1
|
Park YJ, Lu TC, Jackson T, Goodman LD, Ran L, Chen J, Liang CY, Harrison E, Ko C, Chen X, Wang B, Hsu AL, Ochoa E, Bieniek KF, Yamamoto S, Zhu Y, Zheng H, Qi Y, Bellen HJ, Li H. Distinct systemic impacts of Aβ42 and Tau revealed by whole-organism snRNA-seq. Neuron 2025:S0896-6273(25)00299-5. [PMID: 40381615 DOI: 10.1016/j.neuron.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/27/2025] [Accepted: 04/17/2025] [Indexed: 05/20/2025]
Abstract
Both neuronal and peripheral tissues become disrupted in Alzheimer's disease (AD). However, a comprehensive understanding of how AD impacts different tissues across the whole organism is lacking. Using Drosophila, we generated an AD Fly Cell Atlas (AD-FCA) based on whole-organism single-nucleus transcriptomes of 219 cell types from flies expressing AD-associated proteins, either human amyloid-β 42 peptide (Aβ42) or Tau, in neurons. We found that Aβ42 primarily affects the nervous system, including sensory neurons, while Tau induces accelerated aging in peripheral tissues. We identified a neuronal cluster enriched in Aβ42 flies, which has high lactate dehydrogenase (LDH) expression. This LDH-high cluster is conserved in 5XFAD mouse and human AD datasets. We found a conserved defect in fat metabolism from both fly and mouse tauopathy models. The AD-FCA offers new insights into how Aβ42 or Tau systemically and differentially affects a whole organism and provides a valuable resource for understanding brain-body communication in neurodegeneration.
Collapse
Affiliation(s)
- Ye-Jin Park
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tzu-Chiao Lu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tyler Jackson
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Program in Cancer Cell Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lindsey D Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lindsey Ran
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jiaye Chen
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chung-Yi Liang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | - Erin Harrison
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christina Ko
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Chen
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Baiping Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ao-Lin Hsu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan; Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan, Ann Arbor, MI 28109, USA
| | - Elizabeth Ochoa
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229, USA; Department of Pathology & Laboratory Medicine, UT Health San Antonio, San Antonio, TX 78229, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yi Zhu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hui Zheng
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanyan Qi
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Development, Disease Models & Therapeutics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Hongjie Li
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Copeland EN, LeBlanc PJ, Duarte-Guterman P, Fajardo VA, MacPherson REK. The link between sarcopenic obesity and Alzheimer's disease: a brain-derived neurotrophic factor point of view. J Physiol 2025. [PMID: 39937973 DOI: 10.1113/jp288032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/16/2025] [Indexed: 02/14/2025] Open
Abstract
Age-related diseases are becoming more prominent as the lifespan of the global population rises. Many of these diseases coincide with each other and can even influence the onset of additional comorbidities. Sarcopenic obesity is described as age-related loss of muscle mass that concurs with excessive weight gain and tends to increase the risk of comorbidity development, including Alzheimer's disease (AD). Though the exact link between sarcopenic obesity and AD is not known, this review explores the possibility that reduced levels of brain-derived neurotrophic factor (BDNF) throughout the body may serve as the underlying commonality. In AD, reductions in BDNF signalling through its receptor promote the activation of glycogen synthase kinase 3 beta (GSK3β), which subsequently increases the production of amyloid beta (Aβ) peptides and neurofibrillary tangles (NFTs). In the skeletal muscle, lower BDNF concentrations are linked to impaired muscle fibre repair and regeneration, increasing the likelihood of sarcopenia. Furthermore, the absence of BDNF impairs mitochondrial function, leading to insulin resistance and increased adiposity. BDNF concentration has a negative relationship with obesogenic markers in adipose tissue, and as such, lower concentrations of BDNF lead to weight gain. Collectively, current literature suggests that BDNF attenuates AD pathology while improving skeletal muscle mitochondrial function, whole-body insulin resistance and facilitating adipocyte browning. Therefore, BDNF may be a viable target for multiple age-related diseases, but more research is required to substantiate this claim, with a particular focus on examining any potential influence of biological sex, as women are at a higher risk for both AD and sarcopenic obesity.
