1
|
Gu W, Pan T, Wang X, Kang L, Liu N, Piao M, Feng C. Sevoflurane exposure triggers ferroptosis of neuronal cells initiated by the activation of ATM/p53 in the neonatal mouse brain via JNK/p38 MAPK-mediated oxidative DNA damage. Int Immunopharmacol 2025; 158:114866. [PMID: 40378436 DOI: 10.1016/j.intimp.2025.114866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/27/2025] [Accepted: 05/09/2025] [Indexed: 05/18/2025]
Abstract
Neuronal death has long been regarded as a pivotal pathological factor in the developmental neurotoxicity caused by the volatile anesthetic sevoflurane in the neonatal brain, but the detailed mechanism remains controversial. Ferroptosis is a novel type of regulated cell death driven by excess lipid peroxidation secondary to intracellular iron overload, and it is implicated in the pathogenesis of various neurological disorders. Acting as a death messenger, p53 is primarily activated by ATM during DNA damage and mediates various forms of cell death, including apoptosis, autophagy, and ferroptosis. JNK/p38 MAPK are important stress-responsive pathways that can exacerbate intracellular ROS production, thereby linking DNA damage to many pathological conditions such as neurodegeneration and ischemic injury. In our present study, we demonstrated that sevoflurane exposure-induced neuronal death was correlated with intracellular iron overload and lipid peroxidation in HT22 cells, primary hippocampal neurons, and the hippocampi of neonatal mice, consistent with the hallmarks of ferroptosis. Furthermore, we found that sevoflurane-induced neuronal ferroptosis was associated with ATM/p53 activation in response to DNA damage. Additionally, sevoflurane exposure caused JNK/p38 MAPK activation followed by intracellular ROS accumulation, ultimately leading to DNA damage. Mechanistically, ATM/p53 contributed to ferroptosis caused by sevoflurane via two pathways: (1) enhancing iron uptake (upregulating TFR and downregulating FPN) and (2) promoting lipid peroxidation through NOX4, ALOX12, ALOX15 activation and SLC7A11 suppression. Collectively, these findings demonstrated that sevoflurane exposure induced ferroptosis of neuronal cells in the neonatal brain, triggered by ATM/p53 activation via JNK/p38 MAPK-mediated ROS accumulation and subsequent DNA damage.
Collapse
Affiliation(s)
- Wanping Gu
- Department of Anesthesiology, The First Hospital of Jilin University, No. 1 Xinmin St., Changchun 130021, China
| | - Tingting Pan
- Department of Anesthesiology, The First Hospital of Jilin University, No. 1 Xinmin St., Changchun 130021, China
| | - Xuedong Wang
- Department of Anesthesiology, The First Hospital of Jilin University, No. 1 Xinmin St., Changchun 130021, China
| | - Liheng Kang
- Department of Anesthesiology, The First Hospital of Jilin University, No. 1 Xinmin St., Changchun 130021, China
| | - Nan Liu
- Department of Anesthesiology, The First Hospital of Jilin University, No. 1 Xinmin St., Changchun 130021, China
| | - Meihua Piao
- Department of Anesthesiology, The First Hospital of Jilin University, No. 1 Xinmin St., Changchun 130021, China.
| | - Chunsheng Feng
- Department of Anesthesiology, The First Hospital of Jilin University, No. 1 Xinmin St., Changchun 130021, China.
| |
Collapse
|
2
|
Jin H, Huang R, Li Z, Liu M, Zhao N, Zhang H, Lin Y. Acupuncture improves spatial learning and memory impairment caused by herpes simplex virus type-1 in rats through the p38 MAPK/CREB pathway. J Physiol Sci 2024; 74:49. [PMID: 39363248 PMCID: PMC11448188 DOI: 10.1186/s12576-024-00941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Acupuncture can improve herpes simplex encephalitis (HSE), but the underlying mechanism is not clear. Therefore, we evaluated the cognitive function and apoptosis in hippocampus caused by herpes simplex virus type-1 (HSV-1) in rats after acupuncture and described the molecular mechanism. METHODS Sprague-Dawley rats were induced into HSE models by HSV-1 infection. After 3 days, they received acupuncture at the acupoints of Xuanzhong (GB39), Baihui (GV20), Shenmen (HT7), Shenting (GV24), and Sanyinjiao (SP6), and/or intraperitoneal injection of the p38 MAPK inhibitor SB203580. Morris water maze test was performed on rats. The hippocampus of rats was obtained, and the expression of apoptosis-related genes in the tissues was detected by qRT-PCR. In addition, apoptosis-related proteins and proteins related to the p38 MAPK/CREB pathway in the tissues was detected by western blot. RESULTS After HSV-1 induction, the rat's escape latency was increased, the time spent on the platform in the target quadrant and the number of platform crossings significantly decreased. In addition, there was an increase in apoptosis in the hippocampus, accompanied by elevated levels of p-p38 and decreased levels of p-CREB. However, these effects could be improved by acupuncture treatment. Interestingly, SB203580 plays a similar role to acupuncture, and acupuncture could further enhance the impacts of SB203580 on cognitive function and apoptosis in hippocampus in HSE rats. CONCLUSION Acupuncture improves spatial learning and memory impairment caused by HSV-1 in rats. The functional mechanism of acupuncture may be through the p38 MAPK/CREB pathway.
