1
|
Jaftha M, Robertson F, van Rensburg SJ, Kidd M, van Toorn R, Kemp MC, Johannes C, Moremi KE, Whati L, Kotze MJ, Engel-Hills P. White Matter Lesion Volumes on 3-T MRI in People With MS Who Had Followed a Diet and Lifestyle Program for More Than 10 Years. Mult Scler Int 2024; 2024:8818934. [PMID: 39524062 PMCID: PMC11548950 DOI: 10.1155/2024/8818934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Cerebral white matter lesion (WML) formation in people with multiple sclerosis (pwMS) is linked to the death of myelin-producing oligodendrocytes. Current MS treatment strategies focus on limiting WML accumulation and disability. Using a pathology-supported genetic testing (PSGT) program, we identified specific risk factors for MS, categorized as deficiencies and aggravators. We developed a novel clinical methodology to mitigate these risk factors, including personalized lifestyle interventions and optimization of cerebral nutrients to prevent oligodendrocyte demise and promote remyelination. Objective: To conduct a pilot case-control study over a 10-year period to ascertain whether the PSGT Program can reduce or prevent WML formation in pwMS. Methods: MRI was performed at baseline as well as after an interval period of at least 10 years or longer in 22 pwMS. WML volumes were determined using Sequence Adaptive Multimodal SEGmentation (SAMSEG) software, part of FreeSurfer 7.2. Other variables included age at MRI, disease duration, disability status, and medication. Results: PwMS (n = 13) who had followed the PSGT program for more than 10 years, had significantly smaller lesion volumes (mm3) compared to pwMS who did not adhere to the program (n = 9) (4950 ± 5303 vs. 17934 ± 11139; p = 0.002). WML volumes were significantly associated (p = 0.02) with disability (EDSS) but not with age (p = 0.350), disease duration (p = 0.709), or Interferon-β treatment (p = 0.70). Conclusion: Dietary and lifestyle changes may lower the risk of developing cerebral WMLs in pwMS and potentially slow disease progression. Larger studies are required to confirm the effectiveness of such interventions in pwMS.
Collapse
Affiliation(s)
- Mariaan Jaftha
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa
- Cape University Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frances Robertson
- Cape University Body Imaging Centre, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Susan J. van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Martin Kidd
- Centre for Statistical Consultation, Department of Statistics and Actuarial Sciences, Stellenbosch University, Private Bag X1, Matieland 7602, Cape Town, South Africa
| | - Ronald van Toorn
- Department of Pediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Merlisa C. Kemp
- Department of Medical Imaging and Therapeutic Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, Cape Town, South Africa
- Medical Imaging, Department of Health and Care Professions, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Clint Johannes
- Department of Internal Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg 7500, Cape Town, South Africa
| | - Kelebogile E. Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, and National Health Laboratory Service (NHLS), Cape Town, South Africa
| | | | - Maritha J. Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, and National Health Laboratory Service (NHLS), Cape Town, South Africa
| | - Penelope Engel-Hills
- Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Cape Town, South Africa
| |
Collapse
|
2
|
Johannes C, Moremi KE, Kemp MC, Whati L, Engel-Hills P, Kidd M, van Toorn R, Jaftha M, van Rensburg SJ, Kotze MJ. Pathology-supported genetic testing presents opportunities for improved disability outcomes in multiple sclerosis. Per Med 2023; 20:107-130. [PMID: 37194915 DOI: 10.2217/pme-2022-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Background: Lipid metabolism may impact disability in people with multiple sclerosis (pwMS). Methods: Fifty-one pwMS entered an ultrasound and MRI study, of whom 19 had followed a pathology-supported genetic testing program for more than 10 years (pwMS-ON). Genetic variation, blood biochemistry, vascular blood flow velocities, diet and exercise were investigated. Results: pwMS-ON had significantly lower (p < 0.01) disability (Expanded Disability Status Scale) than pwMS not on the program (1.91 ± 0.75 vs 3.87 ± 2.32). A genetic variant in the lipid transporter FABP2 gene (rs1799883; 2445G>A, A54T) was significantly associated (p < 0.01) with disability in pwMS not on the program, but not in pwMS-ON (p = 0.88). Vascular blood flow velocities were lower in the presence of the A-allele. Conclusion: Pathology-supported genetic testing may provide guidance for lifestyle interventions with a significant impact on improved disability in pwMS.