Collapse
Affiliation(s)
- Emily N Copeland
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Paul J LeBlanc
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Paula Duarte-Guterman
- Department of Psychology, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
| | - Val A Fajardo
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
- Centre for Bone and Muscle Health, Brock University, St. Catharines, ON, Canada
| | - Rebecca E K MacPherson
- Department of Health Sciences, Brock University, St. Catharines, ON, Canada
- Centre for Neurosciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
3
|
Vatner DE, Zhang J, Vatner SF. Brown adipose tissue enhances exercise performance and healthful longevity. Aging (Albany NY) 2024; 16:13442-13451. [PMID: 39699442 PMCID: PMC11723650 DOI: 10.18632/aging.206179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Brown adipose tissue (BAT), a major subtypes of adipose tissues, is known for thermogenesis and promoting healthful longevity. Our hypothesis is that BAT protects against impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, and reduced exercise tolerance. While most prior studies have shown that exercise regulates BAT activation and improves BAT density, relatively few have shown that BAT increases exercise performance. In contrast, our recent studies with the regulator of G protein signaling 14 (RGS14) knockout (KO) model of extended longevity showed that it enhances exercise performance, mediated by its more potent BAT, compared with BAT from wild type mice. For example, when the BAT from RGS14 KO mice is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice increased exercise performance, but only at 8 weeks after transplantation. The goal of this research perspective is to review the role of BAT in mediating healthful longevity, specifically exercise capacity. In view of the ability of BAT to mediate healthful longevity and enhance exercise performance, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Dorothy E. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
4
|
Li H, Li J, Song C, Yang H, Luo Q, Chen M. Brown adipose tissue: a potential target for aging interventions and healthy longevity. Biogerontology 2024; 25:1011-1024. [PMID: 39377866 DOI: 10.1007/s10522-024-10137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
Brown Adipose Tissue (BAT) is a type of fat tissue that can generate heat and plays an important role in regulating body temperature and energy metabolism. Enhancing BAT activity through medication, exercise and other means has become a potential effective method for treating metabolic disorders. Recently, there has been increasing evidence suggesting a link between BAT and aging. As humans age, the volume and activity of BAT decrease, which may contribute to the development of age-related diseases. Multiple organelles signaling pathways have been reported to be involved in the aging process associated with BAT. Therefore, we aimed to review the evidence related to the association between aging process and BAT decreasing, analyze the potential of BAT as a predictive marker for age-related diseases, and explore potential therapeutic strategies targeting BAT for aging interventions and healthy longevity.
Collapse
Affiliation(s)
- Hongde Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Junli Li
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Chengxiang Song
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Haoran Yang
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China
| | - Qiang Luo
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China.
| | - Mao Chen
- Laboratory of Cardiac Structure and Function, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu, 610041, PR China.
- Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, 610041, PR China.
