1
|
Shevlyakov AD, Kolesnikova TO, de Abreu MS, Petersen EV, Yenkoyan KB, Demin KA, Kalueff AV. Forward Genetics-Based Approaches to Understanding the Systems Biology and Molecular Mechanisms of Epilepsy. Int J Mol Sci 2023; 24:ijms24065280. [PMID: 36982355 PMCID: PMC10049737 DOI: 10.3390/ijms24065280] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
Epilepsy is a highly prevalent, severely debilitating neurological disorder characterized by seizures and neuronal hyperactivity due to an imbalanced neurotransmission. As genetic factors play a key role in epilepsy and its treatment, various genetic and genomic technologies continue to dissect the genetic causes of this disorder. However, the exact pathogenesis of epilepsy is not fully understood, necessitating further translational studies of this condition. Here, we applied a computational in silico approach to generate a comprehensive network of molecular pathways involved in epilepsy, based on known human candidate epilepsy genes and their established molecular interactors. Clustering the resulting network identified potential key interactors that may contribute to the development of epilepsy, and revealed functional molecular pathways associated with this disorder, including those related to neuronal hyperactivity, cytoskeletal and mitochondrial function, and metabolism. While traditional antiepileptic drugs often target single mechanisms associated with epilepsy, recent studies suggest targeting downstream pathways as an alternative efficient strategy. However, many potential downstream pathways have not yet been considered as promising targets for antiepileptic treatment. Our study calls for further research into the complexity of molecular mechanisms underlying epilepsy, aiming to develop more effective treatments targeting novel putative downstream pathways of this disorder.
Collapse
Affiliation(s)
- Anton D. Shevlyakov
- Graduate Program in Bioinformatics and Genomics, Sirius University of Science and Technology, 354340 Sochi, Russia
- Neuroscience Program, Sirius University of Science and Technology, 354340 Sochi, Russia
| | | | | | | | - Konstantin B. Yenkoyan
- Neuroscience Laboratory of COBRAIN Center for Fundamental Brain Research, and Biochemistry Department, Yerevan State Medical University named after M. Heratsi, Yerevan 0025, Armenia
| | - Konstantin A. Demin
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 194021 St. Petersburg, Russia
- Correspondence: (K.A.D.); (A.V.K.); Tel.: +7-240-899-9571 (A.V.K.)
| | - Allan V. Kalueff
- Neuroscience Program, Sirius University of Science and Technology, 354340 Sochi, Russia
- Neuroscience Laboratory of COBRAIN Center for Fundamental Brain Research, and Biochemistry Department, Yerevan State Medical University named after M. Heratsi, Yerevan 0025, Armenia
- Institute of Translational Biomedicine, St. Petersburg State University, 199034 St. Petersburg, Russia
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, 194021 St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, 197758 Pesochny, Russia
- Neuroscience Group, Ural Federal University, 620002 Ekaterinburg, Russia
- Laboratory of Biopsychiatry, Scientific Research Institute of Physiology and Basic Medicine, 630117 Novosibirsk, Russia
- Correspondence: (K.A.D.); (A.V.K.); Tel.: +7-240-899-9571 (A.V.K.)
| |
Collapse
|
2
|
Alenezi AF, Almelahi MA, Fekih-Romdhana F, Jahrami HA. Delay in diagnosing a patient with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome who presented with status epilepticus and lactic acidosis: a case report. J Med Case Rep 2022; 16:361. [PMID: 36210452 PMCID: PMC9549677 DOI: 10.1186/s13256-022-03613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/16/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome is a rare mitochondrial genetic disorder that can present with a variety of clinical manifestations, including stroke, hearing loss, seizures, and lactic acidosis. The most common genetic mutation associated with this syndrome is M.3243A>G. The main underlying mechanism of the disease relates to protein synthesis, energy depletion, and nitric oxide deficiency. Controlling disease complications and improving patient quality of life are the primary aims of treatment options. Case presentation A 28-year-old Arabic female visited Al-Amiri Hospital in Kuwait. The patient was newly diagnosed with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome following her admission as a case of status epilepticus requiring further investigation. The patient’s seizures were controlled, and she was evaluated to rule out the most serious complications by carrying out appropriate clinical, laboratory, and radiological imaging. The patient was discharged from the hospital after 2 weeks with a follow-up plan. Conclusion This case report emphasizes the importance of considering mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episode syndrome as a potential cause of status epilepticus with lactic acidosis in a young female patient with a past history of stroke-like episodes. It also stresses the most important workup to rule out every possible life-threatening complication to improve patients’ lives.
Collapse
|
3
|
Mitochondrial stroke-like episodes: the search for new therapies. Pharmacol Res 2022; 180:106228. [DOI: 10.1016/j.phrs.2022.106228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/21/2022]
|
4
|
Turton N, Bowers N, Khajeh S, Hargreaves IP, Heaton RA. Coenzyme Q10 and the exclusive club of diseases that show a limited response to treatment. Expert Opin Orphan Drugs 2021. [DOI: 10.1080/21678707.2021.1932459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Nathan Bowers
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Sam Khajeh
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Iain P Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| | - Robert A Heaton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool UK
| |
Collapse
|
5
|
Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat Rev Neurol 2020; 16:674-688. [PMID: 33077944 DOI: 10.1038/s41582-020-0409-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Over the last decade, advances in genetics, neuroimaging and EEG have enabled the aetiology of epilepsy to be identified earlier in the disease course than ever before. At the same time, progress in the study of experimental models of epilepsy has provided a better understanding of the mechanisms underlying the condition and has enabled the identification of therapies that target specific aetiologies. We are now witnessing the impact of these advances in our daily clinical practice. Thus, now is the time for a paradigm shift in epilepsy treatment from a reactive attitude, treating patients after the onset of epilepsy and the initiation of seizures, to a proactive attitude that is more broadly integrated into a 'P4 medicine' approach. This P4 approach, which is personalized, predictive, preventive and participatory, puts patients at the centre of their own care and, ultimately, aims to prevent the onset of epilepsy. This aim will be achieved by adapting epilepsy treatments not only to a given syndrome but also to a given patient and moving from the usual anti-seizure treatments to personalized treatments designed to target specific aetiologies. In this Review, we present the current state of this ongoing revolution, emphasizing the impact on clinical practice.
