1
|
Mohammadi S, Bashghareh A, Karimi-Zandi L, Mokhtari T. Understanding Role of Maternal Separation in Depression, Anxiety,and Pain Behaviour: A Mini Review of Preclinical Research With Focus on Neuroinflammatory Pathways. Int J Dev Neurosci 2025; 85:e70002. [PMID: 39895419 PMCID: PMC11838919 DOI: 10.1002/jdn.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/04/2025] Open
Abstract
Contact between mother and child is essential for the proper development of an infant's physiological systems, brain maturation and behavioural outcomes. Early life stress (ELS), which includes factors such as inadequate parental care and childhood abuse, significantly increases the risk of developing neuropsychiatric disorders, including anxiety and depression. This review examines the impact of maternal separation (MS) on depression, anxiety and pain behaviour, with a particular emphasis on neuroinflammatory pathways. Experiences of ELS can adversely affect the maturation of neurotransmitter systems and associated neural circuits that are crucial for processing painful stimuli and regulating anxiety and depression. Stressful experiences trigger inflammatory processes in the brain, initiating immune responses in neural cells and stimulating the production of pro-inflammatory cytokines. In mammals, MS serves as a significant stressor that activates the hypothalamic-pituitary-adrenal (HPA) axis and other stress-related systems, leading to increased immune challenges and heightened pain sensitivity in adulthood due to systemic inflammation. Key inflammatory mediators, such as IL-1β, IL-6 and TNF-α, play critical roles in the development of pathological pain, while the activation of microglia releases inflammatory mediators that contribute to neurological dysfunction and the pathophysiology of stress, depression and anxiety. Moreover, therapeutics targeting oxidative stress and inflammation have shown promise in alleviating affective disorders following MS. This review discusses potential pathways, with a primary focus on neuroinflammatory mechanisms and the therapeutic strategies that may mitigate the adverse effects of MS. There is a pressing need for further research to elucidate the underlying pathways and identify effective interventions to improve mental health outcomes in individuals affected by MS.
Collapse
Affiliation(s)
- Shima Mohammadi
- Department of Neuroscience, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Alieh Bashghareh
- Department of Anatomy, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Leila Karimi-Zandi
- School of Advanced Technologies in Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Tahmineh Mokhtari
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, United States
| |
Collapse
|
2
|
Gołyszny M, Zieliński M, Paul-Samojedny M, Filipczyk Ł, Pałasz A, Obuchowicz E. Escitalopram alters the hypothalamic OX system but does not affect its up-regulation induced by early-life stress in adult rats. Neurosci Res 2022; 180:58-71. [PMID: 35219722 DOI: 10.1016/j.neures.2022.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 01/06/2023]
Abstract
We hypothesized that there is a relationship between the orexinergic system (OX) alterations and changes elicited by escitalopram or venlafaxine in adult rats subjected to maternal separation (MS). This animal model of childhood adversity induces long-lasting consequences in adult physiology and behavior. Male Wistar rats from the control and MS groups were injected with escitalopram or venlafaxine (10 mg/kg) IP from postnatal day (PND) 69-89. Adult rats were subjected to behavioral assessment, estimation of hypothalamic-pituitary-adrenal (HPA) axis activity and analysis of the OX system (quantitative PCR and immunohistochemistry) in the hypothalamus and amygdala. MS caused anxiety- and depressive-like behavior, endocrine stress-related response, and up-regulation of the OX system in the hypothalamus. Escitalopram, but not venlafaxine, increased the activity of hypothalamic OX system in the control rats and both drugs had no effect on OXs in the MS group. The disturbed signaling of the OX pathway may be significant for harmful long-term consequences of early-life stress. Our data show that the normal brain and brain altered by MS respond differently to escitalopram. Presumably, anti-anxiety and antidepressant effects of this drug do not depend on the activity of hypothalamic OX system.
Collapse
Affiliation(s)
- Miłosz Gołyszny
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland.
| | - Michał Zieliński
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Monika Paul-Samojedny
- Department of Medical Genetics, Faculty of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Jedności 8, Sosnowiec 41-200, Poland
| | - Łukasz Filipczyk
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Artur Pałasz
- Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| | - Ewa Obuchowicz
- Department of Pharmacology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18 street, Katowice 40-752, Poland
| |
Collapse
|
3
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
4
|
Chelini G, Pangrazzi L, Bozzi Y. At the Crossroad Between Resiliency and Fragility: A Neurodevelopmental Perspective on Early-Life Experiences. Front Cell Neurosci 2022; 16:863866. [PMID: 35465609 PMCID: PMC9023311 DOI: 10.3389/fncel.2022.863866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Postnatal development of the brain is characterized by sensitive windows during which, local circuitry are drastically reshaped by life experiences. These critical periods (CPs) occur at different time points for different brain functions, presenting redundant physiological changes in the underlying brain regions. Although circuits malleability during CPs provides a valuable window of opportunity for adaptive fine-tuning to the living environment, this aspect of neurodevelopment also represents a phase of increased vulnerability for the development of a variety of disorders. Consistently, accumulating epidemiological studies point to adverse childhood experience as a major risk factor for many medical conditions, especially stress- and anxiety-related conditions. Thanks to creative approaches to manipulate rodents’ rearing environment, neurobiologist have uncovered a pivotal interaction between CPs and early-life experiences, offering an interesting landscape to improve our understanding of brain disorders. In this short review, we discuss how early-life experience impacts cellular and molecular players involved in CPs of development, translating into long-lasting behavioral consequences in rodents. Bringing together findings from multiple laboratories, we delineate a unifying theory in which systemic factors dynamically target the maturation of brain functions based on adaptive needs, shifting the balance between resilience and vulnerability in response to the quality of the rearing environment.
Collapse
Affiliation(s)
- Gabriele Chelini
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- *Correspondence: Gabriele Chelini,
| | - Luca Pangrazzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Yuri Bozzi
- CIMeC-Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
- Consiglio Nazionale delle Ricerche (CNR) Neuroscience Institute, Pisa, Italy
| |
Collapse
|
5
|
Rubinstein L, Paul AM, Houseman C, Abegaz M, Tabares Ruiz S, O’Neil N, Kunis G, Ofir R, Cohen J, Ronca AE, Globus RK, Tahimic CGT. Placenta-Expanded Stromal Cell Therapy in a Rodent Model of Simulated Weightlessness. Cells 2021; 10:940. [PMID: 33921854 PMCID: PMC8073415 DOI: 10.3390/cells10040940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023] Open
Abstract
Long duration spaceflight poses potential health risks to astronauts during flight and re-adaptation after return to Earth. There is an emerging need for NASA to provide successful and reliable therapeutics for long duration missions when capability for medical intervention will be limited. Clinically relevant, human placenta-derived therapeutic stromal cells (PLX-PAD) are a promising therapeutic alternative. We found that treatment of adult female mice with PLX-PAD near the onset of simulated weightlessness by hindlimb unloading (HU, 30 d) was well-tolerated and partially mitigated decrements caused by HU. Specifically, PLX-PAD treatment rescued HU-induced thymic atrophy, and mitigated HU-induced changes in percentages of circulating neutrophils, but did not rescue changes in the percentages of lymphocytes, monocytes, natural killer (NK) cells, T-cells and splenic atrophy. Further, PLX-PAD partially mitigated HU effects on the expression of select cytokines in the hippocampus. In contrast, PLX-PAD failed to protect bone and muscle from HU-induced effects, suggesting that the mechanisms which regulate the structure of these mechanosensitive tissues in response to disuse are discrete from those that regulate the immune- and central nervous system (CNS). These findings support the therapeutic potential of placenta-derived stromal cells for select physiological deficits during simulated spaceflight. Multiple countermeasures are likely needed for comprehensive protection from the deleterious effects of prolonged spaceflight.