Collapse
Affiliation(s)
- Hongjiao Jin
- The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), No. 98 Fenghuang Road, Huichuan District, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - Rui Huang
- The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), No. 98 Fenghuang Road, Huichuan District, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - Zhu Li
- The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), No. 98 Fenghuang Road, Huichuan District, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - Mi Liu
- The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), No. 98 Fenghuang Road, Huichuan District, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - Ning Zhao
- The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), No. 98 Fenghuang Road, Huichuan District, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - Haiyan Zhang
- The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), No. 98 Fenghuang Road, Huichuan District, Zunyi, 563000, Guizhou Province, People's Republic of China
| | - Yong Lin
- The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), No. 98 Fenghuang Road, Huichuan District, Zunyi, 563000, Guizhou Province, People's Republic of China.
| |
Collapse
|
3
|
Guo J, Cao Y, Zhang T, Xu C, Liu Z, Li W, Wang Q. Multisensory Fusion Training and 7, 8-Dihydroxyflavone Improve Amyloid-β-Induced Cognitive Impairment, Anxiety, and Depression-Like Behavior in Mice Through Multiple Mechanisms. Neuropsychiatr Dis Treat 2024; 20:1247-1270. [PMID: 38883414 PMCID: PMC11180438 DOI: 10.2147/ndt.s459891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/05/2024] [Indexed: 06/18/2024] Open
Abstract
Background There is growing interest in the role of physical activity in patients with of Alzheimer's disease (AD), particularly regarding its impact of cognitive function, gut microbiota, metabolites, and neurotrophic factors. Objective To investigate the impact of multisensory fusion training (MSFT) combined with 7, 8-dihydroxyflavone (DHF) on the behavioral characteristics, protein expression, microbiome, and serum metabolome using the AD model in mice induced with amyloid-β (Aβ). Methods We assessed cognitive ability, anxiety-like and depression-like behaviors in Aβ mice using behavioral measures. Western blotting was employed to detect the expression of relevant proteins. The 16S rRNA gene sequencing and metabolomics were used to analyze changes in the intestinal microbial composition and serum metabolic profile, respectively, of Aβ mice. Results The behavioral outcomes indicated that a 4-week intervention combining DHF and MSFT yielded remarkable improvements in cognitive function and reduced anxiety and depression-like behaviors in Aβ mice. In the hippocampus of Aβ mice, the combined intervention increased the levels of BDNF, VGF, PSD-95, Nrf2, p-GSK3β and p-CREB proteins. Analyses of sequence and metabolomic data revealed that Bacteroides and Ruminococcaceae were remarkably more abundant following the combined intervention, influencing the expression of specific metabolites directly linked to the maintenance of neuronal and neurobehavioral functions. These metabolites play a crucial role in vital processes, such as amino acid metabolism, lipid metabolism, and neurotransmitter metabolism in mice. Conclusion Our study highlighted that MSFT combined with DHF improves cognitive impairment, anxiety, and depression-like behavior in Aβ mice through multiple mechanisms, and further validated the correlation between the gut microbiome and serum metabolome. These findings open up a promising avenue for future investigations into potential treatment strategies for AD.
Collapse
Affiliation(s)
- Jiejie Guo
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Taizhou, People's Republic of China
- Department of Neurology, The First People's Hospital of Wenling, Taizhou, People's Republic of China
| | - Yanzi Cao
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Ting Zhang
- Department of Clinical Laboratory, The First People's Hospital of Wenling, Taizhou, People's Republic of China
| | - Chunshuang Xu
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Zhitao Liu
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
- Fujian Normal University, Fuzhou, People's Republic of China
| | - Wanyi Li
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| | - Qinwen Wang
- Zhejiang Key Laboratory of Pathophysiology, NBU Health Science Center, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
4
|
Teng Y, Yuan Q, Wu Y, Wu S, Su J, Zhang P, Zhang Y. Research on the Chemical Constituents against Alzheimer's Disease of the Fruits of Physalis alkekengi L. var. franchetii (Mast.) Makino. Chem Biodivers 2023; 20:e202301075. [PMID: 37505462 DOI: 10.1002/cbdv.202301075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 07/29/2023]
Abstract
Physalis alkekengi L. var. franchetii (Mast.) Makino (PA) is a natural plant which is utilised as a traditional herbal medicine. It has properties that make it effective against inflammation and free radical damage. In the present study, the major constituents of four extraction parts of the fruits of PA (PAF) were investigated by combining ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS). The mice model of Alzheimer's disease (AD) induced by aluminum chloride (AlCl3 ) combined with D-galactose (D-gal) was established to comprehend the mechanism behind PAF's anti-AD activity from both behavioural and pathological perspectives. The results showed that four extraction parts of PAF (PAFE) had favorable anti-AD effects and the ethyl acetate (EA) group showed the best activity. UPLC-Q-TOF-MS analysis identified Physalin B, Nobiletin and Caffeic acid as the main anti-AD active constituents in EA extract. This study reveals that PAF can reduce neuroinflammatory damage by inhibiting p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway, which is the theoretical basis for clinical development and utilization of PAF in AD therapy.
Collapse
Affiliation(s)
- Yang Teng
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Qi Yuan
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - You Wu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Shuang Wu
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Pengxia Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, 154007, China
- Heilongjiang Pharmaceutical Research Institute, Jiamusi, 154007, China
| |
Collapse
|
5
|
Braun DJ, Frazier HN, Davis VA, Coleman MJ, Rogers CB, Van Eldik LJ. Early chronic suppression of microglial p38α in a model of Alzheimer's disease does not significantly alter amyloid-associated neuropathology. PLoS One 2023; 18:e0286495. [PMID: 37256881 PMCID: PMC10231773 DOI: 10.1371/journal.pone.0286495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/17/2023] [Indexed: 06/02/2023] Open
Abstract
The p38 alpha mitogen-activated protein kinase (p38α) is linked to both innate and adaptive immune responses and is under investigation as a target for drug development in the context of Alzheimer's disease (AD) and other conditions with neuroinflammatory dysfunction. While preclinical data has shown that p38α inhibition can protect against AD-associated neuropathology, the underlying mechanisms are not fully elucidated. Inhibitors of p38α may provide benefit via modulation of microglial-associated neuroinflammatory responses that contribute to AD pathology. The present study tests this hypothesis by knocking out microglial p38α and assessing early-stage pathological changes. Conditional knockout of microglial p38α was accomplished in 5-month-old C57BL/6J wild-type and amyloidogenic AD model (APPswe/PS1dE9) mice using a tamoxifen-inducible Cre/loxP system under control of the Cx3cr1 promoter. Beginning at 7.5 months of age, animals underwent behavioral assessment on the open field, followed by a later radial arm water maze test and collection of cortical and hippocampal tissues at 11 months. Additional endpoint measures included quantification of proinflammatory cytokines, assessment of amyloid burden and plaque deposition, and characterization of microglia-plaque dynamics. Loss of microglial p38α did not alter behavioral outcomes, proinflammatory cytokine levels, or overall amyloid plaque burden. However, this manipulation did significantly increase hippocampal levels of soluble Aβ42 and reduce colocalization of Iba1 and 6E10 in a subset of microglia in close proximity to plaques. The data presented here suggest that rather than reducing inflammation per se, the net effect of microglial p38α inhibition in the context of early AD-type amyloid pathology is a subtle alteration of microglia-plaque interactions. Encouragingly from a therapeutic standpoint, these data suggest no detrimental effect of even substantial decreases in microglial p38α in this context. Additionally, these results support future investigations of microglial p38α signaling at different stages of disease, as well as its relationship to phagocytic processes in this particular cell-type.
