), ulcerative colitis (colon), IgA nephropathy and lupus nephritis (kidney). By interrogating ligand-receptor (L-R) interactions, alterations in cell proportions, and differential gene expression, we unveiled intricate disease-specific and common immune cell chemoattraction and extravasation patterns. Our findings delineate disease-specific L-R networks and shed light on shared immune responses across tissues and diseases. Insights gleaned from this analysis hold promise for the development of targeted therapeutics aimed at modulating immune cell migration to mitigate inflammation and tissue damage. This nuanced understanding of immune cell dynamics at the single-cell resolution opens avenues for precision medicine in immune disease management.
Collapse
Affiliation(s)
- Mouly F. Rahman
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Andre H. Kurlovs
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Munender Vodnala
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Elamaran Meibalan
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Terry K. Means
- Immunology & Inflammation Research Therapeutic Area, Sanofi US, Cambridge, MA 02141, United States
| | - Nima Nouri
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Emanuele de Rinaldis
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| | - Virginia Savova
- Precision Medicine and Computational Biology, Sanofi US, Cambridge, MA 02141, United States
| |
Collapse
|
9
|
Hwang Y, Kim Y, Min J, Jung J. Identification of novel membrane markers in circulating tumor cells of mesenchymal state in breast cancer. Biochem Biophys Rep 2024; 38:101652. [PMID: 38375422 PMCID: PMC10875194 DOI: 10.1016/j.bbrep.2024.101652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Cancer metastasis is a major cause of cancer-related deaths worldwide. The ability to detect and monitor circulating tumor cells (CTCs) offers a promising approach to early detection and management of metastasis. Although studies on epithelial markers for CTC detection are actively underway, the discovery of mesenchymal markers has not been studied sufficiently. In this study, we developed a new pipeline to identify membrane markers in CTCs of mesenchymal state in breast cancer based on expression profiles of the 310 CTC samples. From the total CTC samples, only CTC samples in the mesenchymal state were collected by employing hierarchical clustering. In samples belonging to the mesenchymal state, we calculated the correlation coefficients between 1995 membrane genes and ZEB2, which was determined as the key mesenchymal signature, allowing the 84 positively correlated genes. Furthermore, to ensure clinical significance, Kaplan-Meier analysis were performed on the 124 breast cancer patients, resulting in the 14 genes predicting prognosis. By exploring genes commonly identified in the both analyses, F11R and PTGIR were characterized as membrane markers in CTCs of mesenchymal state in breast cancer, which were evaluated by enriched terms, literature evidence, and relevant molecular pathways. We expect that the results will be helpful to more effective strategies for metastasis management.
Collapse
Affiliation(s)
- Yongdeuk Hwang
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Yurim Kim
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Jiin Min
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| | - Jinmyung Jung
- Division of Data Science, College of Information and Communication Technology, The University of Suwon, Hwaseong, 18323, Republic of Korea
| |
Collapse
|
10
|
Ren T, Zheng Y, Liu F, Liu C, Zhang B, Ren H, Gao X, Wei Y, Sun Q, Huang H. Identification and Validation of JAM-A as a Novel Prognostic and Immune Factor in Human Tumors. Biomedicines 2024; 12:1423. [PMID: 39061997 PMCID: PMC11275048 DOI: 10.3390/biomedicines12071423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Junctional adhesion molecule-A (JAM-A), also known as F11 receptor (F11R), is a transmembrane glycoprotein that is involved in various biological processes, including cancer initiation and progression. However, the functional characteristics and significance of JAM-A in pan-cancer remain unexplored. In this study, we used multiple databases to gain a comprehensive understanding of JAM-A in human cancers. JAM-A was widely expressed in various tissues, mainly located on the microtubules and cell junctions. Aberrant expression of JAM-A was detected in multiple cancers at both mRNA and protein levels, which can be correlated with poorer prognosis and may be attributed to genetic alterations and down-regulated DNA methylation. JAM-A expression was also associated with immune infiltration and may affect immunotherapy responses in several cancers. Functional enrichment analysis indicated that JAM-A participated in tight junction and cancer-related pathways. In vitro experiments verified that JAM-A knockdown suppressed the proliferation and migration abilities of breast cancer cells and liver cancer cells. Overall, our study suggests that JAM-A is a pan-cancer regulator and a potential biomarker for predicting prognosis and immune-therapeutic responses for different tumors.
Collapse
Affiliation(s)
- Tianyi Ren
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China; (T.R.); (C.L.); (H.R.)
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - You Zheng
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Feichang Liu
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Chenyu Liu
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China; (T.R.); (C.L.); (H.R.)
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Bo Zhang
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - He Ren
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China; (T.R.); (C.L.); (H.R.)
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Xinyue Gao
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Yuexian Wei
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
- College of Life Science and Bioengineering, School of Science, Beijing Jiaotong University, Beijing 100044, China
| | - Qiang Sun
- Frontier Biotechnology Laboratory, Beijing Institute of Biotechnology, Beijing 100071, China; (Y.Z.); (F.L.); (B.Z.); (X.G.); (Y.W.)
| | - Hongyan Huang
- Department of Oncology, Beijing Shijitan Hospital of Capital Medical University, Beijing 100038, China; (T.R.); (C.L.); (H.R.)