Collapse
|
6
|
Romoli M, Mazzocchetti P, D'Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol 2020; 17:926-946. [PMID: 30592252 PMCID: PMC7052829 DOI: 10.2174/1570159x17666181227165722] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
After more than a century from its discovery, valproic acid (VPA) still represents one of the most efficient antiepi-leptic drugs (AEDs). Pre and post-synaptic effects of VPA depend on a very broad spectrum of actions, including the regu-lation of ionic currents and the facilitation of GABAergic over glutamatergic transmission. As a result, VPA indirectly mod-ulates neurotransmitter release and strengthens the threshold for seizure activity. However, even though participating to the anticonvulsant action, such mechanisms seem to have minor impact on epileptogenesis. Nonetheless, VPA has been reported to exert anti-epileptogenic effects. Epigenetic mechanisms, including histone deacetylases (HDACs), BDNF and GDNF modulation are pivotal to orientate neurons toward a neuroprotective status and promote dendritic spines organization. From such broad spectrum of actions comes constantly enlarging indications for VPA. It represents a drug of choice in child and adult with epilepsy, with either general or focal seizures, and is a consistent and safe IV option in generalized convulsive sta-tus epilepticus. Moreover, since VPA modulates DNA transcription through HDACs, recent evidences point to its use as an anti-nociceptive in migraine prophylaxis, and, even more interestingly, as a positive modulator of chemotherapy in cancer treatment. Furthermore, VPA-induced neuroprotection is under investigation for benefit in stroke and traumatic brain injury. Hence, VPA has still got its place in epilepsy, and yet deserves attention for its use far beyond neurological diseases. In this review, we aim to highlight, with a translational intent, the molecular basis and the clinical indications of VPA.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Petra Mazzocchetti
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Renato D'Alonzo
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Victoria Elisa Rinaldi
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila - San Salvatore Hospital, L'Aquila, Italy
| | - Paolo Calabresi
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,IRCCS "Santa Lucia", Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
7
|
Orsucci D, Ienco EC, Siciliano G, Mancuso M. Mitochondrial disorders and drugs: what every physician should know. Drugs Context 2019; 8:212588. [PMID: 31391854 PMCID: PMC6668504 DOI: 10.7573/dic.212588] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial disorders are a group of metabolic conditions caused by impairment of the oxidative phosphorylation system. There is currently no clear evidence supporting any pharmacological interventions for most mitochondrial disorders, except for coenzyme Q10 deficiencies, Leber hereditary optic neuropathy, and mitochondrial neurogastrointestinal encephalomyopathy. Furthermore, some drugs may potentially have detrimental effects on mitochondrial dysfunction. Drugs known to be toxic for mitochondrial functions should be avoided whenever possible. Mitochondrial patients needing one of these treatments should be carefully monitored, clinically and by laboratory exams, including creatine kinase and lactate. In the era of molecular and ‘personalized’ medicine, many different physicians (not only neurologists) should be aware of the basic principles of mitochondrial medicine and its therapeutic implications. Multicenter collaboration is essential for the advancement of therapy for mitochondrial disorders. Whenever possible, randomized clinical trials are necessary to establish efficacy and safety of drugs. In this review we discuss in an accessible way the therapeutic approaches and perspectives in mitochondrial disorders. We will also provide an overview of the drugs that should be used with caution in these patients.
Collapse
|
8
|
Kahn-Kirby AH, Amagata A, Maeder CI, Mei JJ, Sideris S, Kosaka Y, Hinman A, Malone SA, Bruegger JJ, Wang L, Kim V, Shrader WD, Hoff KG, Latham JC, Ashley EA, Wheeler MT, Bertini E, Carrozzo R, Martinelli D, Dionisi-Vici C, Chapman KA, Enns GM, Gahl W, Wolfe L, Saneto RP, Johnson SC, Trimmer JK, Klein MB, Holst CR. Targeting ferroptosis: A novel therapeutic strategy for the treatment of mitochondrial disease-related epilepsy. PLoS One 2019; 14:e0214250. [PMID: 30921410 PMCID: PMC6438538 DOI: 10.1371/journal.pone.0214250] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Mitochondrial disease is a family of genetic disorders characterized by defects in the generation and regulation of energy. Epilepsy is a common symptom of mitochondrial disease, and in the vast majority of cases, refractory to commonly used antiepileptic drugs. Ferroptosis is a recently-described form of iron- and lipid-dependent regulated cell death associated with glutathione depletion and production of lipid peroxides by lipoxygenase enzymes. Activation of the ferroptosis pathway has been implicated in a growing number of disorders, including epilepsy. Given that ferroptosis is regulated by balancing the activities of glutathione peroxidase-4 (GPX4) and 15-lipoxygenase (15-LO), targeting these enzymes may provide a rational therapeutic strategy to modulate seizure. The clinical-stage therapeutic vatiquinone (EPI-743, α-tocotrienol quinone) was reported to reduce seizure frequency and associated morbidity in children with the mitochondrial disorder pontocerebellar hypoplasia type 6. We sought to elucidate the molecular mechanism of EPI-743 and explore the potential of targeting 15-LO to treat additional mitochondrial disease-associated epilepsies. METHODS Primary fibroblasts and B-lymphocytes derived from patients with mitochondrial disease-associated epilepsy were cultured under standardized conditions. Ferroptosis was induced by treatment with the irreversible GPX4 inhibitor RSL3 or a combination of pharmacological glutathione depletion and excess iron. EPI-743 was co-administered and endpoints, including cell viability and 15-LO-dependent lipid oxidation, were measured. RESULTS EPI-743 potently prevented ferroptosis in patient cells representing five distinct pediatric disease syndromes with associated epilepsy. Cytoprotection was preceded by a dose-dependent decrease in general lipid oxidation and the specific 15-LO product 15-hydroxyeicosatetraenoic acid (15-HETE). CONCLUSIONS These findings support the continued clinical evaluation of EPI-743 as a therapeutic agent for PCH6 and other mitochondrial diseases with associated epilepsy.
Collapse
Affiliation(s)
- Amanda H. Kahn-Kirby
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Akiko Amagata
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Celine I. Maeder
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Janet J. Mei
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Steve Sideris
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Yuko Kosaka
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Andrew Hinman
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Stephanie A. Malone
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Joel J. Bruegger
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Leslie Wang
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Virna Kim
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - William D. Shrader
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Kevin G. Hoff
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Joey C. Latham
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Euan A. Ashley
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Matthew T. Wheeler
- Stanford Center for Undiagnosed Diseases, Stanford University School of Medicine, Stanford, California, United States of America
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Research Hospital, Rome, Italy
| | - Rosalba Carrozzo
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Research Hospital, Rome, Italy
| | - Diego Martinelli
- Unit of Neuromuscular and Neurodegenerative Disorders, Bambino Gesù Children’s Research Hospital, Rome, Italy
| | - Carlo Dionisi-Vici
- Clinical Division and Research Unit of Metabolic Diseases, Bambino Gesù Children's Hospital, Rome, Italy
| | - Kimberly A. Chapman
- Children’s National Rare Disease Institute, Children's National Health System, Washington, D.C., United States of America
| | - Gregory M. Enns
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - William Gahl
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynne Wolfe
- NIH Undiagnosed Diseases Program, National Human Genome Research Institute (NHGRI), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Russell P. Saneto
- Division of Pediatric Neurology, Department of Neurology, Neuroscience Institute, Seattle Children's Hospital, Seattle, Washington, United States of America
| | - Simon C. Johnson
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Neurology, University of Washington, Seattle, Washington, United States of America
| | - Jeffrey K. Trimmer
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Matthew B. Klein
- BioElectron Technology Corporation, Mountain View, California, United States of America
| | - Charles R. Holst
- BioElectron Technology Corporation, Mountain View, California, United States of America
| |
Collapse
|
9
|
Kogachi K, Ter-Zakarian A, Asanad S, Sadun A, Karanjia R. Toxic medications in Leber's hereditary optic neuropathy. Mitochondrion 2018; 46:270-277. [PMID: 30081212 DOI: 10.1016/j.mito.2018.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a maternally inherited mitochondrial disorder characterized by acute bilateral vision loss. The pathophysiology involves reactive oxygen species (ROS), which can be affected by medications. This article reviews the evidence for medications with demonstrated and theoretical effects on mitochondrial function, specifically in relation to increased ROS production. The data reviewed provides guidance when selecting medications for individuals with LHON mutations (carriers) and are susceptible to conversion to affected. However, as with all medications, the proven benefits of these therapies must be weighed against, in some cases, purely theoretical risks for this unique patient population.