| |
Collapse
|
5
|
Gendron WH, Fertan E, Roddick KM, Wong AA, Maliougina M, Hiani YE, Anini Y, Brown RE. Intranasal insulin treatment ameliorates spatial memory, muscular strength, and frailty deficits in 5xFAD mice. Physiol Behav 2024; 281:114583. [PMID: 38750806 DOI: 10.1016/j.physbeh.2024.114583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
The 5xFAD mouse model shows age-related weight loss as well as cognitive and motor deficits. Metabolic dysregulation, especially impaired insulin signaling, is also present in AD. This study examined whether intranasal delivery of insulin (INI) at low (0.875 U) or high (1.750 U) doses would ameliorate these deficits compared to saline in 10-month-old female 5xFAD and B6SJL wildtype (WT) mice. INI increased forelimb grip strength in the wire hang test in 5xFAD mice in a dose-dependent manner but did not improve the performance of 5xFAD mice on the balance beam. High INI doses reduced frailty scores in 5xFAD mice and improved spatial memory in both acquisition and reversal probe trials in the Morris water maze. INI increased swim speed in 5xFAD mice but had no effect on object recognition memory or working memory in the spontaneous alternation task, nor did it improve memory in the contextual or cued fear memory tasks. High doses of insulin increased the liver, spleen, and kidney weights and reduced brown adipose tissue weights. P-Akt signaling in the hippocampus was increased by insulin in a dose-dependent manner. Altogether, INI increased strength, reduced frailty scores, and improved visual spatial memory. Hypoglycemia was not present after INI, however alterations in tissue and organ weights were present. These results are novel and important as they indicate that intra-nasal insulin can reverse cognitive, motor and frailty deficits found in this mouse model of AD.
Collapse
Affiliation(s)
- William H Gendron
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Emre Fertan
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyle M Roddick
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aimée A Wong
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Maria Maliougina
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Yassine El Hiani
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Younes Anini
- Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Obstetrics and Gynecology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Richard E Brown
- Departments of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada; Departments of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.
| |
Collapse
|
6
|
Zhang J, Kibret BG, Vatner DE, Vatner SF. The role of brown adipose tissue in mediating healthful longevity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:17. [PMID: 39119146 PMCID: PMC11309368 DOI: 10.20517/jca.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Berhanu Geresu Kibret
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E. Vatner
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
7
|
Sun XN, An YA, Paschoal VA, de Souza CO, Wang MY, Vishvanath L, Bueno LM, Cobb AS, Nieto Carrion JA, Ibe ME, Li C, Kidd HA, Chen S, Li W, Gupta RK, Oh DY. GPR84-mediated signal transduction affects metabolic function by promoting brown adipocyte activity. J Clin Invest 2023; 133:e168992. [PMID: 37856216 PMCID: PMC10721148 DOI: 10.1172/jci168992] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
The G protein-coupled receptor 84 (GPR84), a medium-chain fatty acid receptor, has garnered attention because of its potential involvement in a range of metabolic conditions. However, the precise mechanisms underlying this effect remain elusive. Our study has shed light on the pivotal role of GPR84, revealing its robust expression and functional significance within brown adipose tissue (BAT). Mice lacking GPR84 exhibited increased lipid accumulation in BAT, rendering them more susceptible to cold exposure and displaying reduced BAT activity compared with their WT counterparts. Our in vitro experiments with primary brown adipocytes from GPR84-KO mice revealed diminished expression of thermogenic genes and reduced O2 consumption. Furthermore, the application of the GPR84 agonist 6-n-octylaminouracil (6-OAU) counteracted these effects, effectively reinstating the brown adipocyte activity. These compelling in vivo and in vitro findings converge to highlight mitochondrial dysfunction as the primary cause of BAT anomalies in GPR84-KO mice. The activation of GPR84 induced an increase in intracellular Ca2+ levels, which intricately influenced mitochondrial respiration. By modulating mitochondrial Ca2+ levels and respiration, GPR84 acts as a potent molecule involved in BAT activity. These findings suggest that GPR84 is a potential therapeutic target for invigorating BAT and ameliorating metabolic disorders.
Collapse
Affiliation(s)
- Xue-Nan Sun
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yu A. An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas, USA
| | - Vivian A. Paschoal
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Camila O. de Souza
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - May-yun Wang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Lorena M.A. Bueno
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ayanna S. Cobb
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph A. Nieto Carrion
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Madison E. Ibe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chao Li
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Harrison A. Kidd
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Wenhong Li
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rana K. Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Division of Endocrinology, Department of Medicine, Duke Molecular Physiology Institute, Durham, North Carolina, USA
| | - Da Young Oh
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|