| |
Collapse
|
11
|
Wang Y, Xiao J, Wei S, Su Y, Yang X, Su S, Lan L, Chen X, Huang T, Shan Q. Protective effect of zinc gluconate on intestinal mucosal barrier injury in antibiotics and LPS-induced mice. Front Microbiol 2024; 15:1407091. [PMID: 38855764 PMCID: PMC11157515 DOI: 10.3389/fmicb.2024.1407091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Objective The aim of the study is to investigate the function and mechanism of Zinc Gluconate (ZG) on intestinal mucosal barrier damage in antibiotics and Lipopolysaccharide (LPS)-induced mice. Methods We established a composite mouse model by inducing intestinal mucosal barrier damage using antibiotics and LPS. The animals were divided into five groups: Control (normal and model) and experimental (low, medium, and high-dose ZG treatments). We evaluated the intestinal mucosal barrier using various methods, including monitoring body weight and fecal changes, assessing pathological damage and ultrastructure of the mouse ileum, analyzing expression levels of tight junction (TJ)-related proteins and genes, confirming the TLR4/NF-κB signaling pathway, and examining the structure of the intestinal flora. Results In mice, the dual induction of antibiotics and LPS led to weight loss, fecal abnormalities, disruption of ileocecal mucosal structure, increased intestinal barrier permeability, and disorganization of the microbiota structure. ZG restored body weight, alleviated diarrheal symptoms and pathological damage, and maintained the structural integrity of intestinal epithelial cells (IECs). Additionally, ZG reduced intestinal mucosal permeability by upregulating TJ-associated proteins (ZO-1, Occludin, Claudin-1, and JAM-A) and downregulating MLCK, thereby repairing intestinal mucosal barrier damage induced by dual induction of antibiotics and LPS. Moreover, ZG suppressed the TLR4/NF-κB signaling pathway, demonstrating anti-inflammatory properties and preserving barrier integrity. Furthermore, ZG restored gut microbiota diversity and richness, evidenced by increased Shannon and Observed features indices, and decreased Simpson's index. ZG also modulated the relative abundance of beneficial human gut bacteria (Bacteroidetes, Firmicutes, Verrucomicrobia, Parabacteroides, Lactobacillus, and Akkermansia) and harmful bacteria (Proteobacteria and Enterobacter), repairing the damage induced by dual administration of antibiotics and LPS. Conclusion ZG attenuates the dual induction of antibiotics and LPS-induced intestinal barrier damage and also protects the intestinal barrier function in mice.
Collapse
Affiliation(s)
- Yongcai Wang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Dazhou Central Hospital, Dazhou, China
| | - Juan Xiao
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Sumei Wei
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ying Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xia Yang
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shiqi Su
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liancheng Lan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuqi Chen
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Qingwen Shan
- Department of Pediatrics, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Taraz T, Asri N, Nazemalhosseini‐Mojarad E, Forouzesh F, Rezaei‐Tavirani M, Rostami‐Nejad M. Intestinal mRNA expression analysis of polarity-related genes identified the discriminatory ability of CRB3 as a diagnostic marker for celiac disease. Immun Inflamm Dis 2024; 12:e1186. [PMID: 38353316 PMCID: PMC10865414 DOI: 10.1002/iid3.1186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Celiac disease (CD) is a chronic autoimmune disorder characterized by an abnormal immune response to gluten, a protein found in wheat, barley, and rye. It is well established that the integrity of epithelial tight junctions (TJs) and adherens junctions (AJs) plays a crucial role in the pathogenesis of CD. These junctional complexes contribute to the apical-basal polarity of the intestinal epithelial cells, which is crucial for their proper functioning. METHODS Sixty CD subjects, and 50 controls were enrolled in the current study. Mucosal samples were obtained from the distal duodenum, total RNA was extracted and complementary DNA was synthesized. The relative expression levels of the desired genes were evaluated by quantitative real-time polymerase chain reaction based on ΔΔCt method. The gene-gene interaction network was also constructed using GeneMANIA. RESULTS CRB3 (p = .0005), LKB1 (p < .0001), and SCRIB (p = .0005) had lower expression in CD patients compared to controls, while PRKCZ expression did not differ between groups (p > .05). CRB3 represented a significant diagnostic value for differentiating CD patients from the control group (p = .02). CONCLUSION The aim of the current study was to evaluate the changes in the mRNA expression levels of SCRIB, PRKCZ, LKB1, and CRB3 genes in the small intestinal biopsy samples of CD patients in comparison to the healthy control subjects. Our data uncover the importance of polarity-related genes (especially CRB3) in CD pahtomechanism, that may facilitate the planning of the future studies looking for finding innovative diagnostic and therapeutic strategies for CD.
Collapse
Affiliation(s)
- Tannaz Taraz
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Nastaran Asri
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Ehsan Nazemalhosseini‐Mojarad
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mostafa Rezaei‐Tavirani
- Proteomics Research Center, Faculty of Paramedical SciencesShahid Beheshti University of Medical SciencesTehranIran
| | - Mohammad Rostami‐Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver DiseasesShahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
13
|
Thapa R, Gupta G, Bhat AA, Almalki WH, Alzarea SI, Kazmi I, Saleem S, Khan R, Altwaijry N, Dureja H, Singh SK, Dua K. A review of Glycogen Synthase Kinase-3 (GSK3) inhibitors for cancers therapies. Int J Biol Macromol 2023; 253:127375. [PMID: 37839597 DOI: 10.1016/j.ijbiomac.2023.127375] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
The intricate molecular pathways governing cancer development and progression have spurred intensive investigations into novel therapeutic targets. Glycogen Synthase Kinase-3 (GSK3), a complex serine/threonine kinase, has emerged as a key player with intricate roles in various cellular processes, including cell proliferation, differentiation, apoptosis, and metabolism. Harnessing GSK3 inhibitors as potential candidates for cancer therapy has garnered significant interest due to their ability to modulate key signalling pathways that drive oncogenesis. The review encompasses a thorough examination of the molecular mechanisms underlying GSK3's involvement in cancer progression, shedding light on its interaction with critical pathways such as Wnt/β-catenin, PI3K/AKT, and NF-κB. Through these interactions, GSK3 exerts influence over tumour growth, invasion, angiogenesis, and metastasis, rendering it an attractive target for therapeutic intervention. The discussion includes preclinical and clinical studies, showcasing the inhibitors efficacy across a spectrum of cancer types, including pancreatic, ovarian, lung, and other malignancies. Insights from recent studies highlight the potential synergistic effects of combining GSK3 inhibitors with conventional chemotherapeutic agents or targeted therapies, opening avenues for innovative combinatorial approaches. This review provides a comprehensive overview of the current state of research surrounding GSK3 inhibitors as promising agents for cancer treatment.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shakir Saleem