Collapse
Affiliation(s)
- Linda Rubinstein
- Universities Space Research Association, Columbia, MD 21046, USA; (L.R.); (A.M.P.)
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - Amber M. Paul
- Universities Space Research Association, Columbia, MD 21046, USA; (L.R.); (A.M.P.)
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Department of Human Factors and Behavioral Neurobiology, Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA
| | - Charles Houseman
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Metadel Abegaz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Steffy Tabares Ruiz
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Nathan O’Neil
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Blue Marble Space Institute of Science, Seattle, WA 98154, USA
| | - Gilad Kunis
- Pluristem Ltd., Haifa 31905, Israel; (G.K.); (R.O.)
| | - Racheli Ofir
- Pluristem Ltd., Haifa 31905, Israel; (G.K.); (R.O.)
| | - Jacob Cohen
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - April E. Ronca
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- Wake Forest Medical School, Winston-Salem, NC 27101, USA
| | - Ruth K. Globus
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
| | - Candice G. T. Tahimic
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA; (C.H.); (M.A.); (S.T.R.); (N.O.); (J.C.); (A.E.R.); (R.K.G.)
- KBR, Houston, TX 77002, USA
- Department of Biology, University of North Florida, Jacksonville, FL 32224, USA
| |
Collapse
|
6
|
Neonatal morphine exposure and maternal deprivation alter nociceptive response and central biomarkers' levels throughout the life of rats. Neurosci Lett 2020; 738:135350. [PMID: 32889004 DOI: 10.1016/j.neulet.2020.135350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 11/20/2022]
Abstract
In the present study, we investigated the effect of repeated neonatal morphine exposure and/or maternal deprivation(MD) on the nociceptive response and central biomarkers' BDNF, IL-1β, and IL-4 levels at postnatal days 16(PND16), 30(PND30), and 60(PND60). At birth, the litters were standardized to contain 8 pups/dam (n = 58). From PND1 to PND10, the pups of the deprived groups were separated daily from their mothers for 3 h and divided into 5 groups: control(C), saline(S), morphine(M), deprived-saline(DS), and deprived-morphine(DM). The pups received subcutaneous injections of saline/morphine (5 μg) in the mid-scapular area between PND8 and PND14. Nociceptive responses were assessed by hot plate(HP) and tail-flick(TFL) tests and biomarker levels by ELISA. Thermal hyperalgesia(HP) was found in all assessments for the M, DS, and DM groups, and a decrease in nociceptive threshold(TFL) was found in the DS group at PND16; M and DM groups at PND30; and M, DS, and DM groups at PND60. There were interactions between treatment/deprivation/timepoint in all central biomarkers' levels. The current study indicates that neonatal exposure to morphine and MD, which occurs in the pediatric ICU, can alter the nociceptive and neuroinflammatory responses.
Collapse
|
7
|
Reddaway J, Brydges NM. Enduring neuroimmunological consequences of developmental experiences: From vulnerability to resilience. Mol Cell Neurosci 2020; 109:103567. [PMID: 33068720 PMCID: PMC7556274 DOI: 10.1016/j.mcn.2020.103567] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 12/14/2022] Open
Abstract
The immune system is crucial for normal neuronal development and function (neuroimmune system). Both immune and neuronal systems undergo significant postnatal development and are sensitive to developmental programming by environmental experiences. Negative experiences from infection to psychological stress at a range of different time points (in utero to adolescence) can permanently alter the function of the neuroimmune system: given its prominent role in normal brain development and function this dysregulation may increase vulnerability to psychiatric illness. In contrast, positive experiences such as exercise and environmental enrichment are protective and can promote resilience, even restoring the detrimental effects of negative experiences on the neuroimmune system. This suggests the neuroimmune system is a viable therapeutic target for treatment and prevention of psychiatric illnesses, especially those related to stress. In this review we will summarise the main cells, molecules and functions of the immune system in general and with specific reference to central nervous system development and function. We will then discuss the effects of negative and positive environmental experiences, especially during development, in programming the long-term functioning of the neuroimmune system. Finally, we will review the sparse but growing literature on sex differences in neuroimmune development and response to environmental experiences. The immune system is essential for development and function of the central nervous system (neuroimmune system) Environmental experiences can permanently alter neuroimmune function and associated brain development Altered neuroimmune function following negative developmental experiences may play a role in psychiatric illnesses Positive experiences can promote resilience and rescue the effects of negative experiences on the neuroimmune system The neuroimmune system is therefore a viable therapeutic target for preventing and treating psychiatric illnesses
Collapse
Affiliation(s)
- Jack Reddaway
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Nichola M Brydges
- Neuroscience and Mental Health Research Institute, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
8
|
Maternal Deprivation and Sex Alter Central Levels of Neurotrophins and Inflammatory Cytokines in Rats Exposed to Palatable Food in Adolescence. Neuroscience 2020; 428:122-131. [PMID: 31917337 DOI: 10.1016/j.neuroscience.2019.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022]
Abstract
Maternal deprivation (MD) in rodents is used to simulate human-infant early life stress, which leads to neural, hormonal, and behavioral alterations. Palatable food (PF) can reduce the stress response, and individuals use it as a self-applied stress relief method. Thus, the present study aimed to evaluate the effect of the association between MD in the early life (P1-P10) and PF consumption (condensed milk, P21-P44) in the central neuroplasticity (BDNF/NGF levels) and central neuroinflammatory parameters (TNF-α, IL-6, and IL-10 levels) in male and female Wistar rats in the adolescence. In addition, weight-related parameters (weight gain, Lee Index, and relative adipose tissue weight) were evaluated. PF exposure increased relative adipose tissue weight; however, it did not lead to a change in animals' body weight. MD reduced hypothalamic BDNF and NGF levels, and hippocampal TNF-α levels in male and female rats. Animals of both sexes that received PF, exhibited reduced hypothalamic NGF levels. Neuroinflammatory marker evaluations showed that male rats were more susceptible to the interventions than female rats, since MD reduced their cortical IL-10 levels and PF increased their IL-6 levels. Differences in the Lee index, central BDNF, TNF-α, and IL-6levels were observed between sexes. Male animals per se presented greater Lee index. Female rats had higher BDNF and IL-6 levels in the hippocampus and hypothalamus and higher hypothalamic TNF-α levels than those observed in males. In conclusion, there were more noticeable effects of MD than PF on the variables measured in this study. Sex effect was identified as an important factor and influenced most of the neurochemical measures in this study. In this way, we suggest including both female and male animals in researches to improve the quality of translational studies.