Collapse
Affiliation(s)
- Kaitlin Kogachi
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA.
| | - Anna Ter-Zakarian
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA
| | - Samuel Asanad
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Alfredo Sadun
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA
| | - Rustum Karanjia
- Doheny Eye Institute, 1355 San Pablo Street, Los Angeles, CA 90033, USA; Doheny Eye Center, Department of Ophthalmology, David Geffen School of Medicine at UCLA, 800 South Fairmount Avenue, Suite 215, Pasadena, CA 91105, USA; The Ottawa Eye Institute, University of Ottawa, 501 Smyth Rd, Ottawa, ON K1H 8M2, Canada; Ottawa Hospital Research Institute, 1053 Carling Avenue, Ottawa, ON K1Y 4E9, Canada
| |
Collapse
|
10
|
COSTA RODRIGOMDA, KARMIRIAN KARINA, REHEN STEVENSK. Deformation of Mitochondrial Cristae in Human Neural Progenitor Cells Exposed to Valproic Acid. ACTA ACUST UNITED AC 2018; 90:2223-2232. [DOI: 10.1590/0001-3765201820170762] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/04/2017] [Indexed: 12/29/2022]
Affiliation(s)
| | | | - STEVENS K. REHEN
- Instituto D’Or de Pesquisa e Ensino, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Vantroys E, Smet J, Vanlander AV, Vergult S, De Bruyne R, Roels F, Stepman H, Roeyers H, Menten B, Van Coster R. Severe hepatopathy and neurological deterioration after start of valproate treatment in a 6-year-old child with mitochondrial tryptophanyl-tRNA synthetase deficiency. Orphanet J Rare Dis 2018; 13:80. [PMID: 29783990 PMCID: PMC5963168 DOI: 10.1186/s13023-018-0822-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
Background The first subjects with deficiency of mitochondrial tryptophanyl-tRNA synthetase (WARS2) were reported in 2017. Their clinical characteristics can be subdivided into three phenotypes (neonatal phenotype, severe infantile onset phenotype, Parkinson-like phenotype). Results Here, we report on a subject who presented with early developmental delay, motor weakness and intellectual disability and who was considered during several years as having a non-progressive encephalopathy. At the age of six years, she had an epileptic seizure which was treated with sodium valproate. In the months after treatment was started, she developed acute liver failure and severe progressive encephalopathy. Although valproate was discontinued, she died six months later. Spectrophotometric analysis of the oxidative phosphorylation complexes in liver revealed a deficient activity of complex III and low normal activities of the complexes I and IV. Activity staining in the BN-PAGE gel confirmed the low activities of complex I, III and IV and, in addition, showed the presence of a subcomplex of complex V. Histochemically, a mosaic pattern was seen in hepatocytes after cytochrome c oxidase staining. Using Whole Exome Sequencing two known pathogenic variants were detected in WARS2 (c.797delC, p.Pro266ArgfsTer10/ c.938 A > T, p.Lys313Met). Conclusion This is the first report of severe hepatopathy in a subject with WARS2 deficiency. The hepatopathy occurred soon after start of sodium valproate treatment. In the literature, valproate-induced hepatotoxicity was reported in the subjects with pathogenic mutations in POLG and TWNK. This case report illustrates that the course of the disease in the subjects with a mitochondrial defect can be non-progressive during several years. The subject reported here was first diagnosed as having cerebral palsy. Only after a mitochondriotoxic medication was started, the disease became progressive, and the diagnosis of a mitochondrial defect was made.
Collapse
Affiliation(s)
- Elise Vantroys
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Joél Smet
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Arnaud V Vanlander
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Sarah Vergult
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Ruth De Bruyne
- Department of Pediatric Gastroenterology, Hepatology and Nutrition, Ghent University Hospital, Ghent, Belgium
| | - Frank Roels
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
| | - Hedwig Stepman
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Herbert Roeyers
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Björn Menten
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | - Rudy Van Coster
- Department of Pediatric Neurology and Metabolism, Ghent University Hospital, Ghent, Belgium.
| |
Collapse
|
12
|
Yildiz Celik S, Bebek N, Gurses C, Baykan B, Gokyigit A. Clinical and electrophysiological findings in patients with phenylketonuria and epilepsy: Reflex features. Epilepsy Behav 2018; 82:46-51. [PMID: 29579554 DOI: 10.1016/j.yebeh.2018.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Phenylketonuria (PKU) is the most common form of amino acid metabolism disorders with autosomal recessive inheritance. The brain damage can be prevented by early diagnosis and a phenylalanine-restricted diet. Untreated or late-treated patients may show mental retardation and other cognitive dysfunctions, as well as motor disability and/or epilepsy. METHODS Three patients with PKU and epilepsy were recognized to have reflex epileptic features, and there were ten consecutive adult patients with PKU and epilepsy who were evaluated retrospectively. Medical history, ages at diagnosis and therapy onset, age at seizure onset, seizure types and reflex features, neurological findings, cranial imaging, electroencephalography (EEG) findings, and final clinical condition were evaluated. Reflex epilepsy features were examined in detail. RESULTS The cases (6 females, 4 males) were diagnosed at ages between 3.5months and 12years. All patients had various degrees of mental-motor retardation and focal or generalized seizures with age at seizure onset varied between neonatal period and 15years. Three patients had febrile seizure, 3 patients had myoclonia, and 3 patients had status epilepticus. All patients had abnormal EEG findings except one. There was a slowing of background activity, and generalized discharges were observed in 7 patients; 3 of them had asymmetrical discharges. One patient had right hippocampal sclerosis (HS), and another patient had hypointensities in the basal ganglia and corpus callosum. Reflex features were clinically observed in 3 of the patients; however, EEG results did not show any related findings. One patient had reflex seizures triggered by photic stimuli, hot water, and startling; one by photic stimuli; and the other one by startling. CONCLUSION Reports on the clinical and electrophysiological features of adult patients with PKU were scant. We emphasized that reflex clinical features may be observed in this metabolic disease, and focal epileptiform abnormalities and asymmetry may be present in electrophysiological evaluation besides the rare association with HS.