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, Saudi Arabia
| | - Ruqaiyah Khan
- Department of Basic Health Sciences, Deanship of Preparatory Year for the Health Colleges, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Najla Altwaijry
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Harish Dureja
- Faculty of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
14
|
Lam MS, Aw JJ, Tan D, Vijayakumar R, Lim HYG, Yada S, Pang QY, Barker N, Tang C, Ang BT, Sobota RM, Pavesi A. Unveiling the Influence of Tumor Microenvironment and Spatial Heterogeneity on Temozolomide Resistance in Glioblastoma Using an Advanced Human In Vitro Model of the Blood-Brain Barrier and Glioblastoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302280. [PMID: 37649234 DOI: 10.1002/smll.202302280] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/26/2023] [Indexed: 09/01/2023]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain cancer in adults with a dismal prognosis. Temozolomide (TMZ) is the first-in-line chemotherapeutic; however, resistance is frequent and multifactorial. While many molecular and genetic factors have been linked to TMZ resistance, the role of the solid tumor morphology and the tumor microenvironment, particularly the blood-brain barrier (BBB), is unknown. Here, the authors investigate these using a complex in vitro model for GBM and its surrounding BBB. The model recapitulates important clinical features such as a dense tumor core with tumor cells that invade along the perivascular space; and a perfusable BBB with a physiological permeability and morphology that is altered in the presence of a tumor spheroid. It is demonstrated that TMZ sensitivity decreases with increasing cancer cell spatial organization, and that the BBB can contribute to TMZ resistance. Proteomic analysis with next-generation low volume sample workflows of these cultured microtissues revealed potential clinically relevant proteins involved in tumor aggressiveness and TMZ resistance, demonstrating the utility of complex in vitro models for interrogating the tumor microenvironment and therapy validation.
Collapse
Affiliation(s)
- Maxine Sy Lam
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Joey Jy Aw
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Damien Tan
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Ragavi Vijayakumar
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Hui Yi Grace Lim
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Swathi Yada
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Qing You Pang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Nick Barker
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Carol Tang
- Neuro-Oncology Research Laboratory, Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore
- Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Beng Ti Ang
- Duke-National University of Singapore Medical School, Singapore, 169857, Singapore
- Department of Neurosurgery, National Neuroscience Institute, Singapore, 308433, Singapore
| | - Radoslaw M Sobota
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Functional Proteomics Laboratory, SingMass National Laboratory, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 117411, Singapore
| |
Collapse
|
15
|
Pant A, Dakal TC, Moar K, Dhabhai B, Arora TK, Sharma NK, Ranga V, Maurya PK. Assessment of MMP14, CAV2, CLU and SPARCL1 expression profiles in endometriosis. Pathol Res Pract 2023; 251:154892. [PMID: 37898038 DOI: 10.1016/j.prp.2023.154892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023]
Abstract
Endometriotic cells exhibit a notable degree of invasiveness and some characteristics of tissue remodeling underlying lesion formation. In this regard, do matrix metalloproteinases 14 (MMP14) and other related genes such as SPARC-like protein 1 (SPARCL1), caveolin 2 (CAV2), and clusterin (CLU) exert any significant influence in the processes of endometriosis development and pathophysiology is not apparent. We aim to assess whether these genes could serve as potential diagnostic biomarkers in endometriosis. Microarray-based gene expression analysis was performed on total RNA extracted from endometriotic tissue samples treated with and without gonadotropin-releasing hormone agonist (GnRHa). The GnRHa untreated patients were considered the control group. The validation of genes was performed using quantitative real-time polymerase chain reaction (qRT-PCR). qRT-PCR analysis showed significant downregulation in the expression of MMP14 (p = 0.024), CAV2 (p = 0.017), and upregulation of CLU (p = 0.005) in endometriosis patients treated with GnRHa. SPARCL1 did not show any significant (p = 0.30) change in the expression compared to the control group. These data have the potential to contribute to the comprehension of the molecular pathways implicated in the remodeling of the extracellular matrix, which is a vital step for the physiology of the endometrium. Based on the result, it is concluded that changes in the expression of MMP14, CAV2, and CLU post-treatment imply their role in the pathophysiology of endometriosis and may serve as a potential diagnostic biomarker of endometriosis in response to GnRHa treatment in patients with ovarian endometrioma.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India
| | - Bhanupriya Dhabhai
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur 313001, Rajasthan, India
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi 110029, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk 304022, Rajasthan, India
| | - Vipin Ranga
- Department of Biotechnology-North East Centre for Agricultural Biotechnology (DBT-NECAB), Assam Agricultural University, Jorhat 785013, Assam, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh 123031, India.
| |
Collapse
|
16
|
Pandrangi SL, Chittineedi P, Mohiddin GJ, Mosquera JAN, Llaguno SNS. Cell-cell communications: new insights into targeting efficacy of phytochemical adjuvants on tight junctions and pathophysiology of various malignancies. J Cell Commun Signal 2023; 17:457-467. [PMID: 36427132 PMCID: PMC10409985 DOI: 10.1007/s12079-022-00706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/14/2022] [Indexed: 11/26/2022] Open
Abstract
Cancer is a cellular impairment disorder characterized by the loss of cell cycle regulation leading to aberrant cell proliferation. Cell-cell communication plays a crucial role in cell signaling which is highly disrupted in various malignancies. Tight junctions (TJs) are major proteins that regulate the proper communication, and the dysregulation of TJ proteins makes these tumor cells more aggressive, leading to tumor invasion and metastasis. Hence targeting TJs might be a novel insight towards addressing these highly invasive, metastatic tumors. Due to the prohibitive costs of treatments, side effects, and development of resistance, herbal medications comprising bioactive ingredients have become more popular for various human ailments. Unfortunately, the importance of natural compounds has significantly reduced due to the development of modern synthetic techniques to formulate drugs. However, the pharmaceutical industry that adopts chemistry-based drug development in combination with high throughput synthesis have not resulted in the expected drug productivity. Hence, the focus was shifted back to natural compounds in search of novel drugs with advanced technology to isolate the biologically active compound from the natural ones. The current review delivers the importance of TJ regulation, promoting it through phytochemicals to target malignant tumor cells.