Collapse
Affiliation(s)
- David J. Braun
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| | - Hilaree N. Frazier
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Verda A. Davis
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Meggie J. Coleman
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Colin B. Rogers
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
| | - Linda J. Van Eldik
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, United States of America
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky, United States of America
| |
Collapse
|
6
|
Zhu W, Li W, Jiang J, Wang D, Mao X, Zhang J, Zhang X, Chang J, Yao P, Yang X, Da Costa C, Zhang Y, Yu J, Li H, Li S, Chi X, Li N. Chronic salmon calcitonin exerts an antidepressant effect via modulating the p38 MAPK signaling pathway. Front Mol Neurosci 2023; 16:1071327. [PMID: 36969556 PMCID: PMC10036804 DOI: 10.3389/fnmol.2023.1071327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
Depression is a common recurrent psychiatric disorder with a high lifetime prevalence and suicide rate. At present, although several traditional clinical drugs such as fluoxetine and ketamine, are widely used, medications with a high efficiency and reduced side effects are of urgent need. Our group has recently reported that a single administration of salmon calcitonin (sCT) could ameliorate a depressive-like phenotype via the amylin signaling pathway in a mouse model established by chronic restraint stress (CRS). However, the molecular mechanism underlying the antidepressant effect needs to be addressed. In this study, we investigated the antidepressant potential of sCT applied chronically and its underlying mechanism. In addition, using transcriptomics, we found the MAPK signaling pathway was upregulated in the hippocampus of CRS-treated mice. Further phosphorylation levels of ERK/p38/JNK kinases were also enhanced, and sCT treatment was able only to downregulate the phosphorylation level of p38/JNK, with phosphorylated ERK level unaffected. Finally, we found that the antidepressant effect of sCT was blocked by p38 agonists rather than JNK agonists. These results provide a mechanistic explanation of the antidepressant effect of sCT, suggesting its potential for treating the depressive disorder in the clinic.
Collapse
Affiliation(s)
- Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Weifen Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xinliang Mao
- Perfect Life and Health Institute, Zhongshan, Guangdong, China
| | - Jin Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xunzhi Zhang
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | | | - Ying Zhang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Jiezhong Yu
- The Fourth People’s Hospital of Datong City, Datong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, United Kingdom
- China-UK Institute for Frontier Science, Shenzhen, China
- *Correspondence: Huiliang Li,
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
- Shupeng Li,
| | - Xinjin Chi
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Anesthesiology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Xinjin Chi,
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- China-UK Institute for Frontier Science, Shenzhen, China
- The Fifth People’s Hospital of Datong City, Datong, China
- Ningning Li,
| |
Collapse
|
7
|
Farhadi A, Totonchi M, Nabavi SM, Baharvand H, Pakdaman H, Hajizadeh-Saffar E, Mousavi SA, Hadi F, Al-Sinawi H, Li Q, Zhang JS, Tahamtani Y, Shahpasand K. P38 Initiates Degeneration of midbrain GABAergic and Glutamatergic Neurons in Diabetes Models. Eur J Neurosci 2022; 56:3755-3778. [PMID: 35513862 DOI: 10.1111/ejn.15686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Diabetes mellitus may cause tau protein hyperphosphorylation and neurodegeneration, but the exact mechanism by which diabetic conditions induce tau pathology remains unclear. Tau protein hyperphosphorylation is considered a major pathological hallmark of neurodegeneration and can be triggered by diabetes. Various tau-directed kinases, including P38, can be activated upon diabetic stress and induce tau hyperphosphorylation. Despite extensive research efforts the exact tau specie(s) and kinases driving neurodegeneration in diabetes mellitus have not been clearly elucidated. We herein employed different techniques to determine the exact molecular mechanism of tau pathology triggered by diabetes in in vivo and in vitro models. We showed that diabetes-related stresses and glucose metabolism deficiency could induce cis P-tau (an early driver of the tau pathology) accumulation in the midbrain and corpus callosum of the diabetic mice models and cells treated with 2-deoxy-D-glucose, respectively. We found that the active phosphorylated level of P38 was increased in the treated cells and diabetic mice models. We observed that oxidative stress activated P38, which directly and indirectly drove tau pathology in the GABAergic and Glutamatergic neurons of the midbrain of the diabetic mice after 96 hours, which accumulated in the other neighboring brain areas after two months. Notably, P38 inhibition suppressed tau pathogenicity and risk-taking behaviors in the animal models after 96 hours. The data establish P38 as a central mediator of diabetes mellitus induced tau pathology. Our findings provide mechanistic insight into the consequences of this metabolic disorder on the nervous system.