Collapse
Affiliation(s)
- Senay Yildiz Celik
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey.
| | - Candan Gurses
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Betul Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Aysen Gokyigit
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
13
|
|
14
|
Rosebush PI, Anglin RE, Rasmussen S, Mazurek MF. Mental illness in patients with inherited mitochondrial disorders. Schizophr Res 2017; 187:33-37. [PMID: 28545943 DOI: 10.1016/j.schres.2017.05.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/04/2017] [Accepted: 05/07/2017] [Indexed: 12/30/2022]
Affiliation(s)
- P I Rosebush
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada.
| | - R E Anglin
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; Department of Medicine, Division of Neurology, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada
| | - S Rasmussen
- MiNDS Graduate Programme, McMaster University, Canada
| | - M F Mazurek
- Department of Psychiatry and Behavioural Neuroscience, McMaster University, Canada; Department of Medicine, Division of Neurology, McMaster University, Canada; MiNDS Graduate Programme, McMaster University, Canada; Biomedical Sciences Graduate Programme, McMaster University, Canada
| |
Collapse
|
15
|
Finsterer J, Scorza FA. Effects of antiepileptic drugs on mitochondrial functions, morphology, kinetics, biogenesis, and survival. Epilepsy Res 2017; 136:5-11. [PMID: 28732239 DOI: 10.1016/j.eplepsyres.2017.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/22/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES Antiepileptic drugs (AEDs) exhibit adverse and beneficial effects on mitochondria, which have a strong impact on the treatment of patients with a mitochondrial disorder (MID) with epilepsy (mitochondrial epilepsy). This review aims at summarizing and discussing recent findings concerning the effect of AEDs on mitochondrial functions and the clinical consequences with regard to therapy of mitochondrial epilepsy and of MIDs in general. METHODS Literature review. RESULTS AEDs may interfere with the respiratory chain, with non-respiratory chain enzymes, carrier proteins, or mitochondrial biogenesis, with carrier proteins, membrane-bound channels or receptors and the membrane potential, with anti-oxidative defense mechanisms, with morphology, dynamics and survival of mitochondria, and with the mtDNA. There are AEDs of which adverse effects outweigh beneficial effects, such as valproic acid, carbamazepine, phenytoin, or phenobarbital and there are AEDs in which beneficial effects dominate over mitochondrial toxic effects, such as lamotrigine, levetiracetam, gabapentin, or zonisamide. However, from most AEDs only little is known about their interference with mitochondria. CONCLUSIONS Mitochondrial epilepsy might be initially treated with AEDs with low mitochondrial toxic potential. Only in case mitochondrial epilepsy is refractory to these AEDs, AEDs with higher mitochondrial toxic potential might be tried. In patients carrying POLG1 mutations AEDs with high mitochondrial toxic potential are contraindicated.
Collapse
Affiliation(s)
| | - Fulvio A Scorza
- Disciplina de Neurociência, Escola Paulista de Medicina/Universidade Federal de São Paulo, (EPM/UNIFESP), São Paulo, Brazil.
| |
Collapse
|
16
|
Cao DZ. [Mitochondrial diseases and epilepsy]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:502-504. [PMID: 28506337 PMCID: PMC7389136 DOI: 10.7499/j.issn.1008-8830.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 01/25/2017] [Indexed: 06/07/2023]
Affiliation(s)
- De-Zhi Cao
- Department of Neurology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, China
| |
Collapse
|
17
|
Abstract
Mitochondrial diseases are a clinically heterogeneous group of disorders that ultimately result from dysfunction of the mitochondrial respiratory chain. There is some evidence to suggest that mitochondrial dysfunction plays a role in neuropsychiatric illness; however, the data are inconclusive. This article summarizes the available literature published in the area of neuropsychiatric manifestations in both children and adults with primary mitochondrial disease, with a focus on autism spectrum disorder in children and mood disorders and schizophrenia in adults.
Collapse
Affiliation(s)
- Samantha E Marin
- Department of Neurosciences, University of California, San Diego (UCSD), 9500 Gilman Drive #0935, La Jolla, CA 92093-0935, USA
| | - Russell P Saneto
- Department of Neurology, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA; Department of Pediatrics, Seattle Children's Hospital, University of Washington, 4800 Sand Point Way Northeast, Seattle, WA 98105, USA.
| |
Collapse
|
18
|
Knights M, Thekkekkara T, Morris A, Finlay E. Sodium valproate-induced Fanconi type proximal renal tubular acidosis. BMJ Case Rep 2016; 2016:bcr-2015-213418. [PMID: 26823359 DOI: 10.1136/bcr-2015-213418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We present a case series of three patients with sodium valproate-induced Fanconi's syndrome, with ages ranging from 5 years to 12 years. The most important diagnostic features of this syndrome include hypophosphataemia, glycosuria and proteinuria, which are also noted in our series. Furthermore, also added is that clinical fractures representing an underlying osteopaenia may provide an opportunity for early intervention as it raises the suspicion of Fanconi's syndrome. Previous case reports suggest there is a subpopulation of individuals who are at risk of developing this condition. These individuals share similar characteristics, including being non-ambulatory, developmentally delayed and/or tube fed. Withdrawing sodium valproate therapy is the ultimate treatment for valproate-induced Fanconi's syndrome and from previous case series, normalised renal function occurs in approximately 6 months. Often, supplement support is also required for deranged electrolyte balance.
Collapse
Affiliation(s)
- Mark Knights
- University of Leeds Teaching Hospitals, Leeds, UK
| | | | - Alistair Morris
- Calderdale and Huddersfield NHS Foundation Trust, Huddersfield, UK
| | - Eric Finlay
- University of Leeds Teaching Hospitals, Leeds, UK
| |
Collapse
|
19
|
Abstract
Some of the side and beneficial effects of antiepileptic drugs (AEDs) are mediated via the influence on mitochondria. This is of particular importance in patients requiring AED treatment for mitochondrial epilepsy. AED treatment in patients with mitochondrial disorders should rely on the known influences of AEDs on these organelles. AEDs may influence various mitochondrial functions or structures in a beneficial or detrimental way. There are AEDs in which the toxic effect outweighs the beneficial effect, such as valproic acid (VPA), carbamazepine (CBZ), phenytoin (PHT), or phenobarbital (PB). There are, however, also AEDs in which the beneficial effect on mitochondria outweighs the mitochondrion-toxic effect, such as gabapentin (GBT), lamotrigine (LTG), levetiracetam (LEV), or zonisamide (ZNS). In the majority of the AEDs, however, information about their influence of mitochondria is lacking. In clinical practice mitochondrial epilepsy should be initially treated with AEDs with low mitochondrion-toxic potential. Only in cases of ineffectivity or severe mitochondrial epilepsy, mitochondrion-toxic AEDs should be given. This applies for AEDs given orally or intravenously.
Collapse
|
20
|
El-Hattab AW, Adesina AM, Jones J, Scaglia F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol Genet Metab 2015; 116:4-12. [PMID: 26095523 DOI: 10.1016/j.ymgme.2015.06.004] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/14/2015] [Accepted: 06/14/2015] [Indexed: 12/13/2022]
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is one of the most frequent maternally inherited mitochondrial disorders. MELAS syndrome is a multi-organ disease with broad manifestations including stroke-like episodes, dementia, epilepsy, lactic acidemia, myopathy, recurrent headaches, hearing impairment, diabetes, and short stature. The most common mutation associated with MELAS syndrome is the m.3243A>G mutation in the MT-TL1 gene encoding the mitochondrial tRNA(Leu(UUR)). The m.3243A>G mutation results in impaired mitochondrial translation and protein synthesis including the mitochondrial electron transport chain complex subunits leading to impaired mitochondrial energy production. The inability of dysfunctional mitochondria to generate sufficient energy to meet the needs of various organs results in the multi-organ dysfunction observed in MELAS syndrome. Energy deficiency can also stimulate mitochondrial proliferation in the smooth muscle and endothelial cells of small blood vessels leading to angiopathy and impaired blood perfusion in the microvasculature of several organs. These events will contribute to the complications observed in MELAS syndrome particularly the stroke-like episodes. In addition, nitric oxide deficiency occurs in MELAS syndrome and can contribute to its complications. There is no specific consensus approach for treating MELAS syndrome. Management is largely symptomatic and should involve a multidisciplinary team. Unblinded studies showed that l-arginine therapy improves stroke-like episode symptoms and decreases the frequency and severity of these episodes. Additionally, carnitine and coenzyme Q10 are commonly used in MELAS syndrome without proven efficacy.