Collapse
Affiliation(s)
- Santhi Latha Pandrangi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, India.
| | - Prasanthi Chittineedi
- Onco-Stem Cell Research Laboratory, Department of Biochemistry and Bioinformatics, School of Science, GITAM (Deemed to be) University, Visakhapatnam, 530045, India
| | - Gooty Jaffer Mohiddin
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, 230101, Santo Domingo, Ecuador
| | - Juan Alejandro Neira Mosquera
- Department of Life Sciences and Agriculture, Armed Forces University-ESPE, 230101, Santo Domingo, Ecuador
- Faculty of Industry and Production Sciences, Quevedo State Technical University, km 11/2 via, 120301, Santo Domingo, Quevedo, Ecuador
| | | |
Collapse
|
17
|
Bednarek R, Wojkowska DW, Braun M, Watala C, Salifu MO, Swiatkowska M, Babinska A. Triple negative breast cancer metastasis is hindered by a peptide antagonist of F11R/JAM‑A protein. Cancer Cell Int 2023; 23:160. [PMID: 37563645 PMCID: PMC10416405 DOI: 10.1186/s12935-023-03023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The F11R/JAM-A cell adhesion protein was examined as the therapeutic target in triple negative breast cancer (TNBC) with the use of the peptide antagonist to F11R/JAM-A, that previously inhibited the early stages of breast cancer metastasis in vitro. METHODS The online in silico analysis was performed by TNMPlot, UALCAN, and KM plotter. The in vitro experiments were performed to verify the effect of peptide 4D (P4D) on human endothelial cell lines EA.hy926 and HMEC-1 as well as on human TNBC cell line MDA-MB-231. The cell morphology upon P4D treatment was verified by light microscopy, while the cell functions were assessed by colony forming assay, MTT cell viability assay, BrdU cell proliferation assay, and Transepithelial/Endothelial Electrical Resistance measurements. The in vivo experiments on 4T1 murine breast cancer model were followed by histopathological analysis and a series of quantitative analyses of murine tissues. RESULTS By in silico analysis we have found the elevated gene expression in breast cancer with particular emphasis on TNBC. The elevated F11R expression in TNBC was related with poorer survival prognosis. Peptide 4D has altered the morphology and increased the permeability of endothelial monolayers. The colony formation, viability, and proliferation of MDA-MB-231 cells were decreased. P4D inhibited the metastasis in 4T1 breast cancer murine model in a statistically significant manner that was demonstrated by the resampling bootstrap technique. CONCLUSIONS The P4D peptide antagonist to F11R/JAM-A is able to hinder the metastasis in TNBC. This assumption needs to be confirmed by additional 4T1 mouse model study performed on larger group size, before making the decision on human clinical trials.
Collapse
Affiliation(s)
- Radosław Bednarek
- Department of Cytobiology and Proteomics, Chair of Biomedical Sciences, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215, Lodz, Poland.
| | - Dagmara W Wojkowska
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Marcin Braun
- Department of Pathology, Chair of Oncology, Medical University of Lodz, Lodz, Poland
| | - Cezary Watala
- Department of Haemostasis and Haemostatic Disorders, Medical University of Lodz, Lodz, Poland
| | - Moro O Salifu
- Department of Medicine, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| | - Maria Swiatkowska
- Department of Cytobiology and Proteomics, Chair of Biomedical Sciences, Medical University of Lodz, ul. Mazowiecka 6/8, 92-215, Lodz, Poland
| | - Anna Babinska
- Department of Medicine, Downstate Medical Center, State University of New York, Brooklyn, NY, USA
| |
Collapse
|
18
|
An MH, Lee PH, Choi SM, Hwang D, Kim JH, Park MC, Park S, Baek AR, Jang AS. Impact of the Junction Adhesion Molecule-A on Asthma. Yonsei Med J 2023; 64:375-383. [PMID: 37226564 DOI: 10.3349/ymj.2022.0503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE Junctional adhesion molecule (JAM)-A is an immunoglobulin-like molecule that colocalizes with tight junctions (TJs) in the endothelium and epithelium. It is also found in blood leukocytes and platelets. The biological significance of JAM-A in asthma, as well as its clinical potential as a therapeutic target, are not well understood. The aim of this study was to elucidate the role of JAM-A in a mouse model of asthma, and to determine blood levels of JAM-A in asthmatic patients. MATERIALS AND METHODS Mice sensitized and challenged with ovalbumin (OVA) or saline were used to investigate the role of JAM-A in the pathogenesis of bronchial asthma. In addition, JAM-A levels were measured in the plasma of asthmatic patients and healthy controls. The relationships between JAM-A and clinical variables in patients with asthma were also examined. RESULTS Plasma JAM-A levels were higher in asthma patients (n=19) than in healthy controls (n=12). In asthma patients, the JAM-A levels correlated with forced expiratory volume in 1 second (FEV1%), FEV1/forced vital capacity (FVC), and the blood lymphocyte proportion. JAM-A, phospho-JNK, and phospho-ERK protein expressions in lung tissue were significantly higher in OVA/OVA mice than in control mice. In human bronchial epithelial cells treated with house dust mite extracts for 4 h, 8 h, and 24 h, the JAM-A, phospho-JNK, and phospho-ERK expressions were increased, as shown by Western blotting, while the transepithelial electrical resistance was reduced. CONCLUSION These results suggest that JAM-A is involved in the pathogenesis of asthma, and may be a marker for asthma.
