1
|
Chieffo C, Shvetsova A, Skorda F, Lopez A, Fiore M. The Origin and Early Evolution of Life: Homochirality Emergence in Prebiotic Environments. ASTROBIOLOGY 2023; 23:1368-1382. [PMID: 37862227 DOI: 10.1089/ast.2023.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Homochirality is one of the signatures of life. Numerous geological and prebiotic chemistry studies have proved that disordered soups containing small organic molecules, gases, liquids, and minerals (such as those containing phosphorous) yielded racemic mixtures of building blocks for biomolecule assembly. Polymers obtained from these bricks should have been enantiopure with functional properties similar to modern biomolecules or heterochiral with some functions such as catalyzing a chemical transformation unspecifically. Up until now, no clues have been found as to how symmetry breaking occurred. In this review, we highlight the principal achievements regarding the emergence of homochirality during the prebiotic synthesis of building blocks. Furthermore, we tried to focus on approaches based on prebiotic systems chemistry (bottom-up) and laboratory scales to simulate plausible prebiotic messy environments for the emergence of life. We aim with this review to assemble, even partially, the puzzle pieces of the origin of life regarding the relevant phenomenon of homochiral symmetry breaking.
Collapse
Affiliation(s)
- Carolina Chieffo
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Anastasiia Shvetsova
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
- Université de Lyon, Claude Bernard Lyon 1, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement, Villeurbanne, France
| | - Fryni Skorda
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
- Ecole Centrale de Lyon, Ecully, France
| | - Augustin Lopez
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
| | - Michele Fiore
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (UMR 5246), Villeurbanne, France
| |
Collapse
|
2
|
Cueto-Díaz EJ, Gálvez-Martínez S, Colin-García M, Mateo-Martí E. A New Approach in Prebiotic Chemistry Studies: Proline Sorption Triggered by Mineral Surfaces Analysed Using XPS. Life (Basel) 2023; 13:life13040908. [PMID: 37109437 PMCID: PMC10141706 DOI: 10.3390/life13040908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
The role of minerals in the origin of life and prebiotic evolution remains unknown and controversial. Mineral surfaces have the potential to facilitate prebiotic polymerization due to their ability to adsorb and concentrate biomolecules that subsequently can catalyse reactions; however, the precise nature of the interaction between the mineral host and the guest biomolecule still needs to be understood. In this context, we spectroscopically characterized, using infrared, X-ray photoemission spectroscopy (XPS) and X-ray diffraction (XRD) techniques, the interaction between L-proline and montmorillonite, olivine, iron disulphide, and haematite (minerals of prebiotic interest), by evaluating their interaction from a liquid medium. This work provides insight into the chemical processes occurring between proline, the only cyclic amino acid, and this selection of minerals, each of them bearing a particular chemical and crystal structures. Proline was successfully adsorbed on montmorillonite, haematite, olivine, and iron disulphide in anionic and zwitterionic chemical forms, being the predominant form directly related to the mineral structure and composition. Silicates (montmorillonite) dominate adsorption, whereas iron oxides (haematite) show the lowest molecular affinity. This approach will help to understand structure-affinity relationship between the mineral surfaces and proline, one of the nine amino acids generated in the Miller-Urey experiment.
Collapse
|
3
|
Nano-pulsed discharge plasma-induced abiotic oligopeptide formation from diketopiperazine. Naturwissenschaften 2022; 109:33. [DOI: 10.1007/s00114-022-01803-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 10/18/2022]
|
4
|
Le Vay K, Song EY, Ghosh B, Tang TD, Mutschler H. Enhanced Ribozyme-Catalyzed Recombination and Oligonucleotide Assembly in Peptide-RNA Condensates. Angew Chem Int Ed Engl 2021; 60:26096-26104. [PMID: 34569680 PMCID: PMC9299051 DOI: 10.1002/anie.202109267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Indexed: 11/17/2022]
Abstract
The ability of RNA to catalyze RNA ligation is critical to its central role in many prebiotic model scenarios, in particular the copying of information during self-replication. Prebiotically plausible ribozymes formed from short oligonucleotides can catalyze reversible RNA cleavage and ligation reactions, but harsh conditions or unusual scenarios are often required to promote folding and drive the reaction equilibrium towards ligation. Here, we demonstrate that ribozyme activity is greatly enhanced by charge-mediated phase separation with poly-L-lysine, which shifts the reaction equilibrium from cleavage in solution to ligation in peptide-RNA coaggregates and coacervates. This compartmentalization enables robust isothermal RNA assembly over a broad range of conditions, which can be leveraged to assemble long and complex RNAs from short fragments under mild conditions in the absence of exogenous activation chemistry, bridging the gap between pools of short oligomers and functional RNAs.