Collapse
|
9
|
Dutcher EG, Pama EC, Lynall ME, Khan S, Clatworthy MR, Robbins TW, Bullmore ET, Dalley JW. Early-life stress and inflammation: A systematic review of a key experimental approach in rodents. Brain Neurosci Adv 2020; 4:2398212820978049. [PMID: 33447663 PMCID: PMC7780197 DOI: 10.1177/2398212820978049] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/11/2020] [Indexed: 12/11/2022] Open
Abstract
Repeated maternal separation is the most widely used pre-clinical approach to investigate the relationship between early-life chronic stress and its neuropsychiatric and physical consequences. In this systematic review, we identified 46 studies that conducted repeated maternal separation or single-episode maternal separation and reported measurements of interleukin-1b, interleukin-6, interleukin-10, tumour necrosis factor-alpha, or microglia activation and density. We report that in the short-term and in the context of later-life stress, repeated maternal separation has pro-inflammatory immune consequences in diverse tissues. Repeated maternal separation animals exhibit greater microglial activation and elevated pro-inflammatory cytokine signalling in key brain regions implicated in human psychiatric disorders. Notably, repeated maternal separation generally has no long-term effect on cytokine expression in any tissue in the absence of later-life stress. These observations suggest that the elevated inflammatory signalling that has been reported in humans with a history of early-life stress may be the joint consequence of ongoing stressor exposure together with potentiated neural and/or immune responsiveness to stressors. Finally, our findings provide detailed guidance for future studies interrogating the causal roles of early-life stress and inflammation in disorders such as major depression.
Collapse
Affiliation(s)
- Ethan G. Dutcher
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Mary-Ellen Lynall
- Department of Psychiatry, University of Cambridge, Cambridge, UK
- Molecular Immunity Unit, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Shahid Khan
- GlaxoSmithKline Research & Development, Stevenage, UK
| | | | | | | | - Jeffrey W. Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
10
|
Brydges NM, Reddaway J. Neuroimmunological effects of early life experiences. Brain Neurosci Adv 2020; 4:2398212820953706. [PMID: 33015371 PMCID: PMC7513403 DOI: 10.1177/2398212820953706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/18/2022] Open
Abstract
Exposure to adverse experiences during development increases the risk of psychiatric illness later in life. Growing evidence suggests a role for the neuroimmune system in this relationship. There is now substantial evidence that the immune system is critical for normal brain development and behaviour, and responds to environmental perturbations experienced early in life. Severe or chronic stress results in dysregulated neuroimmune function, concomitant with abnormal brain morphology and function. Positive experiences including environmental enrichment and exercise exert the opposite effect, promoting normal brain and immune function even in the face of early life stress. The neuroimmune system may therefore provide a viable target for prevention and treatment of psychiatric illness. This review will briefly summarise the neuroimmune system in brain development and function, and review the effects of stress and positive environmental experiences during development on neuroimmune function. There are also significant sex differences in how the neuroimmune system responds to environmental experiences early in life, which we will briefly review.
Collapse
Affiliation(s)
- Nichola M. Brydges
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| | - Jack Reddaway
- Neuroscience and Mental Health Research
Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
11
|
Walker DJ, Zimmer C, Larriva M, Healy SD, Spencer KA. Early-life adversity programs long-term cytokine and microglia expression within the HPA axis in female Japanese quail. J Exp Biol 2019; 222:jeb187039. [PMID: 30814294 DOI: 10.1242/jeb.187039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/21/2019] [Indexed: 01/03/2025]
Abstract
Stress exposure during prenatal and postnatal development can have persistent and often dysfunctional effects on several physiological systems, including immune function, affecting the ability to combat infection. The neuroimmune response is inextricably linked to the action of the hypothalamic-pituitary-adrenal (HPA) axis. Cytokines released from neuroimmune cells, including microglia, activate the HPA axis, while glucocorticoids in turn regulate cytokine release from microglia. Because of the close links between these two physiological systems, coupled with potential for persistent changes to HPA axis activity following developmental stress, components of the neuroimmune system could be targets for developmental programming. However, little is known of any programming effects of developmental stress on neuroimmune function. We investigated whether developmental stress exposure via elevated prenatal corticosterone (CORT) or postnatal unpredictable food availability had long-term effects on pro- (IL-1β) and anti-inflammatory (IL-10) cytokine and microglia-dependent gene (CSF1R) expression within HPA axis tissues in a precocial bird, the Japanese quail (Coturnix japonica). Following postnatal stress, we observed increased IL-1β expression in the pituitary gland, reduced IL-10 expression in the amygdala and hypothalamus, and reduced CSF1R expression within the hypothalamus and pituitary gland. Postnatal stress disrupted the ratio of IL-1β:IL-10 expression within the hippocampus and hypothalamus. Prenatal stress only increased IL-1β expression in the pituitary gland. We found no evidence for interactive or cumulative effects across life stages on basal cytokine and glia expression in adulthood. We show that postnatal stress may have a larger impact than elevated prenatal CORT on basal immunity in HPA-axis-specific brain regions, with changes in cytokine homeostasis and microglia abundance. These results provide evidence for postnatal programming of a pro-inflammatory neuroimmune phenotype at the expense of reduced microglia, which could have implications for central nervous system health and subsequent neuroimmune responses.
Collapse
Affiliation(s)
- David J Walker
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Cédric Zimmer
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14850, USA
| | - Maria Larriva
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| | - Susan D Healy
- School of Biology, Harold Mitchell Building, University of St Andrews, St Andrews KY16 9TH, UK
| | - Karen A Spencer
- School of Psychology and Neuroscience, University of St Andrews, St Andrews KY16 9JP, UK
| |
Collapse
|
12
|
Liao JF, Hsu CC, Chou GT, Hsu JS, Liong MT, Tsai YC. Lactobacillus paracasei PS23 reduced early-life stress abnormalities in maternal separation mouse model. Benef Microbes 2019; 10:425-436. [PMID: 30882243 DOI: 10.3920/bm2018.0077] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Maternal separation (MS) has been developed as a model for inducing stress and depression in studies using rodents. The concept of the gut-brain axis suggests that gut health is essential for brain health. Here, we present the effects of administration of a probiotic, Lactobacillus paracasei PS23 (PS23), to MS mice against psychological traits including anxiety and depression. The administration of live and heat-killed PS23 cells showed positive behavioural effects on MS animals, where exploratory tendencies and mobility were increased in behavioural tests, indicating reduced anxiety and depression compared to the negative control mice (P<0.05). Mice administered with both live and heat-killed PS23 cells also showed lower serum corticosterone levels accompanied by higher serum anti-inflammatory interleukin 10 (IL-10) levels, compared to MS separated mice (P<0.05), indicating a stress-elicited response affiliated with increased immunomodulatory properties. Assessment of neurotransmitters in the brain hippocampal region revealed that PS23 affected the concentrations of dopaminergic metabolites differently than the control, suggesting that PS23 may have improved MS-induced stress levels via neurotransmitter pathways, such as dopamine or other mechanisms not addressed in the current study. Our study illustrates the potential of a probiotic in reversing abnormalities induced by early life stress and could be an alternative for brain health along the gut-brain axis.