Collapse
Affiliation(s)
- Aisan Farhadi
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Totonchi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Seyed Masood Nabavi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, ACECR, Tehran, Iran.,Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pakdaman
- Brain Mapping Research Center, Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ensiyeh Hajizadeh-Saffar
- Department of Regenerative medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fatemeh Hadi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamed Al-Sinawi
- Department of Behavioral Medicine, Sultan Qaboos University Hospital, Muscat, Oman
| | - Quan Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Jin-San Zhang
- Institute of Life Sciences, Wenzhou University, Wenzhou, Zhejiang, China.,Division of Oncology Research, Mayo Clinic, Rochester, MN, USA
| | - Yaser Tahamtani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Reproductive Epidemiology Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
8
|
Peng Z, Yang X, Zhang H, Yin M, Luo Y, Xie C. MiR-29b-3p aggravates NG108-15 cell apoptosis triggered by fluorine combined with aluminum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112658. [PMID: 34425535 DOI: 10.1016/j.ecoenv.2021.112658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
The mechanism of learning and memory impairment induced by the combination of fluorine and aluminum (FA) is not fully understood. The results of our previous research demonstrated that miR-29b-3p is a differentially expressed miRNA in the hippocampi of rat offspring exposed to FA; this miRNA is related to learning and memory and apoptosis. Based on these findings, in vitro studies were designed to assess the role of miR-29b-3p in neuronal apoptosis caused by the coexistence of FA. In the present study, the viability of mouse neuroblastoma-rat glioma hybrid cell (NG108-15 cell) was analyzed using Cell Counting Kit-8 (CCK-8). Apoptosis was detected by a Novocyte Flow Cytometer. Relative mRNA and protein expression levels were evaluated by real-time fluorescence quantitative PCR (qRT-PCR) and Western blotting (WB), respectively. The results showed that FA aggravated NG108-15 cell apoptosis by inhibiting dual-specificity phosphatase-2 (Dusp2) via increased miR-29b-3p. Accordingly, a dual-luciferase reporter assay showed that miR-29b-3p modulated Dusp2 protein levels by targeting its 3'-untranslated region. These findings show, for the first time, that miR-29b-3p is involved in neuronal apoptosis triggered by FA by targeting Dusp2.
Collapse
Affiliation(s)
- Zhongbi Peng
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Xuemei Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Hua Zhang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Mingyue Yin
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Yu Luo
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| | - Chun Xie
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
9
|
Mongelli A, Atlante S, Barbi V, Bachetti T, Martelli F, Farsetti A, Gaetano C. Treating Senescence like Cancer: Novel Perspectives in Senotherapy of Chronic Diseases. Int J Mol Sci 2020; 21:ijms21217984. [PMID: 33121118 PMCID: PMC7663758 DOI: 10.3390/ijms21217984] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
The WHO estimated around 41 million deaths worldwide each year for age-related non-communicable chronic diseases. Hence, developing strategies to control the accumulation of cell senescence in living organisms and the overall aging process is an urgently needed problem of social relevance. During aging, many biological processes are altered, which globally induce the dysfunction of the whole organism. Cell senescence is one of the causes of this modification. Nowadays, several drugs approved for anticancer therapy have been repurposed to treat senescence, and others are under scrutiny in vitro and in vivo to establish their senomorphic or senolytic properties. In some cases, this research led to a significant increase in cell survival or to a prolonged lifespan in animal models, at least. Senomorphics can act to interfere with a specific pathway in order to restore the appropriate cellular function, preserve viability, and to prolong the lifespan. On the other hand, senolytics induce apoptosis in senescent cells allowing the remaining non–senescent population to preserve or restore tissue function. A large number of research articles and reviews recently addressed this topic. Herein, we would like to focus attention on those chemical agents with senomorphic or senolytic properties that perspectively, according to literature, suggest a potential application as senotherapeutics for chronic diseases.
Collapse
Affiliation(s)
- Alessia Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Sandra Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
| | - Tiziana Bachetti
- Direzione Scientifica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy;
| | - Fabio Martelli
- Laboratorio di Cardiologia Molecolare, Policlinico San Donato IRCCS, San Donato Milanese, 20097 Milano; Italy,
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), 00185 Rome, Italy
- Correspondence: (A.F.); (C.G.)
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy; (A.M.); (S.A.); (V.B.)
- Correspondence: (A.F.); (C.G.)
| |
Collapse
|
10
|
Sharma HS, Sahib S, Tian ZR, Muresanu DF, Nozari A, Castellani RJ, Lafuente JV, Wiklund L, Sharma A. Protein kinase inhibitors in traumatic brain injury and repair: New roles of nanomedicine. PROGRESS IN BRAIN RESEARCH 2020; 258:233-283. [PMID: 33223036 DOI: 10.1016/bs.pbr.2020.09.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Traumatic brain injury (TBI) causes physical injury to the cell membranes of neurons, glial and axons causing the release of several neurochemicals including glutamate and cytokines altering cell-signaling pathways. Upregulation of mitogen associated protein kinase (MAPK) and extracellular signal-regulated kinase (ERK) occurs that is largely responsible for cell death. The pharmacological blockade of these pathways results in cell survival. In this review role of several protein kinase inhibitors on TBI induced oxidative stress, blood-brain barrier breakdown, brain edema formation, and resulting brain pathology is discussed in the light of current literature.
Collapse
Affiliation(s)
- Hari Shanker Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Seaab Sahib
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Z Ryan Tian
- Department of Chemistry & Biochemistry, University of Arkansas, Fayetteville, AR, United States
| | - Dafin F Muresanu
- Department of Clinical Neurosciences, University of Medicine & Pharmacy, Cluj-Napoca, Romania; "RoNeuro" Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Ala Nozari
- Anesthesiology & Intensive Care, Massachusetts General Hospital, Boston, MA, United States
| | - Rudy J Castellani
- Department of Pathology, University of Maryland, Baltimore, MD, United States
| | - José Vicente Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Bilbao, Spain
| | - Lars Wiklund
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Aruna Sharma
- International Experimental Central Nervous System Injury & Repair (IECNSIR), Department of Surgical Sciences, Anesthesiology & Intensive Care Medicine, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
11
|
Liu Y, Yu J, Wang X, Dong J. MicroRNA-345-5p regulates depression by targeting suppressor of cytokine signaling 1. Brain Behav 2020; 10:e01653. [PMID: 32730696 PMCID: PMC7507044 DOI: 10.1002/brb3.1653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS MicroRNA(miR)-345-5p plays a key role in various cellular functions. However, the function of miR-345-5p in resistant depression (TRD) is unclear. The aim of this study was to evaluate the role and mechanism of miR-345-5p in the treatment of resistance depression (TRD). METHODS RT-qPCR was used to detect the expression of miR-345-5p in BV-2 microglia. CCK-8 method and flow cytometry were used for cell viability and apoptosis of microglia. Target gene prediction and screening, and luciferase reporter assays were used to verify the downstream target gene of miR-345-5p. Western blot was used to analyze the protein expression of related proteins. RESULTS miR-345-5p increased the cell viability of BV-2 microglia and the expression level of pro-inflammatory cytokines. In addition, the conditioned medium of microglia treated with miR-345-5p reduced the cell viability of HT22 hippocampal cells and caused S-phase arrest. The miR-345-5p-treated microglia induced apoptosis by regulating the expression levels of Bax, Bcl-2, pro-caspase-3, and cleaved caspase-3. Furthermore, SOCS1 was a direct target of miR-345-5p, and overexpression of SOCS1 was able to reverse the proapoptotic effect of miR-345-5p on activation of microglia on hippocampal neurons. CONCLUSION miR-345-5p induced inflammatory damage in hippocampal neurons by activating microglia. MiR-345-5p may be an effective target for TRD therapy.