Collapse
Affiliation(s)
- Kristian Le Vay
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 4a44227DortmundGermany
| | - Emilie Yeonwha Song
- Biomimetic SystemsMax Planck Institute of BiochemistryAm Klopferspitz 1882152MartinsriedGermany
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 4a44227DortmundGermany
| | - Basusree Ghosh
- Max-Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - T.‐Y. Dora Tang
- Max-Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - Hannes Mutschler
- Department of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Str. 4a44227DortmundGermany
| |
Collapse
|
5
|
Le Vay K, Song EY, Ghosh B, Tang TD, Mutschler H. Enhanced Ribozyme‐Catalyzed Recombination and Oligonucleotide Assembly in Peptide‐RNA Condensates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Kristian Le Vay
- Biomimetic Systems Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Emilie Yeonwha Song
- Biomimetic Systems Max Planck Institute of Biochemistry Am Klopferspitz 18 82152 Martinsried Germany
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Str. 4a 44227 Dortmund Germany
| | - Basusree Ghosh
- Max-Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstraße 108 01307 Dresden Germany
| | - T.‐Y. Dora Tang
- Max-Planck Institute of Molecular Cell Biology and Genetics Pfotenhauerstraße 108 01307 Dresden Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology TU Dortmund University Otto-Hahn-Str. 4a 44227 Dortmund Germany
| |
Collapse
|
6
|
Prebiotic chemistry in neutral/reduced-alkaline gas-liquid interfaces. Sci Rep 2019; 9:1916. [PMID: 30760732 PMCID: PMC6374446 DOI: 10.1038/s41598-018-36579-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 11/25/2018] [Indexed: 11/09/2022] Open
Abstract
The conditions for the potential abiotic formation of organic compounds from inorganic precursors have great implications for our understanding of the origin of life on Earth and for its possible detection in other environments of the Solar System. It is known that aerosol-interfaces are effective at enhancing prebiotic chemical reactions, but the roles of salinity and pH have been poorly investigated to date. Here, we experimentally demonstrate the uniqueness of alkaline aerosols as prebiotic reactors that produce an undifferentiated accumulation of a variety of multi-carbon biomolecules resulting from high-energy processes (in our case, electrical discharges). Using simulation experiments, we demonstrate that the detection of important biomolecules in tholins increases when plausible and particular local planetary environmental conditions are simulated. A greater diversity in amino acids, carboxylic acids, N-heterocycles, and ketoacids, such as glyoxylic and pyruvic acid, was identified in tholins synthetized from reduced and neutral atmospheres in the presence of alkaline aqueous aerosols than that from the same atmospheres but using neutral or acidic aqueous aerosols.
Collapse
|
7
|
Blanco C, Bayas M, Yan F, Chen IA. Analysis of Evolutionarily Independent Protein-RNA Complexes Yields a Criterion to Evaluate the Relevance of Prebiotic Scenarios. Curr Biol 2018; 28:526-537.e5. [PMID: 29398222 DOI: 10.1016/j.cub.2018.01.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 12/30/2022]
Abstract
A central difficulty facing study of the origin of life on Earth is evaluating the relevance of different proposed prebiotic scenarios. Perhaps the most established feature of the origin of life was the progression through an RNA World, a prebiotic stage dominated by functional RNA. We use the appearance of proteins in the RNA World to understand the prebiotic milieu and develop a criterion to evaluate proposed synthetic scenarios. Current consensus suggests that the earliest amino acids of the genetic code were anionic or small hydrophobic or polar amino acids. However, the ability to interact with the RNA World would have been a crucial feature of early proteins. To determine which amino acids would be important for the RNA World, we analyze non-biological protein-aptamer complexes in which the RNA or DNA is the result of in vitro evolution. This approach avoids confounding effects of biological context and evolutionary history. We use bioinformatic analysis and molecular dynamics simulations to characterize these complexes. We find that positively charged and aromatic amino acids are over-represented whereas small hydrophobic amino acids are under-represented. Binding enthalpy is found to be primarily electrostatic, with positively charged amino acids contributing cooperatively to binding enthalpy. Arginine dominates all modes of interaction at the interface. These results suggest that proposed prebiotic syntheses must be compatible with cationic amino acids, particularly arginine or a biophysically similar amino acid, in order to be relevant to the invention of protein by the RNA World.
Collapse
Affiliation(s)
- Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Marco Bayas
- Departamento de Fisica, Escuela Politécnica Nacional, Quito, Ladron de Guevara E11-253, Ecuador
| | - Fu Yan
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA; Program in Biomolecular Sciences and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106-9510, USA.
| |
Collapse
|
8
|
Mineral surface chemistry control for origin of prebiotic peptides. Nat Commun 2017; 8:2033. [PMID: 29229963 PMCID: PMC5725419 DOI: 10.1038/s41467-017-02248-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022] Open
Abstract
Some seventy years ago, John Desmond Bernal proposed a role for clays in the origin of life. While much research has since been dedicated to the study of silicate clays, layered double hydroxides, believed to be common on the early Earth, have received only limited attention. Here we examine the role that layered hydroxides could have played in prebiotic peptide formation. We demonstrate how these minerals can concentrate, align and act as adsorption templates for amino acids, and during wetting—drying cycles, promote peptide bond formation. This enables us to propose a testable mechanism for the growth of peptides at layered double hydroxide interfaces in an early Earth environment. Our results provide insights into the potential role of mineral surfaces in mimicking aspects of biochemical reaction pathways. Clay is thought to have played a part in the origin of life. Here, the authors show that layered double hydroxides, a type of clay little studied despite its presumed prevalence on the early Earth, can facilitate the formation of small proteins.
Collapse
|
9
|
Kalson NH, Furman D, Zeiri Y. Cavitation-Induced Synthesis of Biogenic Molecules on Primordial Earth. ACS CENTRAL SCIENCE 2017; 3:1041-1049. [PMID: 28979946 PMCID: PMC5620973 DOI: 10.1021/acscentsci.7b00325] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Indexed: 05/03/2023]
Abstract
Despite decades of research, how life began on Earth remains one of the most challenging scientific conundrums facing modern science. It is agreed that the first step was synthesis of organic compounds essential to obtain amino acids and their polymers. Several possible scenarios that could accomplish this step, using simple inorganic molecules, have been suggested and studied over the years. The present study examines, using atomistic reactive molecular dynamics simulations, the long-standing suggestion that natural cavitation in primordial oceans was a dominant mechanism of organic molecule synthesis. The simulations allow, for the first time, direct observation of the rich and complex sonochemistry occurring inside a collapsing bubble filled with water and dissolved gases of the early atmosphere. The simulation results suggest that dissolved CH4 is the most efficient carbon source to produce amino acids, while CO and CO2 lead to amino acid synthesis with lower yields. The efficiency of amino acid synthesis also depends on the nitrogen source used (i.e., N2, NH3) and on the presence of HCN. Moreover, cavitation may have contributed to the increase in concentration of NH3 in primordial oceans and to the production and liberation of molecular O2 into the early atmosphere. Overall, the picture that emerges from the simulations indicates that collapsing bubbles may have served as natural bioreactors in primordial oceans, producing the basic chemical ingredients required for the beginning of life.