Collapse
Affiliation(s)
- Clint Johannes
- Department of Internal Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Kelebogile E Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, & National Health Laboratory Service (NHLS), Cape Town, 7500, South Africa
| | - Merlisa C Kemp
- Department of Medical Imaging & Therapeutic Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Bellville campus, Cape Town, 7530, South Africa
| | | | - Penelope Engel-Hills
- Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Cape Town, 7530, South Africa
| | - Martin Kidd
- Department of Statistics & Actuarial Sciences, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Ronald van Toorn
- Department of Pediatrics & Child Health, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Mariaan Jaftha
- Department of Medical Imaging & Therapeutic Sciences, Faculty of Health & Wellness Sciences, Cape Peninsula University of Technology, Bellville, 7530, South Africa
- Cape University Body Imaging Centre, Faculty of Human Biology, University of Cape Town, Cape Town, 7925 South Africa
| | - Susan J van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, 7500, South Africa
| | - Maritha J Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine & Health Sciences, Stellenbosch University, & National Health Laboratory Service (NHLS), Cape Town, 7500, South Africa
| |
Collapse
|
3
|
Starčević Čizmarević N, Ćurko-Cofek B, Barac-Latas V, Peterlin B, Ristić S. Lack of association between C282Y and H63D polymorphisms in the hemochromatosis gene and risk of multiple sclerosis: A meta-analysis. Biomed Rep 2022; 16:12. [PMID: 34987796 DOI: 10.3892/br.2021.1495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Increasing evidence supports the potential role of iron metabolism in multiple sclerosis (MS). Previous studies examining the association between polymorphisms of the hemochromatosis gene (HFE) and susceptibility to MS have yielded inconsistent results. In the present study, a meta-analysis of 7 studies was performed conducted in populations of Caucasian origin using the Comprehensive Meta-analysis 3.0 software. The strength of association between the C282Y and H63D polymorphisms in HFE and MS risk was estimated by odds ratios with 95% confidence intervals. Cochran's Q statistic and I2 tests were applied to quantify heterogeneity between studies. An Egger's test was used to estimate publication bias. The C282Y and H63D polymorphisms had no significant association with increased MS risk (all P≥0.05) in the following genetic comparison models: Dominant model (YY + CY vs. CC or DD + HD vs. HH) and allele contrast (Y vs. C or D vs. H). No apparent publication bias or significant heterogeneity was found between studies. These results suggest that the HFE polymorphisms C282Y and H63D are not associated with susceptibility to MS in populations of Caucasian origin. Further studies should be performed in a larger series of MS patients to evaluate the contribution of HFE and other genetic variants associated with iron regulation in the development and progression of MS.