Collapse
Affiliation(s)
- Yulan Liu
- Psychiatric Department, Qingdao Mental Health Center, Qingdao university, Qingdao City, China
| | - Jun Yu
- Psychiatric Department, Qingdao Mental Health Center, Qingdao university, Qingdao City, China
| | - Xinrui Wang
- Psychiatric Department, Qingdao Mental Health Center, Qingdao university, Qingdao City, China
| | - Jicheng Dong
- Psychiatric Department, Qingdao Mental Health Center, Qingdao university, Qingdao City, China
| |
Collapse
|
12
|
Flores-Muñoz C, Gómez B, Mery E, Mujica P, Gajardo I, Córdova C, Lopez-Espíndola D, Durán-Aniotz C, Hetz C, Muñoz P, Gonzalez-Jamett AM, Ardiles ÁO. Acute Pannexin 1 Blockade Mitigates Early Synaptic Plasticity Defects in a Mouse Model of Alzheimer's Disease. Front Cell Neurosci 2020; 14:46. [PMID: 32265655 PMCID: PMC7103637 DOI: 10.3389/fncel.2020.00046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022] Open
Abstract
Synaptic loss induced by soluble oligomeric forms of the amyloid β peptide (sAβos) is one of the earliest events in Alzheimer’s disease (AD) and is thought to be the major cause of the cognitive deficits. These abnormalities rely on defects in synaptic plasticity, a series of events manifested as activity-dependent modifications in synaptic structure and function. It has been reported that pannexin 1 (Panx1), a nonselective channel implicated in cell communication and intracellular signaling, modulates the induction of excitatory synaptic plasticity under physiological contexts and contributes to neuronal death under inflammatory conditions. Here, we decided to study the involvement of Panx1 in functional and structural defects observed in excitatory synapses of the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mice, an animal model of AD. We found an age-dependent increase in the Panx1 expression that correlates with increased Aβ levels in hippocampal tissue from Tg mice. Congruently, we also observed an exacerbated Panx1 activity upon basal conditions and in response to glutamate receptor activation. The acute inhibition of Panx1 activity with the drug probenecid (PBN) did not change neurodegenerative parameters such as amyloid deposition or astrogliosis, but it significantly reduced excitatory synaptic defects in the AD model by normalizing long-term potentiation (LTP) and depression and improving dendritic arborization and spine density in hippocampal neurons of the Tg mice. These results suggest a major contribution of Panx1 in the early mechanisms leading to the synaptopathy in AD. Indeed, PBN induced a reduction in the activation of p38 mitogen-activated protein kinase (MAPK), a kinase widely implicated in the early neurotoxic signaling in AD. Our data strongly suggest that an enhanced expression and activation of Panx1 channels contribute to the Aβ-induced cascades leading to synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Carolina Flores-Muñoz
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Bárbara Gómez
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Elena Mery
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Paula Mujica
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile
| | - Ivana Gajardo
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Córdova
- Laboratorio de Estructura y Función Celular, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Daniela Lopez-Espíndola
- Programa de Doctorado en Ciencias, Mención Neurociencia, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudia Durán-Aniotz
- Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago de Chile, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.,Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Pablo Muñoz
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro de Investigaciones Biomédicas, Escuela de Medicina, Universidad de Valparaíso, Valparaíso, Chile
| | - Arlek M Gonzalez-Jamett
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Álvaro O Ardiles
- Centro de Neurología Traslacional, Facultad de Medicina, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile.,Centro Interdisciplinario de Estudios en Salud, Facultad de Medicina, Universidad de Valparaíso, Viña del Mar, Chile
| |
Collapse
|
13
|
Wang X, Zhao J. Neuroprotective effect of CPCGI on Alzheimer's disease and its mechanism. Mol Med Rep 2020; 21:115-122. [PMID: 31939621 PMCID: PMC6896362 DOI: 10.3892/mmr.2019.10835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder causing progressive memory loss and cognitive impairment. The aberrant accumulation of amyloid‑β (Aβ) and neuroinflammation are two major events in AD. Aβ‑induced neurotoxicity and oxidative stress are also involved in the pathogenesis of AD. The purpose of the current study was to investigate the effect of compound porcine cerebroside and ganglioside injection (CPCGI) on the progression of AD, and to explore the molecular mechanism. In vivo and in vitro models of AD were established and treated with CPCGI. Aβ40 and Aβ42 protein levels were detected using western blotting. Production of pro‑inflammatory factors [tumor necrosis factor (TNF)‑α and interleukin (IL)‑1β] and oxidative stress markers [malondialdehyde (MDA), superoxide dismutase (SOD)] and reactive oxygen species (ROS) production were determined. Cell viability and apoptosis were detected using 3‑(4,5‑dimethyl‑2‑thiazolyl)‑2,5‑diphenyl‑2‑H‑tetrazolium bromide assay and flow cytometry analysis respectively. Results demonstrated that CPCGI administration reduced Aβ40 and Aβ42 accumulation, and inhibited inflammatory response and oxidative stress in the in vivo rat model of AD, evidenced by decreased Aβ40 and Aβ42 protein expression, reduced levels of TNF‑α and IL‑1β, reduced MDA content, enhanced SOD activity, and reduced ROS level. It was found that CPCGI enhanced cell viability and reduced cell apoptosis of Aβ25‑35 induced PC12 cells. In addition, the mitogen‑activated protein kinase/NF‑κB pathway was involved in the protective effect of CPCGI on AD. Taken together, the data demonstrated that CPCGI exerted a protective effect on AD by reducing Aβ accumulation, inhibiting inflammatory response and oxidative stress, In addition to preventing neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Jing Zhao