Collapse
Affiliation(s)
- Natan-Haim Kalson
- Biomedical
Engineering, Ben-Gurion University of the
Negev, Beer-Sheva 84105, Israel
- The
Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes
for Desert Research, Ben-Gurion University
of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - David Furman
- Fritz
Haber Research Center for Molecular Dynamics, Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Division
of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
| | - Yehuda Zeiri
- Biomedical
Engineering, Ben-Gurion University of the
Negev, Beer-Sheva 84105, Israel
- Division
of Chemistry, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel
- E-mail:
| |
Collapse
|
10
|
Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction. ORIGINS LIFE EVOL B 2017; 48:23-34. [DOI: 10.1007/s11084-017-9548-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
11
|
Parker ET, Cleaves HJ, Bada JL, Fernández FM. Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30:2043-2051. [PMID: 27467333 DOI: 10.1002/rcm.7684] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/05/2016] [Accepted: 07/10/2016] [Indexed: 06/06/2023]
Abstract
RATIONALE Spark discharge experiments, like those performed by Stanley Miller in the 1950s, generate complex, analytically challenging mixtures that contain biopolymer building blocks. Recently, α-amino acids and α-hydroxy acids (AHAs) were subjected to environmental cycling to form simple depsipeptides (peptides with both amide and ester linkages). The synthesis of AHAs under possible primordial environments must be examined to better understand this chemistry. METHODS We report a direct, quantitative method for AHAs using ultrahigh-performance liquid chromatography and triple quadrupole mass spectrometry. Hexylamine ion-pairing chromatography and selected reaction monitoring detection were combined for the rapid analysis of ten AHAs in a single run. Additionally, prebiotic simulation experiments, including the first-ever reproduction of Miller's 1958 cyanamide spark discharge experiment, were performed to evaluate AHA synthesis over a wide range of possible primitive terrestrial environments. RESULTS The quantitating transition for each of the AHAs targeted in this study produced a limit of detection in the nanomolar concentration range. For most species, a linear response over a range spanning two orders of magnitude was found. The AHAs glycolic acid, lactic acid, malic acid, and α-hydroxyglutaric acid were detected in electric discharge experiments in the low micromolar concentration range. CONCLUSIONS The results of this work suggest that the most abundant building blocks available for prebiotic depsipeptide synthesis would have been glycolic, lactic, malic, and α-hydroxyglutaric acids, and their corresponding amino acids, glycine, alanine, and aspartic and glutamic acids. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Eric T Parker
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| | - H James Cleaves
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro Ku, Tokyo, Japan
- Institute for Advanced Study, Princeton, NJ, 08540, USA
| | - Jeffrey L Bada
- Geophysical Research Division, Scripps Institution of Oceanography, University of California at San Diego, 8615 Kennel Way, La Jolla, CA, 92093, USA
| | - Facundo M Fernández
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA, 30332, USA
| |
Collapse
|
12
|
Oligoarginine peptides slow strand annealing and assist non-enzymatic RNA replication. Nat Chem 2016; 8:915-21. [PMID: 27657866 PMCID: PMC5061144 DOI: 10.1038/nchem.2551] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 05/16/2016] [Indexed: 01/01/2023]
Abstract
The nonenzymatic replication of RNA is thought to have been a critical process required for the origin of life. One unsolved difficulty with nonenzymatic RNA replication is that template-directed copying of RNA results in a double-stranded product; following strand separation, rapid strand reannealing outcompetes slow nonenzymatic template copying, rendering multiple rounds of RNA replication impossible. Here we show that oligoarginine peptides slow the annealing of complementary oligoribonucleotides by up to several thousand-fold; however, short primers and activated monomers can still bind to template strands, and template-directed primer extension can still occur within a phase-separated condensed state, or coacervate. Furthermore, we show that within this phase, partial template copying occurs even in the presence of full-length complementary strands. This method for enabling further rounds of replication suggests one mechanism by which short, non-coded peptides could have enhanced early cellular fitness, potentially explaining how longer, coded peptides, i.e. proteins, came to prominence in modern biology.
Collapse
|
13
|
Ikehara K. Evolutionary Steps in the Emergence of Life Deduced from the Bottom-Up Approach and GADV Hypothesis (Top-Down Approach). Life (Basel) 2016; 6:life6010006. [PMID: 26821048 PMCID: PMC4810237 DOI: 10.3390/life6010006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/30/2015] [Accepted: 01/18/2016] [Indexed: 02/05/2023] Open
Abstract
It is no doubt quite difficult to solve the riddle of the origin of life. So, firstly, I would like to point out the kinds of obstacles there are in solving this riddle and how we should tackle these difficult problems, reviewing the studies that have been conducted so far. After that, I will propose that the consecutive evolutionary steps in a timeline can be rationally deduced by using a common event as a juncture, which is obtained by two counter-directional approaches: one is the bottom-up approach through which many researchers have studied the origin of life, and the other is the top-down approach, through which I established the [GADV]-protein world hypothesis or GADV hypothesis on the origin of life starting from a study on the formation of entirely new genes in extant microorganisms. Last, I will describe the probable evolutionary process from the formation of Earth to the emergence of life, which was deduced by using a common event-the establishment of the first genetic code encoding [GADV]-amino acids-as a juncture for the results obtained from the two approaches.
Collapse
Affiliation(s)
- Kenji Ikehara
- G & L Kyosei Institute, Keihannna Labo-401, Hikaridai 1-7, Seika-cho, Sorakugun, Kyoto 619-0237, Japan.