Collapse
Affiliation(s)
- Ayman W El-Hattab
- Division of Clinical Genetics and Metabolic Disorders, Department of Pediatrics, Tawam Hospital, Al-Ain, United Arab Emirates
| | - Adekunle M Adesina
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Jeremy Jones
- Singleton Department of Radiology, Texas Children's Hospital, Houston, TX, USA
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
21
|
Finsterer J, Frank M. Re: Sodium Valproate-Induced Myopathy in a Child. Sultan Qaboos Univ Med J 2015; 15:e442-3. [PMID: 26356090 PMCID: PMC4554286 DOI: 10.18295/squmj.2015.15.03.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/14/2015] [Indexed: 11/16/2022] Open
Affiliation(s)
- Josef Finsterer
- Departments of Neurology, Krankenanstalt Rudolfstiftng, Vienna, Austria
| | - Marlies Frank
- First Medical, Krankenanstalt Rudolfstiftng, Vienna, Austria
| |
Collapse
|
22
|
Demarest ST, Whitehead MT, Turnacioglu S, Pearl PL, Gropman AL. Phenotypic analysis of epilepsy in the mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes-associated mitochondrial DNA A3243G mutation. J Child Neurol 2014; 29:1249-56. [PMID: 25038129 DOI: 10.1177/0883073814538511] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The A to G mitochondrial DNA point mutation at position 3243 (A3243G) is the most common cause of mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS), a systemic multiorgan disease. Epilepsy is a common finding but there is wide phenotypic variation that has not been thoroughly explored. We report the epilepsy phenotypes of 7 patients with the A3243G mutation. Most presented with typical MELAS and epilepsy characterized by infrequent prolonged focal seizures, including epilepsia partialis continua, hemiclonic status epilepticus, nonconvulsive status, and occipital status epilepticus. Seizures usually occurred during the acute phase of a strokelike episode. Periodic lateralized epileptiform discharges may be seen electrographically. Some patients with this mutation are completely asymptomatic or have mild symptoms typical for mitochondrial diseases. Slow spike-wave activity consistent with Lennox-Gastaut syndrome and electrographic status epilepticus was seen in 1 patient who responded to ethosuximide.
Collapse
Affiliation(s)
- Scott T Demarest
- Children's National Medical Center, The George Washington University School of Medicine, Washington, DC, USA
| | - Matthew T Whitehead
- Children's National Medical Center, The George Washington University School of Medicine, Washington, DC, USA
| | - Sinan Turnacioglu
- Children's National Medical Center, The George Washington University School of Medicine, Washington, DC, USA
| | - Phillip L Pearl
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrea L Gropman
- Children's National Medical Center, The George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
23
|
Avula S, Parikh S, Demarest S, Kurz J, Gropman A. Treatment of mitochondrial disorders. Curr Treat Options Neurol 2014; 16:292. [PMID: 24700433 DOI: 10.1007/s11940-014-0292-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OPINION STATEMENT While numerous treatments for mitochondrial disorders have been suggested, relatively few have undergone controlled clinical trials. Treatment of these disorders is challenging, as only symptomatic therapy is available. In this review we will focus on newer drugs and treatment trials in mitochondrial diseases, with a special focus on medications to avoid in treating epilepsy and ICU patient with mitochondrial disease, which has not been included in such a review. Readers are also referred to the opinion statement in A Modern Approach to the Treatment of Mitochondrial Disease published in Current Treatment Options in Neurology 2009. Many of the supplements used for treatment were reviewed in the previous abstract, and dosing guidelines were provided. The focus of this review is on items not previously covered in depth, and our discussion includes more recently studied compounds as well as any relevant updates on older compounds . We review a variety of vitamins and xenobiotics, including dichloroacetate (DCA), arginine, coenzyme Q10, idebenone, EPI-743, and exercise training. Treatment of epilepsy, which is a common feature in many mitochondrial phenotypes, warrants special consideration due to the added toxicity of certain medications, and we provide a discussion of these unique treatment challenges. Interesting, however, with only a few exceptions, the treatment strategies for epilepsy in mitochondrial cytopathies are the same as for epilepsy without mitochondrial dysfunction. We also discuss intensive care management, building upon similar reviews, adding new dimensions, and demonstrating the complexity of overall care of these patients.
Collapse
Affiliation(s)
- Sreenivas Avula
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA,
| | | | | | | | | |
Collapse
|
24
|
Demeret S, Weiss N, Bolgert F, Navarro V. What is specialized care in status epilepticus and in which ICU? Neurocrit Care 2014; 19:1-3. [PMID: 23715668 DOI: 10.1007/s12028-013-9854-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Chaudhry N, Patidar Y, Puri V. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes unveiled by valproate. J Pediatr Neurosci 2013; 8:135-7. [PMID: 24082934 PMCID: PMC3783723 DOI: 10.4103/1817-1745.117847] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Valproic acid (VPA) is widely used as an anti-epileptic drug. The primary mechanism of VPA toxicity is interference with mitochondrial beta-oxidation, and it can exacerbate an underlying mitochondrial cytopathy. We report a case of Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes unmasked by use of Sodium Valproate in a 12-year-old boy who presented with headache and seizures. There was precipitation of encephalopathy, myopathy, lactic acidosis, and hepatic damage within two days of valproate use, after withdrawing of which there was a remarkable clinical and biochemical recovery.
Collapse
Affiliation(s)
- Neera Chaudhry
- Department of Neurology, Govind Ballabh Pant Hospital, New Delhi, India
| | | | | |
Collapse
|
26
|
Nanau RM, Neuman MG. Adverse drug reactions induced by valproic acid. Clin Biochem 2013; 46:1323-38. [PMID: 23792104 DOI: 10.1016/j.clinbiochem.2013.06.012] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 12/11/2022]
Abstract
Valproic acid is a widely-used first-generation antiepileptic drug, prescribed predominantly in epilepsy and psychiatric disorders. VPA has good efficacy and pharmacoeconomic profiles, as well as a relatively favorable safety profile. However, adverse drug reactions have been reported in relation with valproic acid use, either as monotherapy or polytherapy with other antiepileptic drugs or antipsychotic drugs. This systematic review discusses valproic acid adverse drug reactions, in terms of hepatotoxicity, mitochondrial toxicity, hyperammonemic encephalopathy, hypersensitivity syndrome reactions, neurological toxicity, metabolic and endocrine adverse events, and teratogenicity.
Collapse
Affiliation(s)
- Radu M Nanau
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, In Vitro Drug Safety and Biotechnology, Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Abstract
Mitochondrial disorders are a heterogeneous group of disorders resulting from primary dysfunction of the respiratory chain. Muscle tissue is highly metabolically active, and therefore myopathy is a common element of the clinical presentation of these disorders, although this may be overshadowed by central neurological features. This review is aimed at a general medical and neurologist readership and provides a clinical approach to the recognition, investigation, and treatment of mitochondrial myopathies. Emphasis is placed on practical management considerations while including some recent updates in the field.