Collapse
Affiliation(s)
- Nada Starčević Čizmarević
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Božena Ćurko-Cofek
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Vesna Barac-Latas
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Smiljana Ristić
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| |
Collapse
|
4
|
van Rensburg SJ, Peeters AV, van Toorn R, Schoeman J, Moremi KE, van Heerden CJ, Kotze MJ. Identification of an iron-responsive subtype in two children diagnosed with relapsing-remitting multiple sclerosis using whole exome sequencing. Mol Genet Metab Rep 2019; 19:100465. [PMID: 30963028 PMCID: PMC6434495 DOI: 10.1016/j.ymgmr.2019.100465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/16/2019] [Accepted: 03/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Multiple sclerosis is a disorder related to demyelination of axons. Iron is an essential cofactor in myelin synthesis. Previously, we described two children (males of mixed ancestry) with relapsing-remitting multiple sclerosis (RRMS) where long-term remission was achieved by regular iron supplementation. A genetic defect in iron metabolism was postulated, suggesting that more advanced genetic studies could shed new light on disease pathophysiology related to iron. METHODS Whole exome sequencing (WES) was performed to identify causal pathways. Blood tests were performed over a 10 year period to monitor the long-term effect of a supplementation regimen. Clinical wellbeing was assessed quarterly by a pediatric neurologist and regular feedback was obtained from the schoolteachers. RESULTS WES revealed gene variants involved in iron absorption and transport, in the transmembrane protease, serine 6 (TMPRSS6) and transferrin (TF) genes; multiple genetic variants in CUBN, which encodes cubilin (a receptor involved in the absorption of vitamin B12 as well as the reabsorption of transferrin-bound iron and vitamin D in the kidneys); SLC25A37 (involved in iron transport into mitochondria) and CD163 (a scavenger receptor involved in hemorrhage resolution). Variants were also found in COQ3, involved with synthesis of Coenzyme Q10 in mitochondria. Neither of the children had the HLA-DRB1*1501 allele associated with increased genetic risk for MS, suggesting that the genetic contribution of iron-related genetic variants may be instrumental in childhood MS. In both children the RRMS has remained stable without activity over the last 10 years since initiation of nutritional supplementation and maintenance of normal iron levels, confirming the role of iron deficiency in disease pathogenesis in these patients. CONCLUSION Our findings highlight the potential value of WES to identify heritable risk factors that could affect the reabsorption of transferrin-bound iron in the kidneys causing sustained iron loss, together with inhibition of vitamin B12 absorption and vitamin D reabsorption (CUBN) and iron transport into mitochondria (SLC25A37) as the sole site of heme synthesis. This supports a model for RRMS in children with an apparent iron-deficient biochemical subtype of MS, with oligodendrocyte cell death and impaired myelination possibly caused by deficits of energy- and antioxidant capacity in mitochondria.
Collapse
Key Words
- CNS, central nervous system
- CoQ, Coenzyme Q
- DFO, desferroxamine mesylate
- DIS, dissemination in space
- DIT, dissemination in time
- DMT, disease modifying therapy
- EDSS, Expanded Disability Status Scale
- ETC, electron transport chain
- GWAS, genome-wide association study
- Genetic variants
- HDL, high density lipoprotein
- HERV-W, human endogenous retrovirus W
- HLA, human leukocyte antigen
- HREC, human research ethics committee
- IPMSSG, International Pediatric Multiple Sclerosis Study Group
- IRE, iron-response element
- Iron deficiency
- MGA1, juvenile hereditary megaloblastic anemia 1
- MRI, magnetic resonance imaging
- MS, Multiple sclerosis
- MSRV, MS-associated retrovirus
- MST1R, macrophage stimulating-1 receptor
- Mitochondria
- Oxidative stress
- PSGT, pathology supported genetic testing
- Pediatric onset multiple sclerosis
- ROS, reactive oxygen species
- RRMS, relapsing-remitting MS
- SAMe, S-adenosyl methionine
- SDHB, iron-protein subunit of Complex II
- TF, transferrin
- TMPRSS6, transmembrane protease, serine 6
- WES, whole exome sequencing
- Whole exome sequencing
Collapse
Affiliation(s)
- Susan J. van Rensburg
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Armand V. Peeters
- Division of Anatomical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ronald van Toorn
- Paediatric Medicine and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Johan Schoeman
- Paediatric Medicine and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Kelebogile E. Moremi
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carel J. van Heerden
- Central Analytical Facility (CAF), DNA Sequencing Unit, Stellenbosch University, Stellenbosch, South Africa
| | - Maritha J. Kotze
- Division of Chemical Pathology, Department of Pathology, Faculty of Medicine and Health Sciences, Stellenbosch University, National Health Laboratory Service (NHLS), Cape Town, South Africa
| |
Collapse
|
5
|