Collapse
Affiliation(s)
- Min-Hyeok An
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Pureun-Haneul Lee
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Seon-Muk Choi
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - DaYeon Hwang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Jung-Hyun Kim
- Department of Internal Medicine, Korean Armed Forces Capital Hospital, Seongnam, Korea
| | - Meung Chul Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Shinhee Park
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - Ae-Rin Baek
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea
| | - An-Soo Jang
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.
| |
Collapse
|
19
|
Olatunji I, Cui F. Multimodal AI for prediction of distant metastasis in carcinoma patients. FRONTIERS IN BIOINFORMATICS 2023; 3:1131021. [PMID: 37228671 PMCID: PMC10203594 DOI: 10.3389/fbinf.2023.1131021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Metastasis of cancer is directly related to death in almost all cases, however a lot is yet to be understood about this process. Despite advancements in the available radiological investigation techniques, not all cases of Distant Metastasis (DM) are diagnosed at initial clinical presentation. Also, there are currently no standard biomarkers of metastasis. Early, accurate diagnosis of DM is however crucial for clinical decision making, and planning of appropriate management strategies. Previous works have achieved little success in attempts to predict DM from either clinical, genomic, radiology, or histopathology data. In this work we attempt a multimodal approach to predict the presence of DM in cancer patients by combining gene expression data, clinical data and histopathology images. We tested a novel combination of Random Forest (RF) algorithm with an optimization technique for gene selection, and investigated if gene expression pattern in the primary tissues of three cancer types (Bladder Carcinoma, Pancreatic Adenocarcinoma, and Head and Neck Squamous Carcinoma) with DM are similar or different. Gene expression biomarkers of DM identified by our proposed method outperformed Differentially Expressed Genes (DEGs) identified by the DESeq2 software package in the task of predicting presence or absence of DM. Genes involved in DM tend to be more cancer type specific rather than general across all cancers. Our results also indicate that multimodal data is more predictive of metastasis than either of the three unimodal data tested, and genomic data provides the highest contribution by a wide margin. The results re-emphasize the importance for availability of sufficient image data when a weakly supervised training technique is used. Code is made available at: https://github.com/rit-cui-lab/Multimodal-AI-for-Prediction-of-Distant-Metastasis-in-Carcinoma-Patients.
Collapse
Affiliation(s)
| | - Feng Cui
- Thomas H. Gosnell School of Life Science, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
20
|
CZUBAK-PROWIZOR KAMILA, SWIATKOWSKA MARIA. Junctional adhesion molecule-A (JAM-A) in gynecological cancers: Current state of knowledge. BIOCELL 2023. [DOI: 10.32604/biocell.2023.025677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
21
|
Guo X, Gu Y, Guo C, Pei L, Hao C. LINC01146/F11R facilitates growth and metastasis of prostate cancer under the regulation of TGF-β. J Steroid Biochem Mol Biol 2023; 225:106193. [PMID: 36162632 DOI: 10.1016/j.jsbmb.2022.106193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 02/01/2023]
Abstract
The effect of long intergenic non-protein coding RNAs (lncRNAs) was verified in prostate cancer (PCa), but the mechanism of LINC01146 in PCa is unclear. Bioinformatics was applied to analyze LINC01146 expression in PCa and predict target genes of LINC01146, followed by the verification of qRT-PCR, RNA pull-down and co-immunoprecipitation (Co-IP). The correlation between LINC01146 expression and clinicopathological characteristics was investigated. The location of LINC01146 in PCa cells was detected by fluorescence in situ hybridization (FISH). After interference with LINC01146 or/and F11 receptor (F11R) or treated with transforming growth factor beta 1 (TGF-β1), the function of LINC01146 in PCa in vitro or in vivo was determined by CCK-8, colony formation, flow cytometry, scratch test, transwell assay, xenograft experiment and western blot. LINC01146 and F11R were over-expressed in PCa and positively correlated with poor prognosis. LINC01146 located in the cytoplasm and combined with F11R. LINC01146 overexpression impeded apoptosis, facilitated viability, proliferation, migration and invasion in PCa cells in vitro, promoted tumor growth in vivo, downregulated E-cadherin, Bax and Cleaved caspase-3, and upregulated N-cadherin, Vimentin and PCNA, but LINC01146 silencing did the opposite. F11R was positively regulated by LINC01146 and F11R depletion negated the effect of LINC01146 overexpression on malignant phenotypes of PCa cells. The expression of LINC01146 and F11R was regulated by TGF-β1. The promoting role of TGF-β1 in migration, invasion and F11R in PCa cells was reversed by LINC01146 silencing. LINC01146 upregulated F11R to facilitate malignant phenotypes of PCa cells, which was regulated by TGF-β.
Collapse
Affiliation(s)
- Xiaohua Guo
- Department of Urology, Second Hospital of Shanxi Medical University, China.