- International Institute for Advanced Studies of Japan, Kizugawadai 9-3, Kizugawa, Kyoto 619-0225, Japan.
| |
Collapse
|
14
|
Rapf RJ, Vaida V. Sunlight as an energetic driver in the synthesis of molecules necessary for life. Phys Chem Chem Phys 2016; 18:20067-84. [DOI: 10.1039/c6cp00980h] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This review considers how photochemistry and sunlight-driven reactions can abiotically generate prebiotic molecules necessary for the evolution of life.
Collapse
Affiliation(s)
- Rebecca J. Rapf
- Department of Chemistry and Biochemistry
- CIRES
- University of Colorado at Boulder
- Boulder
- USA
| | - Veronica Vaida
- Department of Chemistry and Biochemistry
- CIRES
- University of Colorado at Boulder
- Boulder
- USA
| |
Collapse
|
15
|
How amino acids and peptides shaped the RNA world. Life (Basel) 2015; 5:230-46. [PMID: 25607813 PMCID: PMC4390850 DOI: 10.3390/life5010230] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/16/2014] [Accepted: 01/14/2015] [Indexed: 11/17/2022] Open
Abstract
The “RNA world” hypothesis is seen as one of the main contenders for a viable theory on the origin of life. Relatively small RNAs have catalytic power, RNA is everywhere in present-day life, the ribosome is seen as a ribozyme, and rRNA and tRNA are crucial for modern protein synthesis. However, this view is incomplete at best. The modern protein-RNA ribosome most probably is not a distorted form of a “pure RNA ribosome” evolution started out with. Though the oldest center of the ribosome seems “RNA only”, we cannot conclude from this that it ever functioned in an environment without amino acids and/or peptides. Very small RNAs (versatile and stable due to basepairing) and amino acids, as well as dipeptides, coevolved. Remember, it is the amino group of aminoacylated tRNA that attacks peptidyl-tRNA, destroying the bond between peptide and tRNA. This activity of the amino acid part of aminoacyl-tRNA illustrates the centrality of amino acids in life. With the rise of the “RNA world” view of early life, the pendulum seems to have swung too much towards the ribozymatic part of early biochemistry. The necessary presence and activity of amino acids and peptides is in need of highlighting. In this article, we try to bring the role of the peptide component of early life back into focus. We argue that an RNA world completely independent of amino acids never existed.
Collapse
|
16
|
LAVIOLETTE PAULA. Keynote Paper — AUTOPOIETIC GENE-ENZYME CYCLES AND THE EMERGENCE OF LIFE. J BIOL SYST 2014. [DOI: 10.1142/s0218339014500144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Systems concepts are applied to solve the problem of how early life could have emerged from an initially abiotic organic environment. Proteinoid or lipid microspheres are proposed to have polymerized from a primordial organic soup and to contain various amino acids and several different nucleobases. A self-replicating "basic set" hypercycle consisting of 10 XNA gene strands and 10 enzymes is proposed that utilizes inorganic phosphates as an energy source. The genes would utilize triplet combinations of adenosine and uracil to code for a replicase enzyme, a polymerase enzyme and eight-code translator (synthetase) enzymes. It is shown that there is a high probability that the basic set genes would emerge. Fissioning of the basic set microspheres into a population of microspheres all containing the basic set, could eliminate the problem of a single gene monopolizing use of the replicator enzyme at the expense of the others and greatly enhance the survivability of the replicating population as a whole. A thermodynamic analysis of such a self-replicating system is also presented. It is shown that genetic mutations will, in the long run allow the basic set to evolve to increased diversity, higher rates of enzyme synthesis and greater rates of entropy production. Long-term evolution could have resulted in organisms similar to contemporary bacteria that utilize RNA genes with a four nucleobase codon system.
Collapse
|
17
|
Ruiz-Mirazo K, Briones C, de la Escosura A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem Rev 2013; 114:285-366. [DOI: 10.1021/cr2004844] [Citation(s) in RCA: 563] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kepa Ruiz-Mirazo
- Biophysics
Unit (CSIC-UPV/EHU), Leioa, and Department of Logic and Philosophy
of Science, University of the Basque Country, Avenida de Tolosa 70, 20080 Donostia−San Sebastián, Spain
| | - Carlos Briones
- Department
of Molecular Evolution, Centro de Astrobiología (CSIC−INTA, associated to the NASA Astrobiology Institute), Carretera de Ajalvir, Km 4, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Andrés de la Escosura
- Organic
Chemistry Department, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
18
|
Trainer MG. Atmospheric Prebiotic Chemistry and Organic Hazes. CURR ORG CHEM 2013; 17:1710-1723. [PMID: 24143126 PMCID: PMC3796891 DOI: 10.2174/13852728113179990078] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 05/07/2013] [Accepted: 05/12/2013] [Indexed: 02/04/2023]
Abstract
Earth's atmospheric composition at the time of the origin of life is not known, but it has often been suggested that chemical transformation of reactive species in the atmosphere was a significant source of prebiotic organic molecules. Experimental and theoretical studies over the past half century have shown that atmospheric synthesis can yield molecules such as amino acids and nucleobases, but these processes are very sensitive to gas composition and energy source. Abiotic synthesis of organic molecules is more productive in reduced atmospheres, yet the primitive Earth may not have been as reducing as earlier workers assumed, and recent research has reflected this shift in thinking. This work provides a survey of the range of chemical products that can be produced given a set of atmospheric conditions, with a particular focus on recent reports. Intertwined with the discussion of atmospheric synthesis is the consideration of an organic haze layer, which has been suggested as a possible ultraviolet shield on the anoxic early Earth. Since such a haze layer - if formed - would serve as a reservoir for organic molecules, the chemical composition of the aerosol should be closely examined. The results highlighted here show that a variety of products can be formed in mildly reducing or even neutral atmospheres, demonstrating that contributions of atmospheric synthesis to the organic inventory on early Earth should not be discounted. This review intends to bridge current knowledge of the range of possible atmospheric conditions in the prebiotic environment and pathways for synthesis under such conditions by examining the possible products of organic chemistry in the early atmosphere.