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| |
Collapse
|
14
|
Xiao P, Zhang X, Li Y, Ma Z, Si S, Gao X. miR-9 inhibition of neuronal apoptosis and expression levels of apoptosis genes Bcl-2 and Bax in depression model rats through Notch pathway. Exp Ther Med 2019; 19:551-556. [PMID: 31853322 PMCID: PMC6909800 DOI: 10.3892/etm.2019.8228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Effects of micro ribonucleic acid (miR)-9 on neuronal apoptosis and expression levels of apoptosis genes B-cell lymphoma-2 (Bcl-2) and Bcl-2 associated X protein (Bax) in depression model rats, as well as its regulatory mechanism, were investigated. Thirty Sprague-Dawley rats were randomly divided into control group (n=10), model group (n=10) and miR-9 inhibitor group (n=10). The rat model of depression was established using the chronic stress method. The learning and memory abilities of rats were detected via water maze test, the neuronal morphology of the brain was detected using hematoxylin and eosin (H&E) staining, and the levels of serum Bcl-2 and Bax were determined using the enzyme-linked immunosorbent assay (ELISA) kits. Moreover, the neuronal apoptosis in the brain was determined through terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and the protein levels of Notch1 and Hes1 in brain tissues were measured via western blot analysis. Compared with the control group, the rats in the model group presented significantly decreased learning and memory abilities, poor neuronal morphology of the brain, significantly higher neuronal apoptosis rate in the brain, decreased level of serum Bcl-2, increased level of serum Bax, and significantly decreased protein levels of Notch1 and Hes1 in brain tissues. Compared with the model group, the rats in miR-9 inhibitor group showed obviously improved learning and memory abilities, improved neuronal morphology of the brain, an obviously lower neuronal apoptosis rate in the brain, increased level of serum Bcl-2, decreased level of serum Bax, and obviously increased protein levels of Notch1 and Hes1 in brain tissues. In conclusion, miR-9 inhibitor can promote the neurological function recovery and inhibit the neuronal apoptosis of depression model rats through activating the Notch signaling pathway, suggesting that miR-9 can be an important therapeutic target for depression.
Collapse
Affiliation(s)
- Peng Xiao
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Xiaoming Zhang
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Yanfei Li
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Zhongyi Ma
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Shuping Si
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Xinxue Gao
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| |
Collapse
|
15
|
Meng J, Wang DM, Luo LL. CTRP3 acts as a novel regulator in depressive-like behavior associated inflammation and apoptosis by meditating p38 and JNK MAPK signaling. Biomed Pharmacother 2019; 120:109489. [PMID: 31629950 DOI: 10.1016/j.biopha.2019.109489] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/22/2019] [Indexed: 10/25/2022] Open
Abstract
Depression is a complicated etiological pattern, and its pathology and effective treatments are highly limited.C1q-tumor necrosis factor-related protein-3 (CTRP3) is an adipokine, playing crucial roles in metabolic regulatory properties. However, the effects of CTRP3 on depression are largely unknown. In the present study, we found that CTRP3 expression levels were markedly reduced in hippocampus of mice with depression induced by chronic unpredictable mild stress (CUMS). In mouse model with depression, CTRP3-deficient mice aggravated depression-associated behaviors, as evidenced by the reduced locomotor activity and sucrose consumption, while the elevated immobility time in the tail suspension test (TST) and forced swimming test (FST). Moreover, CUMS-induced neuron death and increased expression of cleaved Caspase-3 were significantly accelerated by CTRP3 knockout. Furthermore, CTRP3 deletion intensified pro-inflammatory response in CUMS-exposed mice, which was associated with the activation of nuclear factor-κB(NF-κB) signaling. The activity of mitogen-activated protein kinases (MAPKs), including p38 and JNK, was further promoted in hippocampus of CTRP3-knockout mice with CUMS exposure. In contrast,CTRP3 over-expression showed anti-apoptotic and anti-inflammatory effects in lipopolysaccharide (LPS)-treated microglial cells. Importantly, the in vitro experiments demonstrated that CTRP3 knockdown-exacerbated apoptosis and inflammatory responsewere remarkably abrogated by the blockage of p38 and JNK signaling pathways in microglia stimulated by LPS. Next, in CUMS-exposed mice with CTRP3 deficiency, suppressing p38 and JNK markedly alleviated depressive-like behavior,hippocampal neuron death, apoptosis and inflammation. Therefore, CTRP3 may be an innovative therapeutic target for treating patients with depression through regulating p38 and JNK signaling.
Collapse
Affiliation(s)
- Jing Meng
- Department of Geriatrics, Wuhan Mental Health Center, Wuhan, 430022, China
| | - Dong-Ming Wang
- Department of Geriatric Psychiatry, Qingdao Mental Heath Center, Qingdao, 266034, China
| | - Li-Ling Luo
- Department of Psychosomatic, The Fourth People's Hospital of Shaanxi, Xi'an, 710043, China.