Black LJ, Bowe GS, Pereira G, Lucas RM, Dear K, van der Mei I, Sherriff JL. Higher Non-processed Red Meat Consumption Is Associated With a Reduced Risk of Central Nervous System Demyelination. Front Neurol 2019; 10:125. [PMID: 30837942 PMCID: PMC6389668 DOI: 10.3389/fneur.2019.00125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
The evidence associating red meat consumption and risk of multiple sclerosis is inconclusive. We tested associations between red meat consumption and risk of a first clinical diagnosis of central nervous system demyelination (FCD), often presaging a diagnosis of multiple sclerosis. We used food frequency questionnaire data from the 2003–2006 Ausimmune Study, an incident, matched, case-control study examining environmental risk factors for FCD. We calculated non-processed and processed red meat density (g/1,000 kcal/day). Conditional logistic regression models (with participants matched on age, sex, and study region) were used to estimate odds ratios (ORs), 95% confidence intervals (95% CI) and p-values for associations between non-processed (n = 689, 250 cases, 439 controls) and processed (n = 683, 248 cases, 435 controls) red meat density and risk of FCD. Models were adjusted for history of infectious mononucleosis, serum 25-hydroxyvitamin D concentrations, smoking, race, education, body mass index and dietary misreporting. A one standard deviation increase in non-processed red meat density (22 g/1,000 kcal/day) was associated with a 19% reduced risk of FCD (AOR = 0.81; 95%CI 0.68, 0.97; p = 0.02). When stratified by sex, higher non-processed red meat density (per 22 g/1,000 kcal/day) was associated with a 26% reduced risk of FCD in females (n = 519; AOR = 0.74; 95%CI 0.60, 0.92; p = 0.01). There was no statistically significant association between non-processed red meat density and risk of FCD in males (n = 170). We found no statistically significant association between processed red meat density and risk of FCD. Further investigation is warranted to understand the important components of a diet that includes non-processed red meat for lower FCD risk.
Collapse
Affiliation(s)
- Lucinda J Black
- School of Public Health, Curtin University, Perth, WA, Australia
| | - Gabrielle S Bowe
- School of Public Health, Curtin University, Perth, WA, Australia
| | - Gavin Pereira
- School of Public Health, Curtin University, Perth, WA, Australia.,Telethon Kids Institute, University of Western Australia, Perth, WA, Australia
| | - Robyn M Lucas
- Research School of Population Health, National Centre for Epidemiology and Population Health, The Australian National University, Canberra, ACT, Australia.,Centre for Ophthalmology and Visual Science, University of Western Australia, Perth, WA, Australia
| | - Keith Dear
- School of Public Health, University of Adelaide, Adelaide, SA, Australia
| | - Ingrid van der Mei
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Jill L Sherriff
- School of Public Health, Curtin University, Perth, WA, Australia
| | | |
Collapse
|
6
|
van Rensburg SJ, van Toorn R, Moremi KE, Peeters AV, Oguniyi A, Kotze MJ. Multiple sclerosis-like diagnosis as a complication of previously treated malaria in an iron and vitamin D deficient Nigerian patient. Metab Brain Dis 2016; 31:197-204. [PMID: 26746433 DOI: 10.1007/s11011-015-9788-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 12/28/2015] [Indexed: 02/06/2023]
Abstract
In contrast to malaria, multiple sclerosis (MS) is infrequently found in Black Africans. We describe a 29 year old Nigerian female who developed an MS-like condition with symptoms similar to relapsing-remitting MS following malaria infection, leading to a diagnosis of MS. However, absence of hyperintense lesions in the brain and spinal cord presented a conundrum since not all the diagnostic criteria for MS were met. Pathology supported genetic testing (PSGT) was applied to combine family and personal medical history, lifestyle factors, and biochemical test results for interpretation of genetic findings. This approach provides a means of identifying risk factors for different subtypes of demyelinating disease. The patient was subsequently treated according to an individualised intervention program including nutritional supplementation as well as a change in diet and lifestyle. Deficiencies of vitamin B12, iron and vitamin D were addressed. Genetic analysis revealed absence of the HLA DRB1*1501 allele, considered to be the most prominent genetic risk factor for MS. Extended mutation analysis identified variations in three genes in the folate-vitamin B12 metabolic pathway, which could have increased the patient's sensitivity to the antifolate drugs used to treat the malaria. A glutathione-S-transferase GSTM1 null allele, previously associated with neurological complications of malaria, was also detected. Furthermore, a heterozygous variation in the iron-related transmembrane protease serine 6 (TMPRSS6) gene, rs855791 was found, which could have impacted the patient's iron status following two successive blood donations and exposure to malaria preceding the MS diagnosis. PSGT identifies relevant risk factors for demyelinating disorders resembling MS and uses the data for individualised treatment programs, and to systematically build a database that can provide evidence in large patient cohorts. Follow-up investigations may be suggested, such as whole exome sequencing in selected cases, to ensure that remyelination and restoration of function are achieved.