Collapse
Affiliation(s)
- Melissa G. Trainer
- Planetary Environments Laboratory, NASA Goddard Space Flight Center, Code 699, Greenbelt, MD 20771, USA
| |
Collapse
|
19
|
Fox S, Strasdeit H. A possible prebiotic origin on volcanic islands of oligopyrrole-type photopigments and electron transfer cofactors. ASTROBIOLOGY 2013; 13:578-595. [PMID: 23742230 DOI: 10.1089/ast.2012.0934] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Tetrapyrroles are essential to basic biochemical processes such as electron transfer and photosynthesis. However, it is not known whether these evolutionary old molecules have a prebiotic origin. We have serendipitously obtained pyrroles, which are the corresponding monomers, in laboratory experiments that simulated the interaction of amino acid-containing seawater with molten lava. The thermal pyrrole formation from amino acids, which so far has only been reported for special cases, can be explained by the observation that the amino acids become metal bonded, for example in (CaCl2)3(Hala)2·6H2O (Hala=DL-alanine), when the seawater evaporates. At a few hundred degrees Celsius, sea salt crusts also release hydrochloric acid (HCl). On primordial volcanic islands, the volatile pyrroles and HCl must have condensed at cooler locations, for example, in rock pools. There, pyrrole oligomerization may have occurred. To study this possibility, we added formaldehyde and nitrite, two species for which plausible prebiotic sources are known, to 2,4-diethylpyrrole and HCl. We found that even at high dilution conjugated (oxidized) oligomers, including octaethylporphyrin and other cyclic and open-chain tetrapyrroles, were formed. All experiments were conducted under rigorously oxygen-free conditions. Our results suggest that primitive versions of present-day biological cofactors such as chlorophylls, bilins, and heme were spontaneously abiotically synthesized on primordial volcanic islands and thus may have been available to the first protocells.
Collapse
Affiliation(s)
- Stefan Fox
- Department of Bioinorganic Chemistry, Institute of Chemistry, University of Hohenheim , Stuttgart, Germany
| | | |
Collapse
|
20
|
Bada JL. New insights into prebiotic chemistry from Stanley Miller's spark discharge experiments. Chem Soc Rev 2013; 42:2186-96. [PMID: 23340907 DOI: 10.1039/c3cs35433d] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1953 was a banner year for biological chemistry: The double helix structure of DNA was published by Watson and Crick, Sanger's group announced the first amino acid sequence of a protein (insulin) and the synthesis of key biomolecules using simulated primordial Earth conditions has demonstrated by Miller. Miller's studies in particular transformed the study of the origin of life into a respectable field of inquiry and established the basis of prebiotic chemistry, a field of research that investigates how the components of life as we know it can be formed in a variety of cosmogeochemical environments. In this review, I cover the continued advances in prebiotic syntheses that Miller's pioneering work has inspired. The main focus is on recent state-of-the-art analyses carried out on archived samples of Miller's original experiments, some of which had never before been analyzed, discovered in his laboratory material just before his death in May 2007. One experiment utilized a reducing gas mixture and an apparatus configuration (referred to here as the "volcanic" apparatus) that could represent a water-rich volcanic eruption accompanied by lightning. Another included H(2)S as a component of the reducing gas mixture. Compared to the limited number of amino acids Miller identified, these new analyses have found that over 40 different amino acids and amines were synthesized, demonstrating the potential robust formation of important biologic compounds under possible cosmogeochemical conditions. These experiments are suggested to simulate long-lived volcanic island arc systems, an environment that could have provided a stable environment for some of the processes thought to be involved in chemical evolution and the origin of life. Some of the alternatives to the Miller-based prebiotic synthesis and the "primordial soup" paradigm are evaluated in the context of their relevance under plausible planetary conditions.
Collapse
Affiliation(s)
- Jeffrey L Bada
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA 92093-0212, USA.
| |
Collapse
|
21
|
Diez-García F, Chakrabartty A, González C, Laurents DV. An Arg-rich putative prebiotic protein is as stable as its Lys-rich variant. Arch Biochem Biophys 2012; 528:118-26. [DOI: 10.1016/j.abb.2012.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/14/2012] [Accepted: 09/15/2012] [Indexed: 10/27/2022]
|
22
|
Danger G, Plasson R, Pascal R. Pathways for the formation and evolution of peptides in prebiotic environments. Chem Soc Rev 2012; 41:5416-29. [PMID: 22688720 DOI: 10.1039/c2cs35064e] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
α-Amino acids are easily accessible through abiotic processes and were likely present before the emergence of life. However, the role they could have played in the process remains uncertain. Chemical pathways that could have brought about features of self-organization in a peptide world are considered in this review and discussed in relation with their possible contribution to the origin of life. An overall scheme is proposed with an emphasis on possibilities that may have led to dynamically stable far from equilibrium states. This analysis defines new lines of investigation towards a better understanding of the contribution of the systems chemistry of amino acids and peptides to the emergence of life.