Collapse
Affiliation(s)
- J F Liao
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Beitou Dist., Taipei 11221, Taiwan ROC
| | - C C Hsu
- 2 Bened Biomedical Co., Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei 10448, Taiwan ROC
| | - G T Chou
- 1 Institute of Biochemistry and Molecular Biology, National Yang-Ming University, No.155, Sec.2, Linong Street, Beitou Dist., Taipei 11221, Taiwan ROC
| | - J S Hsu
- 2 Bened Biomedical Co., Ltd., 2F-2, No.129, Sec. 2, Zhongshan N. Rd., Zhongshan Dist., Taipei 10448, Taiwan ROC
| | - M T Liong
- 3 School of Industrial Technology, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Y C Tsai
- 4 Microbiome Research Center, National Yang-Ming University, No.155, Sec.2, Linong Street, Beitou Dist., Taipei 11221, Taiwan ROC
| |
Collapse
|
13
|
Lo Iacono L, Catale C, Martini A, Valzania A, Viscomi MT, Chiurchiù V, Guatteo E, Bussone S, Perrone F, Di Sabato P, Aricò E, D'Argenio A, Troisi A, Mercuri NB, Maccarrone M, Puglisi-Allegra S, Casella P, Carola V. From Traumatic Childhood to Cocaine Abuse: The Critical Function of the Immune System. Biol Psychiatry 2018; 84:905-916. [PMID: 30029767 DOI: 10.1016/j.biopsych.2018.05.022] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Experiencing traumatic childhood is a risk factor for developing substance use disorder, but the mechanisms that underlie this relationship have not been determined. Adverse childhood experiences affect the immune system, and the immune system mediates the effects of psychostimulants. However, whether this system is involved in the etiology of substance use disorder in individuals who have experienced early life stress is unknown. METHODS In this study, we performed a series of ex vivo and in vivo experiments in mice and humans to define the function of the immune system in the early life stress-induced susceptibility to the neurobehavioral effects of cocaine. RESULTS We provide evidence that exposure to social stress at an early age permanently sensitizes the peripheral (splenocytes) and brain (microglia) immune responses to cocaine in mice. In the brain, microglial activation in the ventral tegmental area of social-stress mice was associated with functional alterations in dopaminergic neurotransmission, as measured by whole-cell voltage clamp recordings in dopamine neurons. Notably, preventing immune activation during the social-stress exposure reverted the effects of dopamine in the ventral tegmental area and the cocaine-induced behavioral phenotype to control levels. In humans, cocaine modulated toll-like receptor 4-mediated innate immunity, an effect that was enhanced in those addicted to cocaine who had experienced a difficult childhood. CONCLUSIONS Collectively, our findings demonstrate that sensitization to cocaine in early life-stressed individuals involves brain and peripheral immune responses and that this mechanism is shared between mice and humans.
Collapse
Affiliation(s)
- Luisa Lo Iacono
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | - Clarissa Catale
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy; Ph.D. Program in Behavioral Neuroscience, University of Rome "La Sapienza", Rome, Italy
| | - Alessandro Martini
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Valerio Chiurchiù
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Ezia Guatteo
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Silvia Bussone
- Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | - Fabiana Perrone
- Department of Biology and Biotechnologies, University of Rome "La Sapienza", Rome, Italy
| | - Paola Di Sabato
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy
| | - Eleonora Aricò
- Cell Factory FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | | | - Alfonso Troisi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Nicola B Mercuri
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mauro Maccarrone
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Stefano Puglisi-Allegra
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy; Department of Psychology, University of Rome "La Sapienza", Rome, Italy; "Daniel Bovet" Center, University of Rome "La Sapienza", Rome, Italy
| | | | - Valeria Carola
- Institute for Research and Health Care, Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
14
|
Surkin PN, Brenhouse H, Deak T, Liberman AC, Lasaga M. Stress, alcohol and infection during early development: A brief review of common outcomes and mechanisms. J Neuroendocrinol 2018; 30:e12602. [PMID: 29682808 PMCID: PMC6181762 DOI: 10.1111/jne.12602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 01/17/2023]
Abstract
Although stress is an adaptive physiological response to deal with adverse conditions, its occurrence during the early stages of life, such as infancy or adolescence, can induce adaptations in multiple physiological systems, including the reproductive axis, the hypothalamic-pituitary-adrenal (HPA) axis, the limbic cortex and the immune system. These early changes have consequences in adult life, as seen in the physiological and behavioural responses to stress. This review highlights the impact of several stress challenges incurred at various stages of development (perinatal, juvenile, adolescent periods) and how the developmental timing of early-life stress confers unique physiological adaptations that may persist across the lifespan. In doing so, we emphasise how intrinsic sex differences in the stress response might contribute to sex-specific vulnerabilities, the molecular processes underlying stress in the adult, and potential therapeutic interventions to mitigate the effects of early stage stress, including the novel molecular mechanism of SUMOylation as a possible key target of HPA regulation during early-life stress.
Collapse
Affiliation(s)
- Pablo Nicolás Surkin
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Fisiología, Marcelo T. de Alvear 2142, 1122 Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Heather Brenhouse
- Psychology Department, Northeastern University, Boston, MA, United States
| | - Terrence Deak
- Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902-6000, United States
| | - Ana Clara Liberman
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Mercedes Lasaga
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, UBA, Ciudad Autónoma de Buenos Aires, 1121 ABG, Argentina
| |
Collapse
|
15
|
Genty J, Tetsi Nomigni M, Anton F, Hanesch U. The combination of postnatal maternal separation and social stress in young adulthood does not lead to enhanced inflammatory pain sensitivity and depression-related behavior in rats. PLoS One 2018; 13:e0202599. [PMID: 30142161 PMCID: PMC6108470 DOI: 10.1371/journal.pone.0202599] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/19/2018] [Indexed: 11/19/2022] Open
Abstract
The cumulative and match/mismatch hypotheses of stress are still under discussion regarding the effects of early life stress (ELS) on the vulnerability or resilience to psychopathology. In this context, an additional stress in later life (second hit) often leads to stress-related disorders that frequently include comorbid pain states. We previously observed that maternal separation (MS), a model of ELS, reduces vulnerability to neuropathic and inflammatory pain in rats. In the present study, we investigated the effects of an additional later stressor on the vulnerability to inflammatory pain. Sprague Dawley pups were divided into 4 groups: controls (CON, no stress), MS, social stress (SS) and MS+SS. At young adult age (from 7 to 15 weeks), stress- as well as pain-related parameters were evaluated prior and during 21 days following the induction of paw inflammation with complete Freund's adjuvant (CFA). Finally spinal glutamatergic transmission, immunocompetent cells, pro-inflammatory cytokines and growth factors were examined using qPCR. None of the stress conditions had a significant impact on corticosterone levels and anhedonia. In the forced swim test, MS and SS displayed increased passive coping whereas the combination of both stressors revoked this effect. The different stress conditions had no influence on basal mechanical thresholds and heat sensitivity. At 4 days post-inflammation all stress groups displayed lower mechanical thresholds than CON but the respective values were comparable at 7, 10, and 14 days. Only on day 21, MS rats were more sensitive to mechanical stimulation compared to the other groups. Regarding noxious heat sensitivity, MS+SS animals were significantly less sensitive than CON at 10 and 21 days after CFA-injection. qPCR results were mitigated. Despite the finding that stress conditions differentially affected different players of glutamatergic transmission, astrocyte activity and NGF expression, our biochemical results could not readily be related to the behavioral observations, precluding a congruent conclusion. The present results do neither confirm the cumulative nor corroborate or disprove the match/mismatch hypothesis.