| | - Yong Gu
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Chao Guo
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Liang Pei
- Department of Urology, Second Hospital of Shanxi Medical University, China
| | - Chuan Hao
- Department of Urology, Second Hospital of Shanxi Medical University, China
| |
Collapse
|
22
|
Filipović M, Flegar D, Aničić S, Šisl D, Kelava T, Kovačić N, Šućur A, Grčević D. Transcriptome profiling of osteoclast subsets associated with arthritis: A pathogenic role of CCR2 hi osteoclast progenitors. Front Immunol 2022; 13:994035. [PMID: 36591261 PMCID: PMC9797520 DOI: 10.3389/fimmu.2022.994035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The existence of different osteoclast progenitor (OCP) subsets has been confirmed by numerous studies. However, pathological inflammation-induced osteoclastogenesis remains incompletely understood. Detailed characterization of OCP subsets may elucidate the pathophysiology of increased osteoclast activity causing periarticular and systemic bone resorption in arthritis. In our study, we rely on previously defined OCP subsets categorized by the level of CCR2 expression as circulatory-like committed CCR2hi OCPs, which are substantially expanded in arthritis, and marrow-resident CCR2lo OCPs of immature phenotype and behavior. Methods In order to perform transcriptome characterization of those subsets in the context of collagen-induced arthritis (CIA), we sorted CCR2hi and CCR2lo periarticular bone marrow OCPs of control and arthritic mice, and performed next-generation RNA sequencing (n=4 for each group) to evaluate the differential gene expression profile using gene set enrichment analysis with further validation. Results A disparity between CCR2hi and CCR2lo subset transcriptomes (863 genes) was detected, with the enrichment of pathways for osteoclast differentiation, chemokine and NOD-like receptor signaling in the CCR2hi OCP subset, and ribosome biogenesis in eukaryotes and ribosome pathways in the CCR2lo OCP subset. The effect of intervention (CIA) within each subset was greater in CCR2hi (92 genes) than in CCR2lo (43 genes) OCPs. Genes associated with the osteoclastogenic pathway (Fcgr1, Socs3), and several genes involved in cell adhesion and migration (F11r, Cd38, Lrg1) identified the CCR2hi subset and distinguish CIA from control group, as validated by qPCR (n=6 for control mice, n=9 for CIA mice). The latter gene set showed a significant positive correlation with arthritis clinical score and frequency of CCR2hi OCPs. Protein-level validation by flow cytometry showed increased proportion of OCPs expressing F11r/CD321, CD38 and Lrg1 in CIA, indicating that they could be used as disease markers. Moreover, osteoclast pathway-identifying genes remained similarly expressed (Fcgr1) or even induced by several fold (Socs3) in preosteoclasts differentiated in vitro from CIA mice compared to pre-cultured levels, suggesting their importance for enhanced osteoclastogenesis of the CCR2hi OCPs in arthritis. Conclusion Our approach detected differentially expressed genes that could identify distinct subset of OCPs associated with arthritis as well as indicate possible therapeutic targets aimed to modulate osteoclast activity.
Collapse
Affiliation(s)
- Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sara Aničić
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,*Correspondence: Alan Šućur, ; Danka Grčević,
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,*Correspondence: Alan Šućur, ; Danka Grčević,
| |
Collapse
|
23
|
Ding Y, Zhang Y, Liu X. Combinational treatments of RNA interference and extracellular vesicles in the spinocerebellar ataxia. Front Mol Neurosci 2022; 15:1043947. [PMID: 36311034 PMCID: PMC9606576 DOI: 10.3389/fnmol.2022.1043947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is an autosomal dominant neurodegenerative disease (ND) with a high mortality rate. Symptomatic treatment is the only clinically adopted treatment. However, it has poor effect and serious complications. Traditional diagnostic methods [such as magnetic resonance imaging (MRI)] have drawbacks. Presently, the superiority of RNA interference (RNAi) and extracellular vesicles (EVs) in improving SCA has attracted extensive attention. Both can serve as the potential biomarkers for the diagnosing and monitoring disease progression. Herein, we analyzed the basis and prospect of therapies for SCA. Meanwhile, we elaborated the development and application of miRNAs, siRNAs, shRNAs, and EVs in the diagnosis and treatment of SCA. We propose the combination of RNAi and EVs to avoid the adverse factors of their respective treatment and maximize the benefits of treatment through the technology of EVs loaded with RNA. Obviously, the combinational therapy of RNAi and EVs may more accurately diagnose and cure SCA.
Collapse
Affiliation(s)
- Yingying Ding
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- Department of Clinical Medicine, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yong Zhang
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
| | - Xuehong Liu
- Department of Histology and Embryology, Medical College, Shaoxing University, Shaoxing, Zhejiang, China
- *Correspondence: Xuehong Liu,
| |
Collapse
|
24
|
Satala CB, Jung I, Kovacs Z, Stefan-Van Staden RI, Molnar C, Bara T, Patrichi AI, Gurzu S. V-set and immunoglobulin domain containing 1 (VSIG1) as an emerging target for epithelial-mesenchymal transition of gastric cancer. Sci Rep 2022; 12:16241. [PMID: 36171238 PMCID: PMC9519899 DOI: 10.1038/s41598-022-19883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022] Open
Abstract
V-set and Immunoglobulin domain containing 1 (VSIG1) is a cell-cell adhesion molecule which role in the genesis and evolution of gastric cancer (GC) is not understood. Only three Medline-indexed papers have focused on the role of VSIG1 in GC. The clinicopathological features of 94 GCs were examined in association with immunohistochemical (IHC) patterns of VSIG1, E-cadherin, and β-catenin which were assessed in the tumor core (central) vs. invasive edge. Cases were classified depending on the VSIG1 expression: membrane/membrane in both core and invasive front; null/negative staining in both core and invasive front; and cases with translocational patterns: membrane core/cytoplasmic buds and cytoplasmic core/null buds. Most of the tumors showed null pattern (n = 54). Cases with translocational patterns (n = 20) were GCs with a high lymph node ratio value (≥ 0.26) and advanced Dukes-MAC-like stage. Of the 20 total cases, 9 showed membrane-to-nuclear translocation of β-catenin and loss of E-cadherin, as indicators of epithelial-mesenchymal transition. All cases with membrane/membrane pattern (n = 20) involved the distal stomach. The poorest overall survival was registered in patients with subcellular translocation of VSIG1, compared to those with either membrane/membrane or null patterns (p = 0.002). In GC, VSIG1 acts as an adhesion membrane protein but its membrane-cytoplasmic translocation can be an indicator of epithelial-mesenchymal transition due to cytoplasmic VSIG1-mediated activation of canonical Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Catalin-Bogdan Satala
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Ioan Jung
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Zsolt Kovacs
- Department of Biochemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | | | - Calin Molnar
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Tivadar Bara
- Department of Surgery, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Andrei-Ionut Patrichi
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania
| | - Simona Gurzu
- Department of Pathology, George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania.