Collapse
Affiliation(s)
- Grégoire Danger
- Spectrométries et Dynamique Moléculaire, Physique des Interactions Ioniques et Moléculaires (UMR CNRS 7345, Université de Provence) - Centre de St Jérôme - case 252, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20, France.
| | | | | |
Collapse
|
23
|
Kim KM, Qin T, Jiang YY, Chen LL, Xiong M, Caetano-Anollés D, Zhang HY, Caetano-Anollés G. Protein domain structure uncovers the origin of aerobic metabolism and the rise of planetary oxygen. Structure 2012; 20:67-76. [PMID: 22244756 DOI: 10.1016/j.str.2011.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/06/2011] [Accepted: 11/08/2011] [Indexed: 10/14/2022]
Abstract
The origin and evolution of modern biochemistry remain a mystery despite advances in evolutionary bioinformatics. Here, we use a structural census in nearly 1,000 genomes and a molecular clock of folds to define a timeline of appearance of protein families linked to single-domain enzymes. The timeline sorts out enzymatic recruitment, validates patterns in metabolic history, and reveals that the most ancient reaction of aerobic metabolism involved the synthesis of pyridoxal 5'-phosphate or pyridoxal and appeared 2.9 Gyr ago. The oxygen source for this primordial reaction was probably Mn catalase, which appeared at the same time and could have generated oxygen as a side product of hydrogen peroxide detoxification. Finally, evolutionary analysis of transferred groups and metabolite fragments revealed that oxidized sulfur did not participate in metabolism until the rise of oxygen. The evolutionary patterns we uncover in molecules and chemistries provide strong support for the coevolution of biochemistry and geochemistry.
Collapse
Affiliation(s)
- Kyung Mo Kim
- Evolutionary Bioinformatics Laboratory, Department of Crop Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Dondi D, Merli D, Albini A, Zeffiro A, Serpone N. Chemical reaction networks as a model to describe UVC- and radiolytically-induced reactions of simple compounds. Photochem Photobiol Sci 2012; 11:835-42. [DOI: 10.1039/c2pp00005a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Beck W. Metal Complexes of Biologically Important Ligands, CLXXVI.[1] Formation of Peptides within the Coordination Sphere of Metal Ions and of Classical and Organometallic Complexes and Some Aspects of Prebiotic Chemistry. Z Anorg Allg Chem 2011. [DOI: 10.1002/zaac.201100137] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
26
|
Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc Natl Acad Sci U S A 2011; 108:5526-31. [PMID: 21422282 DOI: 10.1073/pnas.1019191108] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Archived samples from a previously unreported 1958 Stanley Miller electric discharge experiment containing hydrogen sulfide (H(2)S) were recently discovered and analyzed using high-performance liquid chromatography and time-of-flight mass spectrometry. We report here the detection and quantification of primary amine-containing compounds in the original sample residues, which were produced via spark discharge using a gaseous mixture of H(2)S, CH(4), NH(3), and CO(2). A total of 23 amino acids and 4 amines, including 7 organosulfur compounds, were detected in these samples. The major amino acids with chiral centers are racemic within the accuracy of the measurements, indicating that they are not contaminants introduced during sample storage. This experiment marks the first synthesis of sulfur amino acids from spark discharge experiments designed to imitate primordial environments. The relative yield of some amino acids, in particular the isomers of aminobutyric acid, are the highest ever found in a spark discharge experiment. The simulated primordial conditions used by Miller may serve as a model for early volcanic plume chemistry and provide insight to the possible roles such plumes may have played in abiotic organic synthesis. Additionally, the overall abundances of the synthesized amino acids in the presence of H(2)S are very similar to the abundances found in some carbonaceous meteorites, suggesting that H(2)S may have played an important role in prebiotic reactions in early solar system environments.
Collapse
|
27
|
Dondi D, Merli D, Pretali L, Buttafava A, Faucitano A. Detailed analytical study of radiolysis products of simple organic compounds as a methodological approach to investigate prebiotic chemistry—Part 2. Radiat Phys Chem Oxf Engl 1993 2011. [DOI: 10.1016/j.radphyschem.2010.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Dondi D, Merli D, Pretali L, Buttafava A, Faucitano A. Detailed analytical study of radiolysis products of simple organic compounds as a methodological approach to investigate prebiotic chemistry—Part 1. Radiat Phys Chem Oxf Engl 1993 2011. [DOI: 10.1016/j.radphyschem.2010.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
The first peptides: The evolutionary transition between prebiotic amino acids and early proteins. J Theor Biol 2009; 261:531-9. [DOI: 10.1016/j.jtbi.2009.09.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 06/19/2009] [Accepted: 09/06/2009] [Indexed: 11/22/2022]
|
30
|
Follmann H, Brownson C. Darwin’s warm little pond revisited: from molecules to the origin of life. Naturwissenschaften 2009; 96:1265-92. [PMID: 19760276 DOI: 10.1007/s00114-009-0602-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/05/2009] [Accepted: 08/10/2009] [Indexed: 11/26/2022]
Affiliation(s)
- Hartmut Follmann
- Institute of Biology, University of Kassel, 34109, Kassel, Germany.
| | | |
Collapse
|
31
|
Zaia DAM, Zaia CTBV, De Santana H. Which amino acids should be used in prebiotic chemistry studies? ORIGINS LIFE EVOL B 2008; 38:469-88. [PMID: 18925425 DOI: 10.1007/s11084-008-9150-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Accepted: 09/30/2008] [Indexed: 11/25/2022]
Abstract
The adsorption of amino acids on minerals and their condensation under conditions that resemble those of prebiotic earth is a well studied subject. However, which amino acids should be used in these experiments is still an open question. The main goal of this review is to attempt to answer this question. There were two sources of amino acids for the prebiotic earth: (1) exogenous -- meaning that the amino acids were synthesized outside the earth and delivered to our planet by interplanetary dust particles (IDPs), meteorites, comets, etc. and (2) endogenous -- meaning that they were synthesized on earth in atmospheric mixtures, hydrothermal vents, etc. For prebiotic chemistry studies, the use of a mixture of amino acids from both endogenous and exogenous sources is suggested. The exogenous contribution of amino acids to this mixture is very different from the average composition of proteins, and contains several non-protein amino acids. On the other hand, the mixture of amino acids from endogenous sources is seems to more closely resemble the amino acid composition of terrestrial proteins.