Collapse
Affiliation(s)
- Julien Genty
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
- * E-mail:
| | - Milène Tetsi Nomigni
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Fernand Anton
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| | - Ulrike Hanesch
- Research group Stress, Pain and Pain Modulation, Institute for Health and Behavior, University of Luxembourg, Luxembourg, Luxembourg
| |
Collapse
|
16
|
Raineki C, Bodnar TS, Holman PJ, Baglot SL, Lan N, Weinberg J. Effects of early-life adversity on immune function are mediated by prenatal environment: Role of prenatal alcohol exposure. Brain Behav Immun 2017; 66:210-220. [PMID: 28698116 PMCID: PMC5650917 DOI: 10.1016/j.bbi.2017.07.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/06/2017] [Accepted: 07/03/2017] [Indexed: 01/07/2023] Open
Abstract
The contribution of the early postnatal environment to the pervasive effects of prenatal alcohol exposure (PAE) is poorly understood. Moreover, PAE often carries increased risk of exposure to adversity/stress during early life. Dysregulation of immune function may play a role in how pre- and/or postnatal adversity/stress alters brain development. Here, we combine two animal models to examine whether PAE differentially increases vulnerability to immune dysregulation in response to early-life adversity. PAE and control litters were exposed to either limited bedding (postnatal day [PN] 8-12) to model early-life adversity or normal bedding, and maternal behavior and pup vocalizations were recorded. Peripheral (serum) and central (amygdala) immune (cytokines and C-reactive protein - CRP) responses of PAE animals to early-life adversity were evaluated at PN12. Insufficient bedding increased negative maternal behavior in both groups. Early-life adversity increased vocalization in all animals; however, PAE pups vocalized less than controls. Early-life adversity reduced serum TNF-α, KC/GRO, and IL-10 levels in control but not PAE animals. PAE increased serum CRP, and levels were even higher in pups exposed to adversity. Finally, PAE reduced KC/GRO and increased IL-10 levels in the amygdala. Our results indicate that PAE alters immune system development and both behavioral and immune responses to early-life adversity, which could have subsequent consequences for brain development and later life health.
Collapse
Affiliation(s)
- Charlis Raineki
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Parker J Holman
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Samantha L Baglot
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Ni Lan
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Wang Q, Dong X, Wang Y, Liu M, Sun A, Li N, lin Y, Geng Z, Jin Y, Li X. Adolescent escitalopram prevents the effects of maternal separation on depression‐ and anxiety‐like behaviours and regulates the levels of inflammatory cytokines in adult male mice. Int J Dev Neurosci 2017; 62:37-45. [PMID: 28778811 DOI: 10.1016/j.ijdevneu.2017.07.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Affiliation(s)
- Qi Wang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaomei Dong
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Yan Wang
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Mengxi Liu
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Anji Sun
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Nannan Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Yiwei lin
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Zhongli Geng
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Ye Jin
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| | - Xiaobai Li
- Department of PsychiatryThe First Hospital of China Medical UniversityShenyangLiaoning ProvinceChina
| |
Collapse
|
18
|
Saavedra LM, Fenton Navarro B, Torner L. Early Life Stress Activates Glial Cells in the Hippocampus but Attenuates Cytokine Secretion in Response to an Immune Challenge in Rat Pups. Neuroimmunomodulation 2017; 24:242-255. [PMID: 29332092 DOI: 10.1159/000485383] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVE Early life stress (ELS) increases the vulnerability to developing psychopathological disorders in adulthood that are accompanied by brain inflammatory processes. However, it is not known how a combined double hit (stress and immune) at an early age affects the response of the neuroimmune system. Here we investigated the effect of periodic maternal separation (MS) followed by administration of lipopolysaccharide (LPS) on glial cells in the CA3 region and hilus of the hippocampus and on cytokine release on postnatal day (PN) 15. METHODS Male rat pups were subjected to MS (3 h/day, PN1-14). MS and control pups received a single LPS injection (1 mg/kg of body weight) on PN14. They were subjected to an open field test 1 h later. The pups were sacrificed 90 min after LPS injection (PN14) or on PN15 for cytokine or immunohistological analyses, respectively. RESULTS LPS reduced the locomotion and induced high corticosterone levels in treated pups. MS or LPS reduced microglial density and activated microglial cells in the hippocampal CA3 and hilus regions. Microglial activation was highest in MS-LPS pups. The astrocyte density was mildly reduced by MS or LPS in the CA3 region and hilus, but the reduction was maximal in MS-LPS pups. LPS increased the secretion of plasmatic interleukin (IL)-1β, tumor necrosis factor-α, and IL-6, and of hippocampal IL-1β protein, but these were attenuated in MS-LPS pups. CONCLUSION Although MS and LPS activate neuroimmune cells, stress attenuates the hippocampal and peripheral cytokine response to LPS through an as-yet unidentified adaptive mechanism. These results provide information regarding the neurobiology of stress and inflammation.
Collapse
Affiliation(s)
- Luis Miguel Saavedra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Mexico
| | | | | |
Collapse
|
19
|
Grassi-Oliveira R, Honeycutt JA, Holland FH, Ganguly P, Brenhouse HC. Cognitive impairment effects of early life stress in adolescents can be predicted with early biomarkers: Impacts of sex, experience, and cytokines. Psychoneuroendocrinology 2016; 71:19-30. [PMID: 27235636 PMCID: PMC5412140 DOI: 10.1016/j.psyneuen.2016.04.016] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 12/27/2022]
Abstract
Childhood adversity increases vulnerability to psychiatric disorders that emerge in adolescence, in a sex-dependent manner. Early adversity modeled in rodents with maternal separation (MS) affects cognition and medial prefrontal cortex (mPFC) circuitry. Humans and animals exposed to early life adversity also display heightened circulating inflammatory cytokines, however the predictive relationship of these early measures with later behavioral deficits is unknown. Here, male and female rats were exposed to MS or control rearing during the postnatal period (P2-21). Blood samples were taken at distinct developmental time points for analysis of the pro-inflammatory cytokine IL-1β and the anti-inflammatory cytokines IL-4, and IL-10, followed by win-shift cognitive testing and analysis of mPFC parvalbumin (PVB) immunofluorescent interneurons in adolescence. Regression analyses were conducted to explore the relationship between early cytokines and adolescent behavioral measures. We observed sex- and age-dependent effects of MS on circulating cytokines. MS also yielded adolescent decreases in mPFC PVB and cognitive deficits, which were predicted by early cytokine expression in a sex- and experience-dependent manner. Taken together, the present data reveals that circulating cytokines and PVB levels are predictive of adolescent cognitive deficits, and therefore provide compelling evidence for a putative role of early biomarkers in mediating MS-induced behavioral dysfunction. Importantly, predictive relationships often depended on sex and on MS history, suggesting that early life experiences may yield individualistic mechanisms of vulnerability compared to the general population.