Collapse
Affiliation(s)
- Susan J van Rensburg
- Chemical Pathology, National Health Laboratory Service (NHLS) and Stellenbosch University, Cape Town, South Africa.
| | - Ronald van Toorn
- Paediatric Medicine and Child Health, Stellenbosch University, Cape Town, South Africa
| | - Kelebogile E Moremi
- Chemical Pathology, National Health Laboratory Service (NHLS) and Stellenbosch University, Cape Town, South Africa
| | - Armand V Peeters
- Anatomical Pathology, Stellenbosch University, Cape Town, South Africa
| | - Adesola Oguniyi
- Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Maritha J Kotze
- Anatomical Pathology, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
7
|
van Rensburg SJ, Kotze MJ, van Toorn R. The conundrum of iron in multiple sclerosis--time for an individualised approach. Metab Brain Dis 2012; 27:239-53. [PMID: 22422107 PMCID: PMC3402663 DOI: 10.1007/s11011-012-9290-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 02/23/2012] [Indexed: 11/21/2022]
Abstract
Although the involvement of immune mechanisms in multiple sclerosis (MS) is undisputed, some argue that there is insufficient evidence to support the hypothesis that MS is an autoimmune disease, and that the difference between immune- and autoimmune disease mechanisms has yet to be clearly delineated. Uncertainties surrounding MS disease pathogenesis and the modest efficacy of currently used disease modifying treatments (DMTs) in the prevention of disability, warrant the need to explore other possibilities. It is evident from the literature that people diagnosed with MS differ widely in symptoms and clinical outcome--some patients have a benign disease course over many years without requiring any DMTs. Attempting to include all patients into a single entity is an oversimplification and may obscure important observations with therapeutic consequences. In this review we advocate an individualised approach named Pathology Supported Genetic Testing (PSGT), in which genetic tests are combined with biochemical measurements in order to identify subgroups of patients requiring different treatments. Iron dysregulation in MS is used as an example of how this approach may benefit patients. The theory that iron deposition in the brain contributes to MS pathogenesis has caused uncertainty among patients as to whether they should avoid iron. However, the fact that a subgroup of people diagnosed with MS show clinical improvement when they are on iron supplementation emphasises the importance of individualised therapy, based on genetic and biochemical determinations.
Collapse
Affiliation(s)
- Susan J van Rensburg
- Division of Chemical Pathology, National Health Laboratory Service and University of Stellenbosch, Tygerberg Hospital, PO Box 19113, 7505 Tygerberg, South Africa.