| |
Collapse
|
16
|
NMDA receptor in the hippocampus alters neurobehavioral phenotypes through inflammatory cytokines in rats with sporadic Alzheimer-like disease. Physiol Behav 2019; 202:52-61. [DOI: 10.1016/j.physbeh.2019.01.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/06/2019] [Accepted: 01/09/2019] [Indexed: 12/28/2022]
|
17
|
Amani M, Shokouhi G, Salari AA. Minocycline prevents the development of depression-like behavior and hippocampal inflammation in a rat model of Alzheimer's disease. Psychopharmacology (Berl) 2019; 236:1281-1292. [PMID: 30515523 DOI: 10.1007/s00213-018-5137-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/23/2018] [Indexed: 12/28/2022]
Abstract
RATIONALE Considerable clinical and experimental studies have shown that depression-related disorders are the most common neuropsychiatric symptoms in Alzheimer's disease (AD), affecting as many as 20-40% of patients. An increasing amount of evidence shows that monoamine-based antidepressant treatments are not completely effective for depression treatment in patients with dementia. Minocycline, a second-generation tetracycline antibiotic, has been gaining research and clinical attention for the treatment of different neuropsychiatric disorders, and more recently depression symptom in humans. METHODS In the present study, we investigated the effects of Aβ1-42 administration alone or in combination with minocycline treatment on depression-like behaviors and anti/pro-inflammatory cytokines such as interleukin(IL)-10, IL-β, and tumor necrosis factor (TNF)-α in the hippocampus of rats. RESULTS Our results showed that Aβ1-42 administration increased depression-related behaviors in sucrose preference test, tail suspension test, novelty-suppressed feeding test, and forced swim test. We also found significant increases in IL-1β and TNF-α levels in the hippocampus of Aβ1-42-treated rats. Interestingly, minocycline treatment significantly reversed depression-related behaviors and the levels of hippocampal cytokines in Aβ1-42-treated rats. CONCLUSION These findings support the idea that there is a significant relationship among AD, depression-related symptoms, and pro-inflammatory cytokines in the brain, and suggest that antidepressant-like impacts of minocycline could be due to its anti-inflammatory properties. This drug could be of potential interest for the treatment of depression in patients with Alzheimer's disease.
Collapse
Affiliation(s)
- Mohammad Amani
- Department of Physiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.,Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Ghaffar Shokouhi
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran
| | - Ali-Akbar Salari
- Drug Applied Research Center, Tabriz University of Medical Sciences, P.O. Box 51656-65811, Tabriz, Iran. .,Salari Institute of Cognitive and Behavioral Disorders (SICBD), Alborz, Iran.
| |
Collapse
|
18
|
Ma Y, Xiong L. Astragaloside IV ameliorates endoplasmic reticulum stress‑induced apoptosis of Aβ25‑35‑treated PC12 cells by inhibiting the p38 MAPK signaling pathway. Mol Med Rep 2019; 19:2005-2012. [PMID: 30664172 PMCID: PMC6390062 DOI: 10.3892/mmr.2019.9855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 09/10/2018] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum stress (ERS) serves a vital role in the pathological development of Alzheimer's disease (AD). ERS can promote programmed cell death (apoptosis) during AD; however, the specific molecular mechanisms that lead to ERS remain unclear. It is very important that a drug for the treatment of AD is identified. Our previous studies indicated that astragaloside IV (AST IV) has anti-inflammatory effects and helps cells resist oxidative stress. In the present study, western blotting and reverse transcription semi-quantitative polymerase chain reaction were used to detect protein and mRNA expression levels, flow cytometry was used to measure intracellular reactive oxygen species (ROS) levels, and superoxide dismutase (SOD) and malondialdehyde (MDA) activity was detected using commercially available kits. The results demonstrated that SOD activity was decreased, and MDA content, ROS levels, and the expression levels of p38 mitogen-activated protein kinase (MAPK) and ERS-associated proteins, including binding immunoglobulin protein/glucose-regulated protein and growth arrest- and DNA damage -inducible gene 153/C/EBP homologous protein, were increased in amyloid β (Aβ)25-35-treated PC12 cells. Furthermore, to investigate the role of p38 MAPK and the effects of AST IV in an in vitro model of AD, SB203580, a p38 MAPK signaling pathway inhibitor, and AST IV were administered to Aβ25-35-treated PC12 cells. The results revealed that AST IV protected the cells against AD. This effect may be caused by decreases in ROS levels, which may inhibit the p38 MAPK signaling pathway and thereby suppress ERS in Aβ25-35-treated PC12 cells.
Collapse
Affiliation(s)
- Yuhong Ma
- Department of Diagnostics, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| | - Li Xiong
- Department of Diagnostics, Wannan Medical College, Wuhu, Anhui 241001, P.R. China
| |
Collapse
|
19
|
ATP-sensitive potassium-channel inhibitor glibenclamide attenuates HPA axis hyperactivity, depression- and anxiety-related symptoms in a rat model of Alzheimer's disease. Brain Res Bull 2018; 137:265-276. [PMID: 29307659 DOI: 10.1016/j.brainresbull.2018.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 12/13/2017] [Accepted: 01/03/2018] [Indexed: 12/17/2022]
Abstract
Affective disorders including depression and anxiety are among the most prevalent behavioral abnormalities in patients with Alzheimer's disease (AD), which affect the quality of life and progression of the disease. Dysregulation of the hypothalamic-pituitary-adrenal-(HPA) axis has been reported in affective disorders and AD. Recent studies revealed that current antidepressant drugs are not completely effective for treating anxiety- and depression-related disorders in people with dementia. ATP-sensitive-potassium-(KATP) channels are well-known to be involved in AD pathophysiology, HPA axis function and the pathogenesis of depression and anxiety-related behaviors. Thus, targeting of KATP channel may be a potential therapeutic strategy in AD. Hence, we investigated the effects of intracerebroventricular injection of Aβ25-35 alone or in combination with glibenclamide, KATP channel inhibitor on depression- and anxiety-related behaviors as well as HPA axis response to stress in rats. To do this, non-Aβ25-35- and Aβ25-35-treated rats were orally treated with glibenclamide, then the behavioral consequences were assessed using sucrose preference, forced swim, light-dark box and plus maze tests. Stress-induced corticosterone levels following forced swim and plus maze tests were also evaluated as indicative of abnormal HPA-axis-function. Aβ25-35 induced HPA axis hyperreactivity and increased depression- and anxiety-related symptoms in rats. Our results showed that blockade of KATP channels with glibenclamide decreased depression- and anxiety-related behaviors by normalizing HPA axis activity in Aβ25-35-treated rats. This study provides additional evidence that Aβ administration can induce depression- and anxiety-like symptoms in rodents, and suggests that KATP channel inhibitors may be a plausible therapeutic strategy for treating affective disorders in AD patients.