Collapse
Affiliation(s)
- Gerald Pfeffer
- Institute of Genetic Medicine, Newcastle University, Newcastle NE13BZ, United Kingdom
| | | |
Collapse
|
28
|
Ituk US, Allen TK, Habib AS. The peripartum management of a patient with glutaric aciduria type 1. J Clin Anesth 2013; 25:141-5. [PMID: 23352788 DOI: 10.1016/j.jclinane.2012.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 06/22/2012] [Accepted: 06/26/2012] [Indexed: 11/28/2022]
Abstract
The management of cesarean delivery for a parturient with placenta previa at 36 weeks' gestation and glutaric aciduria type 1 is presented. The management goal was to prevent encephalopathic crisis by ensuring adequate caloric intake with dextrose infusion and to provide carnitine supplementation and adequate anesthesia.
Collapse
Affiliation(s)
- Unyime S Ituk
- Department of Anesthesiology, Duke University Health System, Durham, NC 27710, USA.
| | | | | |
Collapse
|
29
|
|
30
|
Hsu YC, Yang FC, Perng CL, Tso AC, Wong LJC, Hsu CH. Adult-onset of Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-Like Episodes (MELAS) Syndrome Presenting as Acute Meningoencephalitis: A Case Report. J Emerg Med 2012; 43:e163-6. [DOI: 10.1016/j.jemermed.2009.10.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 10/03/2009] [Accepted: 10/27/2009] [Indexed: 11/17/2022]
|
31
|
Bhuvaneswar CG, Goetz JL, Stern TA. Multiple neurologic, psychiatric, and endocrine complaints in a young woman: a case discussion and review of the clinical features and management of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke. PRIMARY CARE COMPANION TO THE JOURNAL OF CLINICAL PSYCHIATRY 2012; 10:237-44. [PMID: 18615168 DOI: 10.4088/pcc.v10n0309] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Abstract
Mitochondrial respiratory chain disorders are relatively common inborn errors of energy metabolism, with a combined prevalence of one in 5000. These disorders typically affect tissues with high energy requirements, and cerebral involvement occurs frequently in childhood, often manifesting in seizures. Mitochondrial diseases are genetically heterogeneous; to date, mutations have been reported in all 37 mitochondrially encoded genes and more than 80 nuclear genes. The major genetic causes of mitochondrial epilepsy are mitochondrial DNA mutations (including those typically associated with the mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS] and myoclonic epilepsy with ragged red fibres [MERRF] syndromes); mutations in POLG (classically associated with Alpers syndrome but also presenting as the mitochondrial recessive ataxia syndrome [MIRAS], spinocerebellar ataxia with epilepsy [SCAE], and myoclonus, epilepsy, myopathy, sensory ataxia [MEMSA] syndromes in older individuals) and other disorders of mitochondrial DNA maintenance; complex I deficiency; disorders of coenzyme Q(10) biosynthesis; and disorders of mitochondrial translation such as RARS2 mutations. It is not clear why some genetic defects, but not others, are particularly associated with seizures. Epilepsy may be the presenting feature of mitochondrial disease but is often part of a multisystem clinical presentation. Mitochondrial epilepsy may be very difficult to manage, and is often a poor prognostic feature. At present there are no curative treatments for mitochondrial disease. Individuals with mitochondrial epilepsy are frequently prescribed multiple anticonvulsants, and the role of vitamins and other nutritional supplements and the ketogenic diet remain unproven.
Collapse
Affiliation(s)
- Shamima Rahman
- Mitochondrial Research Group, Clinical and Molecular Genetics Unit, UCL Institute of Child Health, University College London, 30 Guilford Street, London, UK.
| |
Collapse
|
33
|
Liu CH, Chang CH, Kuo HC, Ro LS, Liou CW, Wei YH, Huang CC. Prognosis of symptomatic patients with the A3243G mutation of mitochondrial DNA. J Formos Med Assoc 2012; 111:489-94. [PMID: 23021505 DOI: 10.1016/j.jfma.2011.06.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/17/2011] [Accepted: 06/25/2011] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND/PURPOSE The clinical analyses and prognoses of mitochondrial diseases with A3243G mutation are rarely documented in Taiwan. Our study investigated the clinical phenotypes and the outcomes of patients with mitochondrial disease and the A3243G mutation of mtDNA in a Taiwanese population, and compared these with previous reports. METHODS We retrospectively studied 22 consecutive patients with mitochondrial disease and the A3243G mutation of mtDNA in Chang Gung Memorial Hospital between 1988 and 2009. All patients underwent a detailed demographic registration, neurological examinations, a muscle biopsy, and mitochondrial DNA analysis. Modified Rankin scale, the presence of recurrent strokes or seizures, critical medical complications, and death were monitored during the follow-up period. RESULTS Of the 22 patients, seizures and stroke-like episodes were found in 12 (55%). Visceral involvement, including cardiomyopathy, nephropathy, and pulmonary hypertension, were noted in five patients (23%). Patients with seizures had a high frequency of status epilepticus (92%) and a younger age of onset (21.3±7.2 years). Both the Kaplan-Meier survival analysis and the Cox-regression model showed a marked deterioration in patients with seizures after 7 years of follow-up. CONCLUSION Our study found that seizures and status epilepticus are the most important predictive values for a poor outcome in patients with the mtA3243G mutation of mtDNA. Age of onset and visceral organ involvement had no prominent influence on the prognosis. Some medical complications could be well controlled or even reversed after management.
Collapse
Affiliation(s)
- Chi-Hung Liu
- Department of Neurology, Chang Gung Memorial Hospital, Linkou branch, Taoyuan, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Gursahani R, Gupta N. The adolescent or adult with generalized tonic-clonic seizures. Ann Indian Acad Neurol 2012; 15:81-8. [PMID: 22566718 PMCID: PMC3345605 DOI: 10.4103/0972-2327.94988] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 01/03/2012] [Accepted: 02/25/2012] [Indexed: 01/26/2023] Open
Abstract
Primary and secondary generalized tonic-clonic seizures (GTCs) together constitute up to 50% of adolescent and adult patients with epilepsy as diagnosed by history and EEG. Syncope and psychogenic nonepileptic seizures are major differential diagnoses and must be carefully excluded in therapy-resistant cases. Individual episodes can have up to seven phases in secondarily generalized GTCs. The distinction between primary and secondary GTCs depends mainly on history and EEG, and yield can be improved with sleep deprivation or overnight recording. Epilepsies with primary or unclassified GTCs can respond to any one of the five broad-spectrum antiepileptic drugs (AEDs): valproate, lamotrigine, levetiracetam, topiramate and zonisamide. Unless a focal onset is clearly confirmed, a sodium-channel blocking AED should not be used in the initial treatment of these conditions.