- Research Center for Oncopathology and Translational Medicine (CCOMT), George Emil Palade University of Medicine, Pharmacy, Science and Technology, Targu Mures, Romania.
| |
Collapse
|
25
|
Wang T, Li J, Jia Y, Zhao J, He M, Bai G. Tandem Mass Tag Analysis of the Effect of the Anterior Cingulate Cortex in Nonerosive Reflux Disease Rats with Shugan Jiangni Hewei Granules Treatment. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:8104337. [PMID: 35941898 PMCID: PMC9356813 DOI: 10.1155/2022/8104337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022]
Abstract
Objective The current study aims to analyze the improvement mechanism of visceral hypersensitivity (VH) and targets of Shugan Jiangni Hewei granules (SJHG) for nonerosive reflux disease (NERD) treatment as well as to offer an experimental foundation for its clinical use. Methods Healthy male Sprague-Dawley rats (n = 36) were acquired in the current study that was further split into three groups: blank, model, and drug (SJHG). Subsequently, differentially expressed proteins and bioinformatics analysis were performed on the collected tissue samples acquired from the anterior cingulate cortex of the model and SJHG rat groups using a tandem mass tag- (TMT-) based proteomics. Eventually, the obtained data from the bioinformatic analysis was further verified through western blotting. Results From the bioinformatics analysis, only 64 proteins were differentially expressed between the NC and SJHG groups. These molecules were found to be highly expressed in immunological response and neural signal transmission. Finally, we confirmed three therapeutic targets of SJHG, namely, kininogen 1 (Kng1), junctional adhesion molecule A (JAM-A), and the PI3K/Akt signaling pathway. Conclusions SJHG is effective in treating VH, Kng1 and JAM-A may be therapeutic targets of SJHG, and the therapeutic mechanism of SJHG may be realized by influencing immune response or transmission of neural signals.
Collapse
Affiliation(s)
- Tianzuo Wang
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Jing Li
- Department of Gastroenterology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110033, China
| | - Yuebo Jia
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Jiaqi Zhao
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Meijun He
- Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, China
| | - Guang Bai
- Department of Gastroenterology, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110033, China
| |
Collapse
|
26
|
Sjoqvist S, Otake K. A pilot study using proximity extension assay of cerebrospinal fluid and its extracellular vesicles identifies novel amyotrophic lateral sclerosis biomarker candidates. Biochem Biophys Res Commun 2022; 613:166-173. [PMID: 35567903 DOI: 10.1016/j.bbrc.2022.04.127] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 04/27/2022] [Indexed: 01/01/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder which is characterized by progressive degeneration of the motor system. Typically, the disease starts with focal weakness which spreads to involve most muscles and leads to death from respiratory failure within five years of diagnosis. Due to the heterogenic nature of the disease, diagnostics is complex, and it generally takes twelve months from symptom-onset to diagnosis. The discovery of novel biomarkers could lead to accelerated diagnosis, earlier start of treatment, improved patient-segmentation, and treatment follow-up as well as an increased insight into the pathology. Here, we analyzed cerebrospinal fluid (CSF) and CSF-derived extracellular vesicles (CSF-EVs) from ALS-patients and matched controls (n = 9 each) using the ultra-sensitive proximity extension assay (PEA), cardiovascular III-panel. On average, 84 and 61 proteins could be detected in CSF and CSF-EVs respectively. In CSF, three proteins were significantly upregulated in ALS-patients (Junctional Adhesion Molecule A Protein, Tumor necrosis factor receptor 2 and Chitinase 1) while myoglobin was down-regulated. In CSF-EVs, no significantly differentially expressed proteins were identified, but there was a trend for downregulation of Perlecan. To our knowledge, only CHIT1 has been previously described as a CSF-based biomarker candidate for ALS. By combining the four differentially expressed markers in CSF and support vector machine algorithm, all ALS patients and 8 of 9 controls were correctly classified. In conclusion, we here demonstrate the feasibility of using PEA of CSF and CSF-EVs for biomarker discovery and propose three de novo biomarker candidates for ALS, however, further studies are necessary to demonstrate clinical usability.
Collapse
Affiliation(s)
- Sebastian Sjoqvist
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan.
| | - Kentaro Otake
- Neuroscience Drug Discovery Unit, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| |
Collapse
|
27
|
Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SS, Brinkmann F, Kemper B, Schnekenburger J, Brandt M, Betz T, Liashkovich I, Kouzel IU, Shahin V, Corvaia N, Rottner K, Tarbashevich K, Raz E, Greune L, Schmidt MA, Gerke V, Ebnet K. A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Biophys Biochem Cytol 2022; 221:213070. [PMID: 35293964 PMCID: PMC8931538 DOI: 10.1083/jcb.202105147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvβ5 integrin. JAM-A binds Csk and inhibits the activity of αvβ5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvβ5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sonja Thölmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Mariel Flavia Schwietzer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Simone Horenkamp
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sabrina Demuth
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Swetha S.D. Peddibhotla
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Matthias Brandt
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Timo Betz
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Ivan U. Kouzel
- Sars International Centre for Marine Molecular Biology University of Bergen Thormøhlensgt, Bergen, Norway
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Nathalie Corvaia
- Centre d’Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Klemens Rottner
- Divison of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany,Molecular Cell Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| |
Collapse
|
28
|