Collapse
|
20
|
D'Aniello A, Luongo L, Romano R, Iannotta M, Marabese I, Boccella S, Belardo C, de Novellis V, Arra C, Barbieri A, D'Aniello B, Scandurra A, Magliozzi L, Fisher G, Guida F, Maione S. d-Aspartic acid ameliorates painful and neuropsychiatric changes and reduces β-amyloid Aβ 1-42 peptide in a long lasting model of neuropathic pain. Neurosci Lett 2017; 651:151-158. [PMID: 28487079 DOI: 10.1016/j.neulet.2017.04.041] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/11/2017] [Accepted: 04/21/2017] [Indexed: 11/28/2022]
Abstract
Depressive symptoms and other neuropsychiatric dysfunctions are common in neurodegenerative disorders, including chronic pain and dementia. A correlation between the β-amyloid protein accumulation and the development of depression has been suggested, however the underlying mechanisms are unknown. d-Aspartate (d-Asp) is a free d-amino acid found in the mammalian brain and involved in neurological and psychiatric processes, such as cognition and affective disorders. In this study we have investigated the effects of a repeated treatment with d-Asp in a long-lasting (12 months) model of neuropathic pain, the spared nerve injury (SNI), in mice. Specifically, we evaluated i) the pain sensitivity and related emotional/cognitive dysfunctions induced by SNI, ii) possible changes in the β-amyloid protein accumulation in specific brain regions involved in pain mechanisms ii) possible changes in steroids level in neuropathic animals with or without d-Asp in the same brain areas. SNI mice showed an increase of the insoluble form of Aβ1-42 at hippocampal level and displayed cognitive impairments, stereotypical and depressive-like behaviours. d-Asp treatment reduced abnormal behaviours and normalized the β-amyloid protein expression. Moreover, d-Asp dramatically increased steroids level measured in the prefrontal cortex and in the hippocampus. Our findings provide new insights into pain mechanisms and suggest a possible role of β-amyloid protein in neuropsychiatric dysfunctions associated with chronic pain.
Collapse
Affiliation(s)
- Antimo D'Aniello
- Department of Neurobiology and Comparative Physiology, Zoological Station "A. Dohrn", Napoli, Italy; Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy.
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy
| | - Rosaria Romano
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy
| | - Claudio Arra
- Animal Facility Unit Traslational Research Department, Istituto Nazionale Tumori -IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Antonio Barbieri
- Animal Facility Unit Traslational Research Department, Istituto Nazionale Tumori -IRCCS-Fondazione G. Pascale, Napoli, Italia
| | - Biagio D'Aniello
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Anna Scandurra
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - Laura Magliozzi
- Department of Environmental and Biological Sciences and Technologies, University of Salento, CoNISMa, Lecce, Italy
| | - George Fisher
- Department of Physical Sciences, Barry University, Miami Schores , USA
| | - Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, Università della Campania, Naples, Italy.
| |
Collapse
|
21
|
Tejeda GS, Díaz-Guerra M. Integral Characterization of Defective BDNF/TrkB Signalling in Neurological and Psychiatric Disorders Leads the Way to New Therapies. Int J Mol Sci 2017; 18:ijms18020268. [PMID: 28134845 PMCID: PMC5343804 DOI: 10.3390/ijms18020268] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/15/2017] [Accepted: 01/23/2017] [Indexed: 11/23/2022] Open
Abstract
Enhancement of brain-derived neurotrophic factor (BDNF) signalling has great potential in therapy for neurological and psychiatric disorders. This neurotrophin not only attenuates cell death but also promotes neuronal plasticity and function. However, an important challenge to this approach is the persistence of aberrant neurotrophic signalling due to a defective function of the BDNF high-affinity receptor, tropomyosin-related kinase B (TrkB), or downstream effectors. Such changes have been already described in several disorders, but their importance as pathological mechanisms has been frequently underestimated. This review highlights the relevance of an integrative characterization of aberrant BDNF/TrkB pathways for the rational design of therapies that by combining BDNF and TrkB targets could efficiently promote neurotrophic signalling.
Collapse
Affiliation(s)
- Gonzalo S Tejeda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| | - Margarita Díaz-Guerra
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain.
| |
Collapse
|
22
|
Barnes AK, Smith SB, Datta S. Beyond Emotional and Spatial Processes: Cognitive Dysfunction in a Depressive Phenotype Produced by Long Photoperiod Exposure. PLoS One 2017; 12:e0170032. [PMID: 28060930 PMCID: PMC5218505 DOI: 10.1371/journal.pone.0170032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/27/2016] [Indexed: 01/04/2023] Open
Abstract
Cognitive dysfunction in depression has recently been given more attention and legitimacy as a core symptom of the disorder. However, animal investigations of depression-related cognitive deficits have generally focused on emotional or spatial memory processing. Additionally, the relationship between the cognitive and affective disturbances that are present in depression remains obscure. Interestingly, sleep disruption is one aspect of depression that can be related both to cognition and affect, and may serve as a link between the two. Previous studies have correlated sleep disruption with negative mood and impaired cognition. The present study investigated whether a long photoperiod-induced depressive phenotype showed cognitive deficits, as measured by novel object recognition, and displayed a cognitive vulnerability to an acute period of total sleep deprivation. Adult male Wistar rats were subjected to a long photoperiod (21L:3D) or a normal photoperiod (12L:12D) condition. Our results indicate that our long photoperiod exposed animals showed behaviors in the forced swim test consistent with a depressive phenotype, and showed significant deficits in novel object recognition. Three hours of total sleep deprivation, however, did not significantly change novel object recognition in either group, but the trends suggest that the long photoperiod and normal photoperiod groups had different cognitive responses to total sleep deprivation. Collectively, these results underline the extent of cognitive dysfunction present in depression, and suggest that altered sleep plays a role in generating both the affective and cognitive symptoms of depression.
Collapse
Affiliation(s)
- Abigail K. Barnes
- Department of Anesthesiology, Graduate School of Medicine, The University of Tennessee, Knoxville, TN, United States of America
- Department of Psychology, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States of America
| | - Summer B. Smith
- Department of Psychology, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States of America
| | - Subimal Datta
- Department of Anesthesiology, Graduate School of Medicine, The University of Tennessee, Knoxville, TN, United States of America
- Department of Psychology, College of Arts and Sciences, The University of Tennessee, Knoxville, TN, United States of America
- Program in Comparative and Experimental Medicine, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN, United States of America
- * E-mail:
| |
Collapse
|