Collapse
Affiliation(s)
- Rodrigo Grassi-Oliveira
- Developmental Cognitive Neuroscience Lab (DCNL), Pontifícia Universidade Católica do Rio Grande do Sul. Avenida Ipiranga, 6681, prédio 11, sala 928, Porto Alegre 90619-900, RS, Brazil
| | - Jennifer A Honeycutt
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Freedom H Holland
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Prabarna Ganguly
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA
| | - Heather C Brenhouse
- Psychology Department, Northeastern University, 125 Nightingale Hall, 360 Huntington Ave., Boston 02115, MA, USA.
| |
Collapse
|
20
|
Burke NN, Finn DP, McGuire BE, Roche M. Psychological stress in early life as a predisposing factor for the development of chronic pain: Clinical and preclinical evidence and neurobiological mechanisms. J Neurosci Res 2016; 95:1257-1270. [DOI: 10.1002/jnr.23802] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Nikita N. Burke
- Physiology, School of Medicine, National University of Ireland; Galway Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
| | - David P. Finn
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland; Galway Ireland
| | - Brian E. McGuire
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
- Psychology, National University of Ireland; Galway Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland; Galway Ireland
- Centre for Pain Research and Galway Neuroscience Centre, NCBES, National University of Ireland; Galway Ireland
| |
Collapse
|
21
|
Analysis of chemokines and receptors expression profile in the myelin mutant taiep rat. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:397310. [PMID: 25883747 PMCID: PMC4390177 DOI: 10.1155/2015/397310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 11/18/2022]
Abstract
Taiep rat has a failure in myelination and remyelination processes leading to a state of hypomyelination throughout its life. Chemokines, which are known to play a role in inflammation, are also involved in the remyelination process. We aimed to demonstrate that remyelination-stimulating factors are altered in the brainstem of 1- and 6-month-old taiep rats. We used a Rat RT2 Profiler PCR Array to assess mRNA expression of 84 genes coding for cytokines, chemokines, and their receptors. We also evaluated protein levels of CCL2, CCR1, CCR2, CCL5, CCR5, CCR8, CXCL1, CXCR2, CXCR4, FGF2, and VEGFA by ELISA. Sprague-Dawley rats were used as a control. PCR Array procedure showed that proinflammatory cytokines were not upregulated in the taiep rat. In contrast, some mRNA levels of beta and alpha chemokines were upregulated in 1-month-old rats, but CXCR4 was downregulated at their 6 months of age. ELISA results showed that CXCL1, CCL2, CCR2, CCR5, CCR8, and CXCR4 protein levels were decreased in brainstem at the age of 6 months. These results suggest the presence of a chronic neuroinflammation process with deficiency of remyelination-stimulating factors (CXCL1, CXCR2, and CXCR4), which might account for the demyelination in the taiep rat.
Collapse
|
22
|
Hoeijmakers L, Lucassen PJ, Korosi A. The interplay of early-life stress, nutrition, and immune activation programs adult hippocampal structure and function. Front Mol Neurosci 2015; 7:103. [PMID: 25620909 PMCID: PMC4288131 DOI: 10.3389/fnmol.2014.00103] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 12/16/2014] [Indexed: 01/08/2023] Open
Abstract
Early-life adversity increases the vulnerability to develop psychopathologies and cognitive decline later in life. This association is supported by clinical and preclinical studies. Remarkably, experiences of stress during this sensitive period, in the form of abuse or neglect but also early malnutrition or an early immune challenge elicit very similar long-term effects on brain structure and function. During early-life, both exogenous factors like nutrition and maternal care, as well as endogenous modulators, including stress hormones and mediator of immunological activity affect brain development. The interplay of these key elements and their underlying molecular mechanisms are not fully understood. We discuss here the hypothesis that exposure to early-life adversity (specifically stress, under/malnutrition and infection) leads to life-long alterations in hippocampal-related cognitive functions, at least partly via changes in hippocampal neurogenesis. We further discuss how these different key elements of the early-life environment interact and affect one another and suggest that it is a synergistic action of these elements that shapes cognition throughout life. Finally, we consider different intervention studies aiming to prevent these early-life adversity induced consequences. The emerging evidence for the intriguing interplay of stress, nutrition, and immune activity in the early-life programming calls for a more in depth understanding of the interaction of these elements and the underlying mechanisms. This knowledge will help to develop intervention strategies that will converge on a more complete set of changes induced by early-life adversity.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Paul J Lucassen
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| | - Aniko Korosi
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
23
|
Ganguly P, Brenhouse HC. Broken or maladaptive? Altered trajectories in neuroinflammation and behavior after early life adversity. Dev Cogn Neurosci 2014; 11:18-30. [PMID: 25081071 PMCID: PMC4476268 DOI: 10.1016/j.dcn.2014.07.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/23/2014] [Accepted: 07/02/2014] [Indexed: 12/11/2022] Open
Abstract
This paper reviews how early life adversity alters neuroimmune mechanisms. Neuroimmune sensitization from early life adversity impacts circuitry at discrete life stages. Neuroimmune and neurodevelopmental influences can impact behavior and vulnerability. Sexual dimorphism in immune and brain development yield distinct effects of early life adversity.
Exposure to adversity and stress early in development yields vulnerability to mental illnesses throughout the lifespan. Growing evidence suggests that this vulnerability has mechanistic origins involving aberrant development of both neurocircuitry and neuro-immune activity. Here we review the current understanding of when and how stress exposure initiates neuroinflammatory events that interact with brain development. We first review how early life adversity has been associated with various psychopathologies, and how neuroinflammation plays a role in these pathologies. We then summarize data and resultant hypotheses describing how early life adversity may particularly alter neuro-immune development with psychiatric consequences. Finally, we review how sex differences contribute to individualistic vulnerabilities across the lifespan. We submit the importance of understanding how stress during early development might cause outright neural or glial damage, as well as experience-dependent plasticity that may insufficiently prepare an individual for sex-specific or life-stage specific challenges.
Collapse
Affiliation(s)
- Prabarna Ganguly
- Northeastern University, Psychology Department, 125 Nightingale Hall, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Heather C Brenhouse
- Northeastern University, Psychology Department, 125 Nightingale Hall, 360 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
24
|
Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:932757. [PMID: 24999483 PMCID: PMC4066721 DOI: 10.1155/2014/932757] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 05/18/2014] [Indexed: 12/13/2022]
Abstract
Rodent models are an indispensable tool for studying etiology and progress of depression. Since interrelated systems of neurotrophic factors and cytokines comprise major regulatory mechanisms controlling normal brain plasticity, impairments of these systems form the basis for development of cerebral pathologies, including mental diseases. The present review focuses on the numerous experimental rodent models of depression induced by different stress factors (exteroceptive and interoceptive) during early life (including prenatal period) or adulthood, giving emphasis to the data on the changes of neurotrophic factors and neuroinflammatory indices in the brain. These parameters are closely related to behavioral depression-like symptoms and impairments of neuronal plasticity and are both gender- and genotype-dependent. Stress-related changes in expression of neurotrophins and cytokines in rodent brain are region-specific. Some contradictory data reported by different groups may be a consequence of differences of stress paradigms or their realization in different laboratories. Like all experimental models, stress-induced depression-like conditions are experimental simplification of clinical depression states; however, they are suitable for understanding the involvement of neurotrophic factors and cytokines in the pathogenesis of the disease—a goal unachievable in the clinical reality. These major regulatory systems may be important targets for therapeutic measures as well as for development of drugs for treatment of depression states.