Smith YE, Wang G, Flynn CL, Madden SF, MacEneaney O, Cruz RGB, Richards CE, Jahns H, Brennan M, Cremona M, Hennessy BT, Sheehan K, Casucci A, Sani FA, Hudson L, Fay J, Vellanki SH, O’Flaherty S, Devocelle M, Hill ADK, Brennan K, Sukumar S, Hopkins AM. Functional Antagonism of Junctional Adhesion Molecule-A (JAM-A), Overexpressed in Breast Ductal Carcinoma In Situ (DCIS), Reduces HER2-Positive Tumor Progression. Cancers (Basel) 2022; 14:cancers14051303. [PMID: 35267611 PMCID: PMC8909510 DOI: 10.3390/cancers14051303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary Specific drug targets for breast ductal carcinoma in situ (DCIS) remain elusive, despite increasing disease prevalence and burden to healthcare services. Estrogen receptor (ER)-negative HER2-positive DCIS, associated with the poorest patient prognosis, is in particular need of novel therapeutic avenues. This report provides the first evidence that a cell surface protein called JAM-A is upregulated on human DCIS patient tissues and can be readily targeted by a novel JAM-A-binding peptide inhibitor in separate in vivo models of DCIS. The anti-tumor efficacy and lack of systemic toxicity of this lead inhibitor, coupled with early indications of potential signaling pathways implicated, support the value of future studies investigating JAM-A as a novel drug target in DCIS patients. Abstract Breast ductal carcinoma in situ (DCIS) is clinically challenging, featuring high diagnosis rates and few targeted therapies. Expression/signaling from junctional adhesion molecule-A (JAM-A) has been linked to poor prognosis in invasive breast cancers, but its role in DCIS is unknown. Since progression from DCIS to invasive cancer has been linked with overexpression of the human epidermal growth factor receptor-2 (HER2), and JAM-A regulates HER2 expression, we evaluated JAM-A as a therapeutic target in DCIS. JAM-A expression was immunohistochemically assessed in patient DCIS tissues. A novel JAM-A antagonist (JBS2) was designed and tested alone/in combination with the HER2 kinase inhibitor lapatinib, using SUM-225 cells in vitro and in vivo as validated DCIS models. Murine tumors were proteomically analyzed. JAM-A expression was moderate/high in 96% of DCIS patient tissues, versus 23% of normal adjacent tissues. JBS2 bound to recombinant JAM-A, inhibiting cell viability in SUM-225 cells and a primary DCIS culture in vitro and in a chick embryo xenograft model. JBS2 reduced tumor progression in in vivo models of SUM-225 cells engrafted into mammary fat pads or directly injected into the mammary ducts of NOD-SCID mice. Preliminary proteomic analysis revealed alterations in angiogenic and apoptotic pathways. High JAM-A expression in aggressive DCIS lesions and their sensitivity to treatment by a novel JAM-A antagonist support the viability of testing JAM-A as a novel therapeutic target in DCIS.
Collapse
Affiliation(s)
- Yvonne E. Smith
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
| | - Guannan Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (G.W.); (S.S.)
| | - Ciara L. Flynn
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
| | - Stephen F. Madden
- Data Science Centre, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland;
| | - Owen MacEneaney
- Department of Pathology, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (O.M.); (K.S.); (J.F.)
| | - Rodrigo G. B. Cruz
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
| | - Cathy E. Richards
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
| | - Hanne Jahns
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland;
| | - Marian Brennan
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland;
| | - Mattia Cremona
- Department of Medical Oncology, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (M.C.); (B.T.H.)
| | - Bryan T. Hennessy
- Department of Medical Oncology, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (M.C.); (B.T.H.)
| | - Katherine Sheehan
- Department of Pathology, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (O.M.); (K.S.); (J.F.)
| | - Alexander Casucci
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; (A.C.); (F.A.S.)
| | - Faizah A. Sani
- School of Medicine, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; (A.C.); (F.A.S.)
| | - Lance Hudson
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
| | - Joanna Fay
- Department of Pathology, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (O.M.); (K.S.); (J.F.)
| | - Sri H. Vellanki
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
| | - Siobhan O’Flaherty
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; (S.O.); (M.D.)
| | - Marc Devocelle
- Department of Chemistry, RCSI University of Medicine and Health Sciences, Dublin 2, Ireland; (S.O.); (M.D.)
| | - Arnold D. K. Hill
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
| | - Kieran Brennan
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (G.W.); (S.S.)
| | - Ann M. Hopkins
- Department of Surgery, RCSI University of Medicine and Health Sciences, Beaumont Hospital, Dublin 9, Ireland; (Y.E.S.); (C.L.F.); (R.G.B.C.); (C.E.R.); (L.H.); (S.H.V.); (A.D.K.H.); (K.B.)
- Correspondence: ; Tel.: +353-1-809-3858
| |
Collapse
|
29
|
A Transcriptional Link between HER2, JAM-A and FOXA1 in Breast Cancer. Cells 2022; 11:cells11040735. [PMID: 35203384 PMCID: PMC8870165 DOI: 10.3390/cells11040735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 01/03/2023] Open
Abstract
Overexpression of the human epidermal growth factor receptor-2 (HER2) is associated with aggressive disease in breast and certain other cancers. At a cellular level, the adhesion protein Junctional Adhesion Molecule-A (JAM-A) has been reported to regulate the expression of HER3 via a transcriptional pathway involving FOXA1. Since FOXA1 is also a suggested transcription factor for HER2, this study set out to determine if JAM-A regulates HER2 expression via a similar mechanism. An integrated tripartite approach was taken, involving cellular expression studies after targeted disruption of individual players in the putative pathway, in silico identification of relevant HER2 promoter regions and, finally, interrogation of cancer patient survival databases to deconstruct functionally important links between HER2, JAM-A and FOXA1 gene expression. The outcome of these investigations revealed a unidirectional pathway in which JAM-A expression transcriptionally regulates that of HER2 by influencing the binding of FOXA1 to a specific site in the HER2 gene promoter. Moreover, a correlation between JAM-A and HER2 gene expression was identified in 75% of a sample of 40 cancer types from The Cancer Genome Atlas, and coincident high mean mRNA expression of JAM-A, HER2 and FOXA1 was associated with poorer survival outcomes in HER2-positive (but not HER2-negative) patients with either breast or gastric tumors. These investigations provide the first evidence of a transcriptional pathway linking JAM-A, HER2 and FOXA1 in cancer settings, and support potential future pharmacological targeting of JAM-A as an upstream regulator of HER2.
Collapse
|