1
|
Thunuguntla VBSC, Gadanec LK, McGrath C, Griggs JL, Sinnayah P, Apostolopoulos V, Zulli A, Mathai ML. Caralluma fimbriata Extract Improves Vascular Dysfunction in Obese Mice Fed a High-Fat Diet. Nutrients 2024; 16:4296. [PMID: 39770917 PMCID: PMC11678847 DOI: 10.3390/nu16244296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Obesity is a risk factor for developing cardiovascular diseases (CVDs) by impairing normal vascular function. Natural products are gaining momentum in the clinical setting due to their high efficacy and low toxicity. Caralluma fimbriata extract (CFE) has been shown to control appetite and promote weight loss; however, its effect on vascular function remains poorly understood. This study aimed to determine the effect that CFE had on weight loss and vascular function in mice fed a high-fat diet (HFD) to induce obesity, comparing this effect to that of lorcaserin (LOR) (an anti-obesity pharmaceutical) treatment. METHODS C57BL/6J male mice (n = 80) were fed a 16-week HFD to induce obesity prior to being treated with CFE and LOR as standalone treatments or in conjunction. Body composition data, such as weight gain and fat mass content were measured, isometric tension analyses were performed on isolated abdominal aortic rings to determine relaxation responses to acetylcholine, and immunohistochemistry studies were utilized to determine the expression profiles on endothelial nitric oxide synthase (eNOS) and cell stress markers (nitrotyrosine (NT) and 78 kDa glucose-regulated protein (GRP78)) in the endothelial, medial and adventitial layers of aortic rings. RESULTS The results demonstrated that CFE and CFE + LOR treatments significantly reduced weight gain (17%; 24%) and fat mass deposition (14%; 16%). A HFD markedly reduced acetylcholine-mediated relaxation (p < 0.05, p < 0.0001) and eNOS expression (p < 0.0001, p < 0.01) and significantly increased NT (p < 0.05, p < 0.0001) and GRP78 (p < 0.05, p < 0.01, p < 0.001). Obese mice treated with CFE exhibited significantly improved ACh-induced relaxation responses, increased eNOS (p < 0.05, p < 0.01) and reduced NT (p < 0.01) and GRP78 (p < 0.05, p < 0.01) expression. CONCLUSIONS Thus, CFE alone or in combination with LOR could serve as an alternative strategy for preventing obesity-related cardiovascular diseases.
Collapse
Affiliation(s)
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.B.S.C.T.); (L.K.G.); (C.M.); (J.L.G.); (P.S.); (V.A.)
| | - Catherine McGrath
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.B.S.C.T.); (L.K.G.); (C.M.); (J.L.G.); (P.S.); (V.A.)
| | - Joanne Louise Griggs
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.B.S.C.T.); (L.K.G.); (C.M.); (J.L.G.); (P.S.); (V.A.)
| | - Puspha Sinnayah
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.B.S.C.T.); (L.K.G.); (C.M.); (J.L.G.); (P.S.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.B.S.C.T.); (L.K.G.); (C.M.); (J.L.G.); (P.S.); (V.A.)
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.B.S.C.T.); (L.K.G.); (C.M.); (J.L.G.); (P.S.); (V.A.)
| | - Michael L. Mathai
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (V.B.S.C.T.); (L.K.G.); (C.M.); (J.L.G.); (P.S.); (V.A.)
| |
Collapse
|
2
|
Domagała D, Data K, Szyller H, Farzaneh M, Mozdziak P, Woźniak S, Zabel M, Dzięgiel P, Kempisty B. Cellular, Molecular and Clinical Aspects of Aortic Aneurysm-Vascular Physiology and Pathophysiology. Cells 2024; 13:274. [PMID: 38334666 PMCID: PMC10854611 DOI: 10.3390/cells13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.
Collapse
Affiliation(s)
- Dominika Domagała
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Krzysztof Data
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Hubert Szyller
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran;
| | - Paul Mozdziak
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27607, USA;
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
| | - Sławomir Woźniak
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Division of Anatomy and Histology, University of Zielona Góra, 65-046 Zielona Góra, Poland
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.Z.); (P.D.)
- Department of Physiotherapy, University School of Physical Education, 51-612 Wroclaw, Poland
| | - Bartosz Kempisty
- Division of Anatomy, Department of Human Morphology and Embryology, Wroclaw Medical University, 50-368 Wroclaw, Poland; (D.D.); (K.D.); (H.S.); (S.W.)
- Physiology Graduate Faculty, North Carolina State University, Raleigh, NC 27613, USA
- Institute of Veterinary Medicine, Nicolaus Copernicus University, 87-100 Torun, Poland
- Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 602 00 Brno, Czech Republic
| |
Collapse
|
3
|
Gadanec LK, Swiderski J, Apostolopoulos V, Kelaidonis K, Vidali VP, Canko A, Moore GJ, Matsoukas JM, Zulli A. Existence of Quantum Pharmacology in Sartans: Evidence in Isolated Rabbit Iliac Arteries. Int J Mol Sci 2023; 24:17559. [PMID: 38139391 PMCID: PMC10744031 DOI: 10.3390/ijms242417559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/09/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Quantum pharmacology introduces theoretical models to describe the possibility of ultra-high dilutions to produce biological effects, which may help to explain the placebo effect observed in hypertensive clinical trials. To determine this within physiology and to evaluate novel ARBs, we tested the ability of known angiotensin II receptor blockers (ARBs) (candesartan and telmisartan) used to treat hypertension and other cardiovascular diseases, as well as novel ARBs (benzimidazole-N-biphenyl tetrazole (ACC519T), benzimidazole-bis-N,N'-biphenyl tetrazole (ACC519T(2)) and 4-butyl-N,N0-bis[[20-2Htetrazol-5-yl)biphenyl-4-yl]methyl)imidazolium bromide (BV6(K+)2), and nirmatrelvir (the active ingredient in Paxlovid) to modulate vascular contraction in iliac rings from healthy male New Zealand White rabbits in responses to various vasopressors (angiotensin A, angiotensin II and phenylephrine). Additionally, the hemodynamic effect of ACC519T and telmisartan on mean arterial pressure in conscious rabbits was determined, while the ex vivo ability of BV6(K+)2 to activate angiotensin-converting enzyme-2 (ACE2) was also investigated. We show that commercially available and novel ARBs can modulate contraction responses at ultra-high dilutions to different vasopressors. ACC519T produced a dose-dependent reduction in rabbit mean arterial pressure while BV6(K+)2 significantly increased ACE2 metabolism. The ability of ARBs to inhibit contraction responses even at ultra-low concentrations provides evidence of the existence of quantum pharmacology. Furthermore, the ability of ACC519T and BV6(K+)2 to modulate blood pressure and ACE2 activity, respectively, indicates their therapeutic potential against hypertension.
Collapse
Affiliation(s)
- Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| | - Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
- Immunology Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC 3021, Australia
| | | | - Veroniki P. Vidali
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 153 41 Athens, Greece; (V.P.V.); (A.C.)
| | - Aleksander Canko
- Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research “Demokritos”, Ag. Paraskevi, 153 41 Athens, Greece; (V.P.V.); (A.C.)
| | - Graham J. Moore
- Pepmetics Inc., 772 Murphy Place, Victoria, BC V6Y 3H4, Canada;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - John M. Matsoukas
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
- NewDrug PC, Patras Science Park, 26 504 Patras, Greece;
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Chemistry, University of Patras, 265 04 Patras, Greece
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia; (L.K.G.); (J.S.); (V.A.)
| |
Collapse
|