Collapse
|
25
|
Roque S, Mesquita AR, Palha JA, Sousa N, Correia-Neves M. The behavioral and immunological impact of maternal separation: a matter of timing. Front Behav Neurosci 2014; 8:192. [PMID: 24904343 PMCID: PMC4033212 DOI: 10.3389/fnbeh.2014.00192] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 05/08/2014] [Indexed: 11/13/2022] Open
Abstract
Maternal separation (MS), an early life stressful event, has been demonstrated to trigger neuropsychiatric disorders later in life, in particular depression. Experiments using rodents subjected to MS protocols have been very informative for the establishment of this association. However, the mechanism by which MS leads to neuropsychiatric disorders is far from being understood. This is probably associated with the multifactorial nature of depression but also with the fact that different research MS protocols have been used (that vary on temporal windows and time of exposure to MS). In the present study, MS was induced in rats in two developmental periods: for 6 h per day for 14 days between postnatal days 2-15 (MS2-15) and 7-20 (MS7-20). These two periods were defined to differ essentially on the almost complete (MS2-15) or partial (MS7-20) overlap with the stress hypo-responsive period. Behavioral, immunological, and endocrine parameters, frequently associated with depressive-like behavior, were analyzed in adulthood. Irrespectively from the temporal window, both MS exposure periods led to increased sera corticosterone levels. However, only MS2-15 animals displayed depressive and anxious-like behaviors. Moreover, MS2-15 was also the only group presenting alterations in the immune system, displaying decreased percentage of CD8(+) T cells, increased spleen T cell CD4/CD8 ratio, and thymocytes with increased resistance to dexamethasone-induced cell death. A linear regression model performed to predict depressive-like behavior showed that both corticosterone levels and T cell CD4/CD8 ratio explained 37% of the variance observed in depressive-like behavior. Overall, these findings highlight the existence of "critical periods" for early life stressful events to exert programing effects on both central and peripheral systems, which are of relevance for distinct patterns of susceptibility to emotional disorders later in life.
Collapse
Affiliation(s)
- Susana Roque
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga , Portugal
| | - Ana Raquel Mesquita
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; Neuropsychophysiology Laboratory, Center for Research in Psychology (CIPsi), School of Psychology, University of Minho , Braga , Portugal
| | - Joana A Palha
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga , Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga , Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute, School of Health Sciences, University of Minho , Braga , Portugal ; ICVS/3B's - PT Government Associate Laboratory , Braga , Portugal
| |
Collapse
|
26
|
Pierce AN, Ryals JM, Wang R, Christianson JA. Vaginal hypersensitivity and hypothalamic-pituitary-adrenal axis dysfunction as a result of neonatal maternal separation in female mice. Neuroscience 2014; 263:216-30. [PMID: 24462609 DOI: 10.1016/j.neuroscience.2014.01.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/11/2013] [Accepted: 01/14/2014] [Indexed: 02/07/2023]
Abstract
Early life stress can permanently alter functioning of the hypothalamic-pituitary-adrenal (HPA) axis, which regulates the stress response and influences the perception of pain. Chronic pelvic pain patients commonly report having experienced childhood neglect or abuse, which increases the likelihood of presenting with comorbid chronic pain and/or mood disorders. Animal models of neonatal stress commonly display enhanced anxiety-like behaviors, colorectal hypersensitivity, and disruption of proper neuro-immune interactions in adulthood. Here, we tested the hypothesis that early life stress impacts vaginal sensitivity by exposing mice to neonatal maternal separation (NMS) for 3h/day during the first two (NMS14) or three (NMS21) postnatal weeks. As adults, female mice underwent vaginal balloon distension (VBD), which was also considered an acute stress. Before or after VBD, mice were assessed for anxiety-like behavior, hindpaw sensitivity, and changes in gene and protein expression related to HPA axis function and regulation. NMS21 mice displayed significantly increased vaginal sensitivity compared to naïve mice, as well as significantly reduced anxiety-like behavior at baseline, which was heightened following VBD. NMS21 mice exhibited significant thermal and mechanical hindpaw hypersensitivity at baseline and following VBD. NMS14 mice displayed no change in anxiety-like behavior and only exhibited significantly increased hindpaw mechanical and thermal sensitivity following VBD. Centrally, a significant decrease in negative regulation of the HPA axis was observed in the hypothalamus and hippocampus of NMS21 mice. Peripherally, NMS and VBD affected the expression of inflammatory mediators in the vagina and bladder. Corticotropin-releasing factor (CRF) receptor and transient receptor potential (TRP) channel protein expression was also significantly, and differentially, affected in vagina, bladder, and colon by both NMS and VBD. Together these data indicate that NMS affects both central and peripheral aspects of the HPA axis, which may drive changes in vaginal sensitivity and the development of comorbid chronic pain and mood disorders.
Collapse
Affiliation(s)
- A N Pierce
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - J M Ryals
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - R Wang
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States
| | - J A Christianson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, United States.
| |
Collapse
|
27
|
Stein DJ. Understanding somatic symptom disorder: the role of translational neuroscience. Biol Psychiatry 2013; 74:637-8. [PMID: 24120290 DOI: 10.1016/j.biopsych.2013.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022]
Affiliation(s)
- Dan J Stein
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
28
|
Park HJ, Kim SK, Kang WS, Woo JM, Kim JW. Effects of essential oil from Chamaecyparis obtusa on cytokine genes in the hippocampus of maternal separation rats. Can J Physiol Pharmacol 2013; 92:95-101. [PMID: 24502631 DOI: 10.1139/cjpp-2013-0224] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the effects of an essential oil from Chamaecyparis obtusa (EOCO) on early life stress, using maternal separation (MS) rats and a microarray method to analyze the changes in gene expressions caused by EOCO in the hippocampus of MS rats. Rats in the MS groups were separated from their respective mothers from postnatal day (pnd) 14 to 28. Rats in the EOCO-treated groups were exposed to EOCO for 1 or 2 h by inhalation from pnd 21 to 28. The EOCO-treated MS rats showed decreased anxiety-related behaviors compared with the untreated MS rats in the elevated plus-maze (EPM) test. In the microarray analysis, we found that EOCO downregulated the expressions of cytokine genes such as Ccl2, Il6, Cxcl10, Ccl19, and Il1rl in the hippocampus of MS rats, and also confirmed that using reverse transcriptase - PCR. In particular, the expressions of Ccl2 and Il6 were predominantly decreased by EOCO in the hippocampus of MS rats. Interestingly, protein expression was also reduced by EOCO in MS rats. These results indicate that EOCO decreases MS-induced anxiety-related behaviors, and modulates cytokines, particularly Ccl2 and Il6, in the hippocampus of MS rats.