Collapse
Affiliation(s)
- Dimas A M Zaia
- Departamento de Química-CCE, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | | | | |
Collapse
|
32
|
Ji HF, Zhang HY. Bioinformatic identification of the most ancient copper protein architecture. J Biomol Struct Dyn 2008; 26:197-201. [PMID: 18597541 DOI: 10.1080/07391102.2008.10507235] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Since copper ions participate in many cellular processes and are implicated in pathogenesis of many diseases, copper proteins have important biological significance. Thus, it is of interest to explore their origins, especially to address the following question: which is the most ancient architecture of copper proteins? In this paper, through analyzing the architectural features of copper proteins, we find that the fold-domain relationship of these proteins follows a power law, which can be explained by preferential attachment principle and implicates that the architecture of the most ancient copper proteins belonged to Cupredoxin-like (b.6) fold. According to the chronology of protein folds, this architecture originated rather late, which can be understood in terms of the low abundance of reducing amino acids (e.g., His, Cys and/or Met) in the primordial world, because these amino acids are required by copper proteins to bind copper ions.
Collapse
Affiliation(s)
- Hong-Fang Ji
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China
| | | |
Collapse
|
33
|
Yusenko K, Fox S, Guni P, Strasdeit H. Model Studies on the Formation and Reactions of Solid Glycine Complexes at the Coasts of a Primordial Salty Ocean. Z Anorg Allg Chem 2008. [DOI: 10.1002/zaac.200800285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Ji HF, Chen L, Zhang HY. Organic cofactors participated more frequently than transition metals in redox reactions of primitive proteins. Bioessays 2008; 30:766-71. [PMID: 18618622 DOI: 10.1002/bies.20788] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Protein redox reactions are one of the most basic and important biochemical actions. As amino acids are weak redox mediators, most protein redox functions are undertaken by protein cofactors, which include organic ligands and transition metal ions. Since both kinds of redox cofactors were available in the pre-protein RNA world, it is challenging to explore which one was more involved in redox processes of primitive proteins? In this paper, using an examination of the redox cofactor usage of putative ancient proteins, we infer that organic ligands participated more frequently than transition metals in redox reactions of primitive proteins, at least as protein cofactors. This is further supported by the relative abundance of amino acids in the primordial world. Supplementary material for this article can be found on the BioEssays website.
Collapse
Affiliation(s)
- Hong-Fang Ji
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China
| | | | | |
Collapse
|
35
|
Fitz D, Jakschitz T, Rode BM. The catalytic effect of L- and D-histidine on alanine and lysine peptide formation. J Inorg Biochem 2008; 102:2097-102. [PMID: 18760483 DOI: 10.1016/j.jinorgbio.2008.07.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 07/18/2008] [Accepted: 07/21/2008] [Indexed: 11/28/2022]
Abstract
A starting phase of chemical evolution on our ancient Earth around 4 billion years ago was the formation of amino acids and their combination to peptides and proteins. The salt-induced peptide formation (SIPF) reaction has been shown to be appropriate for this condensation reaction under moderate and plausible primitive Earth conditions, forming short peptides from amino acids in aqueous solution containing sodium chloride and Cu(II) ions. In this paper we report results about the formation of dialanine and dilysine from their monomers in this reaction. The catalytic influence of l- and d-histidine dramatically increases dialanine yields when starting from lower alanine concentrations, but also dilysine formation is markedly boosted by these catalysts. Attention is paid to measurable preferences for one enantiomeric form of alanine and lysine in the SIPF reaction. Alanine, especially, shows stereospecific behaviour, mostly in favour of the l-form.
Collapse
Affiliation(s)
- Daniel Fitz
- Institute of General, Inorganic and Theoretical Chemistry, Faculty of Chemistry and Pharmacy, University of Innsbruck, Innrain 52a, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
36
|
Cleaves HJ, Chalmers JH, Lazcano A, Miller SL, Bada JL. A reassessment of prebiotic organic synthesis in neutral planetary atmospheres. ORIGINS LIFE EVOL B 2008; 38:105-15. [PMID: 18204914 DOI: 10.1007/s11084-007-9120-3] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 12/09/2007] [Indexed: 11/25/2022]
Abstract
The action of an electric discharge on reduced gas mixtures such as H(2)O, CH(4) and NH(3) (or N(2)) results in the production of several biologically important organic compounds including amino acids. However, it is now generally held that the early Earth's atmosphere was likely not reducing, but was dominated by N(2) and CO(2). The synthesis of organic compounds by the action of electric discharges on neutral gas mixtures has been shown to be much less efficient. We show here that contrary to previous reports, significant amounts of amino acids are produced from neutral gas mixtures. The low yields previously reported appear to be the outcome of oxidation of the organic compounds during hydrolytic workup by nitrite and nitrate produced in the reactions. The yield of amino acids is greatly increased when oxidation inhibitors, such as ferrous iron, are added prior to hydrolysis. Organic synthesis from neutral atmospheres may have depended on the oceanic availability of oxidation inhibitors as well as on the nature of the primitive atmosphere itself. The results reported here suggest that endogenous synthesis from neutral atmospheres may be more important than previously thought.