Collapse
Affiliation(s)
- Roop Gursahani
- Department of Neurology, P.D. Hinduja National Hospital, Mumbai, India
| | - Namit Gupta
- Department of Neurology, Sir J.J. Hospital, Mumbai, India
| |
Collapse
|
35
|
Mancuso M, Orsucci D, Filosto M, Simoncini C, Siciliano G. Drugs and mitochondrial diseases: 40 queries and answers. Expert Opin Pharmacother 2012; 13:527-43. [DOI: 10.1517/14656566.2012.657177] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Miles MV, Miles L, Horn PS, DeGrauw TJ. Enzyme inducing antiepileptic drugs are associated with mitochondrial proliferation and increased cytochrome c oxidase activity in muscle of children with epilepsy. Epilepsy Res 2012; 98:76-87. [DOI: 10.1016/j.eplepsyres.2011.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 08/19/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
|
37
|
Finsterer J, Zarrouk Mahjoub S. Mitochondrial toxicity of antiepileptic drugs and their tolerability in mitochondrial disorders. Expert Opin Drug Metab Toxicol 2011; 8:71-9. [DOI: 10.1517/17425255.2012.644535] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
38
|
Santa KM. Treatment options for mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome. Pharmacotherapy 2011; 30:1179-96. [PMID: 20973690 DOI: 10.1592/phco.30.11.1179] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is a rare neurodegenerative disease caused by the decreased ability of cells to produce sufficient energy in the form of adenosine 5'-triphosphate. Although it is one of the most common maternally inherited mitochondrial disorders, its exact incidence is unknown. Caused most frequently by an A-to-G point mutation at the 3243 position in the mitochondrial DNA, MELAS syndrome has a broad range of clinical manifestations and a highly variable course. The classic neurologic characteristics include encephalopathy, seizures, and stroke-like episodes. In addition to its neurologic manifestations, MELAS syndrome exhibits multisystem effects including cardiac conduction defects, diabetes mellitus, short stature, myopathy, and gastrointestinal disturbances. Unfortunately, no consensus guidelines outlining standard drug regimens exist for this syndrome. Many of the accepted therapies used in treating MELAS syndrome have been identified through a small number of clinical trials or isolated case reports. Currently, the drugs most often used include antioxidants and various vitamins aimed at minimizing the demands on the mitochondria and supporting and maximizing their function. Some of the most frequently prescribed agents include coenzyme Q(10), l-arginine, B vitamins, and levocarnitine. Although articles describing MELAS syndrome are available, few specifically target education for clinical pharmacists. This article will provide pharmacists with a practical resource to enhance their understanding of MELAS syndrome in order to provide safe and effective pharmaceutical care.
Collapse
Affiliation(s)
- Kristin M Santa
- Department of Pharmacy, Froedtert Hospital, Milwaukee, Wisconsin 53226, USA.
| |
Collapse
|
39
|
Finsterer J. Treatment of central nervous system manifestations in mitochondrial disorders. Eur J Neurol 2010; 18:28-38. [DOI: 10.1111/j.1468-1331.2010.03086.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
40
|
Kaufman KR, Zuber N, Rueda-Lara MA, Tobia A. MELAS with recurrent complex partial seizures, nonconvulsive status epilepticus, psychosis, and behavioral disturbances: case analysis with literature review. Epilepsy Behav 2010; 18:494-7. [PMID: 20580320 DOI: 10.1016/j.yebeh.2010.05.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 05/20/2010] [Accepted: 05/22/2010] [Indexed: 11/17/2022]
Abstract
Mitochondrial encephalopathy, lactic acidosis, and strokelike episodes (MELAS) is a progressive neurodegenerative disorder associated with polygenetic, maternally inherited, mitochondrial DNA mutations. MELAS has multisystem presentation including neurological, muscular, endocrine, auditory, visual, cardiac, psychiatric, renal, gastrointestinal and dermatological symptoms. Clinical course and prognosis are variable, often leading to cognitive decline, disability, and premature death. Both convulsive status epilepticus (CSE) and nonconvulsive status epilepticus (NCSE) are reported with MELAS. This report illustrates a case of MELAS with recurrent complex partial seizures, NCSE, confusion, aggressive behaviors, hallucinations, and paranoid delusions. Rapid video/EEG confirmation of diagnosis and aggressive antiepileptic drug intervention are required. Further education of medical professionals regarding this disorder, its appropriate management, and the significance of NCSE is indicated to avoid delay of treatment.
Collapse
Affiliation(s)
- Kenneth R Kaufman
- Department of Psychiatry, UMDNJ-Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA.
| | | | | | | |
Collapse
|
41
|
Vernon C, Letourneau JL. Lactic acidosis: recognition, kinetics, and associated prognosis. Crit Care Clin 2010; 26:255-83, table of contents. [PMID: 20381719 DOI: 10.1016/j.ccc.2009.12.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Lactic acidosis is a common condition encountered by critical care providers. Elevated lactate and decreased lactate clearance are important for prognostication. Not all lactate in the intensive care unit is due to tissue hypoxia or ischemia and other sources should be evaluated. Lactate, in and of itself, is unlikely to be harmful and is a preferred fuel for many cells. Treatment of lactic acidosis continues to be aimed the underlying source.
Collapse
Affiliation(s)
- Christopher Vernon
- Division of Pulmonary and Critical Care Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, UHN 67, Portland, OR 97239, USA
| | | |
Collapse
|
42
|
Fraser JA, Biousse V, Newman NJ. The neuro-ophthalmology of mitochondrial disease. Surv Ophthalmol 2010; 55:299-334. [PMID: 20471050 PMCID: PMC2989385 DOI: 10.1016/j.survophthal.2009.10.002] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/21/2009] [Accepted: 10/01/2009] [Indexed: 01/16/2023]
Abstract
Mitochondrial diseases frequently manifest neuro-ophthalmologic symptoms and signs. Because of the predilection of mitochondrial disorders to involve the optic nerves, extraocular muscles, retina, and even the retrochiasmal visual pathways, the ophthalmologist is often the first physician to be consulted. Disorders caused by mitochondrial dysfunction can result from abnormalities in either the mitochondrial DNA or in nuclear genes which encode mitochondrial proteins. Inheritance of these mutations will follow patterns specific to their somatic or mitochondrial genetics. Genotype-phenotype correlations are inconstant, and considerable overlap may occur among these syndromes. The diagnostic approach to the patient with suspected mitochondrial disease entails a detailed personal and family history, careful ophthalmic, neurologic, and systemic examination, directed investigations, and attention to potentially life-threatening sequelae. Although curative treatments for mitochondrial disorders are currently lacking, exciting research advances are being made, particularly in the area of gene therapy. Leber hereditary optic neuropathy, with its window of opportunity for timely intervention and its accessibility to directed therapy, offers a unique model to study future therapeutic interventions. Most patients and their relatives benefit from informed genetic counseling.