| | | | | |
Collapse
|
8
|
Gemmati D, Zeri G, Orioli E, De Gaetano FE, Salvi F, Bartolomei I, D'Alfonso S, Dall'osso C, Leone MA, Singh AV, Asselta R, Zamboni P. Polymorphisms in the genes coding for iron binding and transporting proteins are associated with disability, severity, and early progression in multiple sclerosis. BMC MEDICAL GENETICS 2012; 13:70. [PMID: 22883388 PMCID: PMC3490944 DOI: 10.1186/1471-2350-13-70] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 07/30/2012] [Indexed: 02/04/2023]
Abstract
BACKGROUND Iron involvement/imbalance is strongly suspected in multiple sclerosis (MS) etiopathogenesis, but its role is quite debated. Iron deposits encircle the veins in brain MS lesions, increasing local metal concentrations in brain parenchyma as documented by magnetic resonance imaging and histochemical studies. Conversely, systemic iron overload is not always observed. We explored the role of common single nucleotide polymorphisms (SNPs) in the main iron homeostasis genes in MS patients. METHODS By the pyrosequencing technique, we investigated 414 MS cases [Relapsing-remitting (RR), n=273; Progressive, n=141, of which: Secondary (SP), n=103 and Primary (PP), n=38], and 414 matched healthy controls. Five SNPs in 4 genes were assessed: hemochromatosis (HFE: C282Y, H63D), ferroportin (FPN1: -8CG), hepcidin (HEPC: -582AG), and transferrin (TF: P570S). RESULTS The FPN1-8GG genotype was overrepresented in the whole MS population (OR=4.38; 95%CI, 1.89-10.1; P<0.0001) and a similar risk was found among patients with progressive forms. Conversely, the HEPC -582GG genotype was overrepresented only in progressive forms (OR=2.53; 95%CI, 1.34-4.78; P=0.006) so that SP and PP versus RR yielded significant outputs (P=0.009). For almost all SNPs, MS disability score (EDSS), severity score (MSSS), as well as progression index (PI) showed a significant increase when comparing homozygotes versus individuals carrying other genotypes: HEPC -582GG (EDSS, 4.24±2.87 vs 2.78±2.1; P=0.003; MSSS, 5.6±3.06 vs 3.79±2.6; P=0.001); FPN1-8GG (PI, 1.11±2.01 vs 0.6±1.31; P=0.01; MSSS, 5.08±2.98 vs 3.85±2.8; P=0.01); HFE 63DD (PI, 1.63±2.6 vs 0.6±0.86; P=0.009). Finally, HEPC -582G-carriers had a significantly higher chance to switch into the progressive form (HR=3.55; 1.83-6.84; log-rank P=0.00006). CONCLUSIONS Polymorphisms in the genes coding for iron binding and transporting proteins, in the presence of local iron overload, might be responsible for suboptimal iron handling. This might account for the significant variability peculiar to MS phenotypes, particularly affecting MS risk and progression paving the way for personalized pharmacogenetic applications in the clinical practice.
Collapse
Affiliation(s)
- Donato Gemmati
- Department of Biomedical Sciences & Advanced Therapies, Hematology Unit-Center Hemostasis & Thrombosis, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Williams R, Buchheit CL, Berman NEJ, LeVine SM. Pathogenic implications of iron accumulation in multiple sclerosis. J Neurochem 2011; 120:7-25. [PMID: 22004421 DOI: 10.1111/j.1471-4159.2011.07536.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the CNS of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, that is, contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, whereas in white matter, pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: (i) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; (ii) excess intracellular iron deposits could promote mitochondria dysfunction; and (iii) improperly managed iron could catalyze the production of damaging reactive oxygen species (ROS). The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here, we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Rachel Williams
- Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
10
|
Bettencourt A, Silva AM, Santos E, Gomes S, Mendonça D, Costa PP, Faustino P, Silva BM. HFE gene polymorphisms and severity in Portuguese patients with multiple sclerosis. Eur J Neurol 2011; 18:663-6. [PMID: 20586792 DOI: 10.1111/j.1468-1331.2010.03109.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND High iron concentrations have been reported in oligodendrocytes, myelin and macrophages in multiple sclerosis (MS) lesions. It has been proposed that HFE gene polymorphisms could have a role in MS. METHODS The C282Y and H63D HFE variants frequencies were determined in 373 patients with MS and compared with a normal population. RESULTS No significant association was found between HFE polymorphisms and disease susceptibility. An analysis of the association of genotypes with disease severity was performed, and the C282Y allele was more frequent in the aggressive group. CONCLUSIONS Patients carrying the C282Y variant seem to have a worse prognosis.
Collapse
Affiliation(s)
- A Bettencourt
- UMIB - Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Porto, Portugal.
| | | | | | | | | | | | | | | |
Collapse
|