Collapse
Affiliation(s)
- H James Cleaves
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, 20015, USA
| | | | | | | | | |
Collapse
|
37
|
Rode BM, Fitz D, Jakschitz T. The first steps of chemical evolution towards the origin of life. Chem Biodivers 2008; 4:2674-702. [PMID: 18081099 DOI: 10.1002/cbdv.200790220] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Bernd M Rode
- Institute for General, Inorganic, and Theoretical Chemistry, University of Innsbruck, Innrain 52a, A-6020 Innsbruck.
| | | | | |
Collapse
|
38
|
Ruiz-Bermejo M, Menor-Salván C, Osuna-Esteban S, Veintemillas-Verdaguer S. The effects of ferrous and other ions on the abiotic formation of biomolecules using aqueous aerosols and spark discharges. ORIGINS LIFE EVOL B 2007; 37:507-21. [PMID: 17899439 DOI: 10.1007/s11084-007-9107-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Accepted: 07/14/2007] [Indexed: 10/22/2022]
Abstract
It has been postulated that the oceans on early Earth had a salinity of 1.5 to 2 times the modern value and a pH between 4 and 10. Moreover, the presence of the banded iron formations shows that Fe(+2) was present in significant concentrations in the primitive oceans. Assuming the hypotheses above, in this work we explore the effects of Fe(+2) and other ions in the generation of biomolecules in prebiotic simulation experiments using spark discharges and aqueous aerosols. These aerosols have been prepared using different sources of Fe(+2), such as FeS, FeCl(2) and FeCO(3), and other salts (alkaline and alkaline earth chlorides and sodium bicarbonate at pH = 5.8). In all these experiments, we observed the formation of some amino acids, carboxylic acids and heterocycles, involved in biological processes. An interesting consequence of the presence of soluble Fe(+2) was the formation of Prussian Blue, Fe(4)[Fe(CN)(6)](3), which has been suggested as a possible reservoir of HCN in the initial prebiotic conditions on the Earth.
Collapse
Affiliation(s)
- M Ruiz-Bermejo
- Consejo de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial (CSIC-INTA), Centro de Astrobiología, Carretera Torrejón-Ajalvir, Km. 4,2, 28850 Torrejón de Ardoz, Madrid, Spain.
| | | | | | | |
Collapse
|
39
|
Lu Y, Freeland SJ. A quantitative investigation of the chemical space surrounding amino acid alphabet formation. J Theor Biol 2007; 250:349-61. [PMID: 18005995 DOI: 10.1016/j.jtbi.2007.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/21/2007] [Accepted: 10/08/2007] [Indexed: 11/29/2022]
Abstract
To date, explanations for the origin and emergence of the alphabet of amino acids encoded by the standard genetic code have been largely qualitative and speculative. Here, with the help of computational chemistry, we present the first quantitative exploration of nature's "choices" set against various models for plausible alternatives. Specifically, we consider the chemical space defined by three fundamental biophysical properties (size, charge, and hydrophobicity) to ask whether the amino acids that entered the genetic code exhibit a higher diversity than random samples of similar size drawn from several different definitions of amino acid possibility space. We found that in terms of the properties studied, the full, standard set of 20 biologically encoded amino acids is indeed significantly more diverse than an equivalently sized group drawn at random from the set of plausible, prebiotic alternatives (using the Murchison meteorite as a model for pre-biotic plausibility). However, when the set of possible amino acids is enlarged to include those that are produced by standard biosynthetic pathways (reflecting the widespread idea that many members of the standard alphabet were recruited in this way), then the genetically encoded amino acids can no longer be distinguished as more diverse than a random sample. Finally, if we turn to consider the overlap between biologically encoded amino acids and those that are prebiotically plausible, then we find that the biologically encoded subset are no more diverse as a group than would be expected from a random sample, unless the definition of "random sample" is adjusted to reflect possible prebiotic abundance (again, using the contents of the Murchison meteorite as our estimator). This final result is contingent on the accuracy of our computational estimates for amino acid properties, and prebiotic abundances, and an exploration of the likely effect of errors in our estimation reveals that our results should be treated with caution. We thus present this work as a first step in quantifying and thus testing various origin-of-life hypotheses regarding the origin and evolution of life's amino acid alphabet, and advocate the progress that would add valuable information in the future.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biological Sciences, University of Maryland, Baltimore County, 1000 Hilltop Circle, Baltimore, MD 25250, USA
| | | |
Collapse
|
40
|
Zhang HY. Exploring the evolution of standard amino-acid alphabet: When genomics meets thermodynamics. Biochem Biophys Res Commun 2007; 359:403-5. [PMID: 17543275 DOI: 10.1016/j.bbrc.2007.05.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Accepted: 05/18/2007] [Indexed: 11/27/2022]
Abstract
One of the most intriguing aspects of life is that despite the diversified apparent shapes, similar building blocks and infrastructures, such as standard amino acids and canonical genetic codes, are shared by most life on Earth. Thus, it is challenging to explore: why nature just selects these building blocks and strategies from numerous candidates to construct life? Was this deterministic or fortuitous? Thanks to the rapid progress in genomics, bioinformatics and synthetic biology, more and more basic principles underlying life design and construction were disclosed in the past decade. However, since the origin of early life is substantially a chemical process, to understand the enigma of life origin, chemists' efforts can not be neglected. In this paper, we focus on the evolution of standard amino-acid alphabet and indicate that chemistry, especially thermodynamics, is indeed critical to understanding the forming mechanisms of amino-acid alphabet. It is revealed that nature prefers low free energy and thus ubiquitous (cheap) small amino acids when beginning to build life, which is compatible with many recent findings from genomics and bioinformatics.
Collapse
Affiliation(s)
- Hong-Yu Zhang
- Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Center for Advanced Study, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
41
|
Abstract
Numerous hypotheses about how life on earth could have started can be found in the literature. In this article, we give an overview about the most widespread ones and try to point out which of them might have occurred on the primordial earth with highest probability from a chemical point of view. The idea that a very early stage of life was the "RNA world" encounters crucial problems concerning the formation of its building blocks and their stability in a prebiotic environment. Instead, it seems much more likely that a "peptide world" originated first and that RNA and DNA took up their part at a much later stage. It is shown that amino acids and peptides can be easily formed in a realistic primordial scenario and that these biomolecules can start chemical evolution without the help of RNA. The origin of biohomochirality seems strongly related to the most probable formation of the first peptides via the salt-induced peptide formation (SIPF) reaction.
Collapse
|