Collapse
Affiliation(s)
- J. Alexander Fraser
- Departments of Ophthalmology (J.A.F., V.B., N.J.N.), Neurology (V.B., N.J.N.), and Neurological Surgery (N.J.N.), Emory University School of Medicine, Atlanta, GA
| | - Valérie Biousse
- Departments of Ophthalmology (J.A.F., V.B., N.J.N.), Neurology (V.B., N.J.N.), and Neurological Surgery (N.J.N.), Emory University School of Medicine, Atlanta, GA
| | - Nancy J. Newman
- Departments of Ophthalmology (J.A.F., V.B., N.J.N.), Neurology (V.B., N.J.N.), and Neurological Surgery (N.J.N.), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
43
|
Steinlein OK. Gene polymorphisms and their role in epilepsy treatment and prognosis. Naunyn Schmiedebergs Arch Pharmacol 2010; 382:109-18. [PMID: 20556360 DOI: 10.1007/s00210-010-0531-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Accepted: 05/27/2010] [Indexed: 12/16/2022]
Abstract
The human genome carries an enormous number of genetic variants, many of them of functional consequence. In epilepsy, they are likely to be involved in drug-specific treatment efficacy, unwanted or even toxic drug reactions, teratogenic risks in pregnancy as well as in the long-term prognosis of patients with epilepsy. As in many other disorders with a complex genetic background, the associated genetic variants that could be verified successfully in replication studies are still only a few. However, new techniques and improved research strategies are likely to increase their number in the foreseeable future, although at a much slower pace as initially expected.
Collapse
Affiliation(s)
- Ortrud K Steinlein
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University of Munich, Goethestr. 29, 80336, Munich, Germany.
| |
Collapse
|
44
|
Dericioglu N, Saygi S. Generalized seizures aggravated by levetiracetam in an adult patient with phenylketonuria. Metab Brain Dis 2010; 25:207-9. [PMID: 20424903 DOI: 10.1007/s11011-010-9197-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Accepted: 11/17/2009] [Indexed: 11/26/2022]
Abstract
Phenylketonuria (PKU) is one of the most common inherited metabolic disorders, which is characterized by excessive accumulation of phenylalanine (Phe) in tissues. Generalized seizures occur in 25% of the patients. Little is known about seizures and their treatment in adult PKU patients, and information with newer antiepileptic drugs is lacking. Here we report an adult patient who developed generalized seizures later in life, despite strict dietary control, and whose seizures were aggravated by levetiracetam (LEV). Convulsions ceased after discontinuation of LEV and the patient has been seizure free on topiramate 125 mg/day.
Collapse
Affiliation(s)
- Nese Dericioglu
- Institute of Neurological Sciences and Psichiatry, Hacettepe University, Ankara, Turkey.
| | | |
Collapse
|
45
|
Karkare S, Merchant S, Solomon G, Engel M, Kosofsky B. MELAS with A3243G mutation presenting with occipital status epilepticus. J Child Neurol 2009; 24:1564-7. [PMID: 19406752 DOI: 10.1177/0883073809334386] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) is a mitochondrial disorder commonly caused by the A3243G mutation. We report a patient who initially presented with visual hallucinations, headaches, and nonconvulsive status epilepticus originating in left occipital lobe who subsequently progressed to have multifocal seizures. His magnetic resonance imaging (MRI) showed subtle T2 hyperintensity at first presentation that subsequently fully resolved. He then had more typical diffusion restriction not conforming to vascular territories. Evolution of his neuroimaging and electroencephalogram (EEG) is discussed with a brief review of literature. Mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes should be suspected early with occipital lobe seizures.
Collapse
Affiliation(s)
- Shefali Karkare
- Division of Pediatric Neurology, New York Presbyterian Hospital (Cornell Campus), New York, New York, USA.
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Muñoz-Guillén N, León-López R, Ferrer-Higueras MJ, Vargas-Vaserot FJ, Dueñas-Jurado JM. [Arreflexic coma and MELAS syndrome]. Rev Clin Esp 2009; 209:337-41. [PMID: 19709537 DOI: 10.1016/s0014-2565(09)71818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
MELAS is a progressive neurodegenerative and fatal disease characterized by mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes. It is the result of a mitochondrial DNA mutation. Although the incidence of MELAS is currently unknown, it is suspected that approximately 1 out of every 5,000 persons world-wide have some type of defect in mitochondrial DNA. Cardinal clinical features observed in more than 90% of the patients include severe headache that may be associated with stroke-like episodes, seizures and the onset of symptoms before the age of 40 years. Diagnosis is established through genetic test or by with muscle biopsies that reveal the presence of ragged-red fibers. Prognosis is poor, with death at an early age. In this article, we present the clinical case of a 31-year old women diagnosed of MELAS syndrome who was admitted to the Intensive Care Unit of our hospital with arreflexic coma.
Collapse
Affiliation(s)
- N Muñoz-Guillén
- Servicio de Medicina Intensiva, Hospital Universitario Reina SofÃa, Córdoba, España.
| | | | | | | | | |
Collapse
|
48
|
Koene S, Kozicz TL, Rodenburg RJT, Verhaak CM, de Vries MC, Wortmann S, van de Heuvel L, Smeitink JAM, Morava E. Major depression in adolescent children consecutively diagnosed with mitochondrial disorder. J Affect Disord 2009; 114:327-32. [PMID: 18692904 DOI: 10.1016/j.jad.2008.06.023] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2008] [Revised: 06/27/2008] [Accepted: 06/27/2008] [Indexed: 11/29/2022]
Abstract
A higher incidence of major depression has been described in adults with a primary oxidative phosphorylation disease. Intriguingly however, not all patients carrying the same mutation develop symptoms of major depression, pointing out the significance of the interplay of genetic and non-genetic factors in the etiology. In a series of paediatric patients evaluated for mitochondrial dysfunction, out of 35 children with a biochemically and genetically confirmed mitochondrial disorder, we identified five cases presenting with major depression prior to the diagnosis. The patients were diagnosed respectively with mutations in MTTK, MTND1, POLG1, PDHA1 and the common 4977 bp mtDNA deletion. Besides cerebral lactic acidemia protein and glucose concentrations, immunoglobins, anti-gangliosides and neurotransmitters were normal. No significant difference could be confirmed in the disease progression or the quality of life, compared to the other, genetically confirmed mitochondrial patients. In three out of our five patients a significant stress life event was confirmed. We propose the abnormal central nervous system energy metabolism as the underlying cause of the mood disorder in our paediatric patients. Exploring the genetic etiology in children with mitochondrial dysfunction and depression is essential both for safe medication and adequate counselling.
Collapse
Affiliation(s)
- S Koene
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
|
50
|
Abstract
Glutaric aciduria type 1 (GA-1, OMIM 608801) is an autosomal-recessive disorder resulting from a deficiency of glutaryl-CoA dehydrogenase (GCDH). Clinical expression usually involves an acute encephalopathic episode in infancy, followed by the development of severe dystonia-dyskinesia. Other presentations include mild developmental delay, macrocephaly, and subdural haematoma. Seizures may occur with the acute encephalopathy but are unusual in the long term, unless motor or cognitive difficulties are severe. We report a 6-year-old female who was referred with recurrent epileptic seizures that proved difficult to control with first-line anticonvulsants. There was no history of encephalopathy. She had no neurological or developmental abnormalities. The electroencephalogram was profoundly abnormal with slow background and mixed multifocal and generalized spike-and-wave discharges. Seizures deteriorated on valproic acid. Cranial magnetic resonance imaging showed widened Sylvian fissures. Metabolic investigations revealed GA-1. She has improved on a low-protein diet, carnitine, levetiracetam, and lamotrigine. This is the first report of epileptic seizures as the sole presenting feature of GA-1 and it potentially adds to the clinical spectrum of this disorder. Furthermore, the case emphasizes the role of metabolic investigation when first- or second-line treatment of epilepsy is unsuccessful.
Collapse
|