Collapse
Affiliation(s)
- Hae Jeong Park
- a Kohwang Medical Research Institute, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | | | | | | | | |
Collapse
|
29
|
Burke NN, Llorente R, Marco EM, Tong K, Finn DP, Viveros MP, Roche M. Maternal deprivation is associated with sex-dependent alterations in nociceptive behavior and neuroinflammatory mediators in the rat following peripheral nerve injury. THE JOURNAL OF PAIN 2013; 14:1173-84. [PMID: 23850096 DOI: 10.1016/j.jpain.2013.05.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 04/24/2013] [Accepted: 05/02/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED Early-life stress is associated with an increased risk of developing affective disorders and chronic pain conditions. This study examined the effect of maternal deprivation (MD) on nociceptive responding prior to and following peripheral nerve injury (L5-L6 spinal nerve ligation [SNL]). Because neuroimmune signaling plays an important role in pain and affective disorders, associated alterations in glial and cytokine expression were assessed in key brain regions associated with emotional and nociceptive responding, the hippocampus and prefrontal cortex. MD female, but not male, rats exhibited thermal hypoalgesia and mechanical allodynia compared with control (non-MD) counterparts. SNL resulted in mechanical and cold allodynia in MD and control rats of both sexes. However, MD females exhibited enhanced SNL-induced allodynic responding compared with non-MD counterparts. Interleukin 6 (IL-6) expression was reduced in the prefrontal cortex of MD-SNL males when compared with non-SNL counterparts. Glial fibrillary acidic protein and IL-1β expression in the hippocampus of MD-SNL males was increased compared with non-MD controls. MD-SNL females exhibited reduced tumor necrosis factor alpha in the prefrontal cortex with a concomitant increase in IL-6 and tumor necrosis factor alpha expression in the hippocampus, compared with either MD or SNL alone. In conclusion, MD female, but not male, rats exhibit enhanced nociceptive responding following peripheral nerve injury, effects that may relate to the distinct neuroinflammatory profile observed in female versus male rats. PERSPECTIVE This study demonstrates that females rats exposed to early-life stress exhibit enhanced neuropathic pain responding, effects that are associated with alterations in neuroinflammatory mediators. Increased understanding of the interactions among early-life stress, gender, and pain may lead to the identification of novel therapeutic targets for the treatment of chronic pain disorders.
Collapse
Affiliation(s)
- Nikita N Burke
- Physiology, School of Medicine, NCBES Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | | | | | | | | | | | | |
Collapse
|
30
|
Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun 2013. [PMID: 23207107 DOI: 10.1016/j.bbi.2012.11.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Postnatal maternal separation in rats causes a reduction of GABAergic parvalbumin-containing interneurons in the prefrontal cortex that first occurs in adolescence. This parvalbumin loss can be prevented by pre-adolescent treatment with a non-steroidal anti-inflammatory drug that also protects against excitotoxicity. Therefore, the neuropsychiatric disorders associated with early life adversity and interneuron dysfunction may involve neuroinflammatory processes and/or aberrant glutamatergic activity. Here, we aimed to determine whether delayed parvalbumin loss after maternal separation was due to inflammatory activity, and whether central administration of the anti-inflammatory cytokine interleukin (IL)-10 could protect against such loss. We also investigated the effects of maternal separation and IL-10 treatment on cortical NMDA receptor expression. Male rat pups were isolated for 4h/day between postnatal days 2-20. IL-10 was administered intracerebroventricularly through an indwelling cannula between P30 and 38. Adolescent prefrontal cortices were analyzed using Western blotting and immunohistochemistry for parvalbumin and NMDA NR2A subunit expression. We demonstrate that central IL-10 administration during pre-adolescence protects maternally separated animals from parvalbumin loss in adolescence. Linear regression analyses revealed that increased circulating levels of the pro-inflammatory cytokines IL-1β and IL-6 predicted lowered parvalbumin levels in maternally separated adolescents. Maternal separation also increases cortical expression of the NR2A NMDA receptor subunit in adolescence, which is prevented by IL-10 treatment. These data suggest that inflammatory damage to parvalbumin interneurons may occur via aberrant glutamatergic activity in the prefrontal cortex. Our findings provide a novel interactive mechanism between inflammation and neural dysfunction that helps explain deleterious effects of early life adversity on prefrontal cortex interneurons.
Collapse
|
31
|
Salgado JV, Sandner G. A critical overview of animal models of psychiatric disorders: challenges and perspectives. BRAZILIAN JOURNAL OF PSYCHIATRY 2013; 35 Suppl 2:S77-81. [DOI: 10.1590/1516-4446-2013-1156] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Joao Vinicius Salgado
- Universidade Federal de Minas Gerais, Brazil; Fundacao Hospitalar do Estado de Minas Gerais, Brazil
| | | |
Collapse
|
32
|
Réus GZ, Dos Santos MAB, Abelaira HM, Ribeiro KF, Petronilho F, Vuolo F, Colpo GD, Pfaffenseller B, Kapczinski F, Dal-Pizzol F, Quevedo J. Imipramine reverses alterations in cytokines and BDNF levels induced by maternal deprivation in adult rats. Behav Brain Res 2012; 242:40-6. [PMID: 23238043 DOI: 10.1016/j.bbr.2012.11.044] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/26/2012] [Accepted: 11/30/2012] [Indexed: 01/19/2023]
Abstract
A growing body of evidence is pointing toward an association between immune molecules, as well brain-derived neurotrophic factor (BDNF) and the depression. The present study was aimed to evaluate the behavioral and molecular effects of the antidepressant imipramine in maternally deprived adult rats. To this aim, maternally deprived and non-deprived (control group) male rats were treated with imipramine (30mg/kg) once a day for 14 days during their adult phase. Their behavior was then assessed using the forced swimming test. In addition to this, IL-10, TNF-α and IL-1β cytokines were assessed in the serum and cerebrospinal fluid (CSF). In addition, BDNF protein levels were assessed in the prefrontal cortex, hippocampus and amygdala. In deprived rats treated with saline was observed an increase on immobility time, compared with non-deprived rats treated with imipramine (p<0.05). Deprived rats treated with saline presented a decrease on BDNF levels in the amygdala (p<0.05), compared with all other groups. The IL-10 levels were decreased in the serum (p<0.05). TNF-α and IL-1β levels were increased in the serum and CSF of deprived rats treated with saline (p<0.05). Interestingly, imipramine treatment reversed the effects of maternal deprivation on BDNF and cytokines levels (p<0.05). Finally, these findings further support a relationship between immune activation, neurotrophins and the depression, and considering the action of imipramine, it is suggested that classic antidepressants could exert their effects by modulating the immune system.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Laboratório de Neurociências, Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), and Núcleo de Excelência em Neurociências Aplicadas de Santa Catarina (NENASC), Programa de Pós-Graduação em Ciências da Saúde, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|