1
|
Roszczenko P, Szewczyk-Roszczenko OK, Gornowicz A, Czarnomysy R, Lozynskyi A, Bielawski K, Lesyk R, Bielawska A. Trastuzumab Potentiates Antitumor Activity of Thiopyrano[2,3- d]Thiazole Derivative in AGS Gastric Cancer Cells. Molecules 2024; 29:5117. [PMID: 39519758 PMCID: PMC11548019 DOI: 10.3390/molecules29215117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Gastric cancer remains a significant therapeutic challenge, highlighting the need for new strategies to improve treatment efficacy. This study investigates the potential of combined therapy with the novel Thiopyrano[2,3-d]Thiazole derivative LES-6400 and the anti-HER2 antibody trastuzumab in AGS gastric cancer cells. The antitumor effects of the combined therapy were evaluated using various techniques, including the MTT assay for cell viability, [3H]-thymidine incorporation for DNA synthesis, and flow cytometry to assess apoptosis (Annexin V-FITC/PI staining), mitochondrial membrane potential (MMP), and inflammatory cytokine levels. ELISA was employed to measure the levels of IL-6, p53, and cytochrome C. The combination of LES-6400 (1 µM) and trastuzumab (10 µg/mL) demonstrated superior antitumor activity compared to monotherapy with either agent in AGS gastric cancer cells. The combination therapy enhanced apoptosis, presumably by inducing oxidative stress in the cells and disrupting mitochondrial membrane potential. Additionally, a significant increase in p53 protein levels and modulation of interleukin levels, including a marked reduction in IL-6 levels, were observed, suggesting an impact on apoptotic and inflammatory responses. These findings indicate that the combined use of LES-6400 and trastuzumab is a promising therapeutic strategy for gastric cancer, warranting further investigation into the mechanisms of action and potential clinical applications of this combined approach.
Collapse
Affiliation(s)
- Piotr Roszczenko
- Department of Biotechnology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland
| | | | - Agnieszka Gornowicz
- Department of Biotechnology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Białystok, Kilińskiego 1, 15-089 Białystok, Poland
| |
Collapse
|
2
|
Deepthi A, Leena SS, Krishnan D. Update on thiopyran-fused heterocycle synthesis (2013-2024). Org Biomol Chem 2024; 22:5676-5717. [PMID: 38912843 DOI: 10.1039/d4ob00497c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Thiopyrans and their fused derivatives have significant synthetic relevance owing to their biological importance and occurrence in natural products. The current article provides an overview of synthetic strategies employed for the construction of thiopyran-fused heterocycles. In particular, this article discusses synthetic methods for the fusion of thiopyran with heterocycles such as indole, quinoline, pyrimidine, pyridine, thiophene, chromene, oxazole, pyrazole, pyran and furan and covers the literature from 2013 to 2024. The most common precursors for thiopyrano[2,3-b]indoles, thiopyranoquinolines and thiopyranothiazoles are indoline-2-thione, 2-mercaptoquinoline-3-carbaldehyde and thiazolidinone, respectively, and various reactions involving these are described in detail here. Asymmetric syntheses of thiopyranoindoles achieved using chiral catalysts based on thiourea, proline and metal complexes are also included. The biological activity associated with some compounds is also discussed.
Collapse
Affiliation(s)
- Ani Deepthi
- Department of Chemistry, University of Kerala, Kariavattom, Trivandrum - 695581, Kerala, India.
| | | | - Devika Krishnan
- Department of Chemistry, University of Kerala, Kariavattom, Trivandrum - 695581, Kerala, India.
| |
Collapse
|
3
|
Patel PJ, Patel SG, Upadhyay DB, Ravi L, Dhanasekaran A, Patel HM. An efficient, catalyst-free and aqueous ethanol-mediated synthesis of 5-((2-aminothiazol-5-yl)(phenyl)methyl)-6-hydroxypyrimidine-2,4(1 H,3 H)-dione derivatives and their antioxidant activity. RSC Adv 2023; 13:24466-24473. [PMID: 37593670 PMCID: PMC10427891 DOI: 10.1039/d3ra03998f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
In this study, we effectively developed a catalyst-free multicomponent synthesis of 5-((2-aminothiazol-5-yl)(phenyl)methyl)-6-hydroxypyrimidine-2,4(1H,3H)-dione derivatives employing 2-aminothiazole, N',N'-dimethyl barbituric acid/barbituric acid and different aldehydes at 80 °C in an aqueous ethanol medium (1 : 1) using group-assisted purification (GAP) chemistry. The essential characteristics of this methodology include superior green credential parameters, metal-free multicomponent synthesis, faster reaction times, greater product yields, simple product purification without column chromatography and higher product yields. All of the synthesized compounds were analyzed against the HepG2 cell line. Compounds 4j and 4k shows good anti-proliferative effects on HepG2 cells. Furthermore, the ABTS and DPPH scavenging assays were used to determine the antioxidant activity of all compounds (4a-r). In both ABTS and DPPH radical scavenging assays, compounds 4e, 4i, 4j, 4o and 4r exhibit excellent potency compared to the standard ascorbic acid.
Collapse
Affiliation(s)
- Paras J Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120 Gujarat India
| | - Subham G Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120 Gujarat India
| | - Dipti B Upadhyay
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120 Gujarat India
| | - Logeswari Ravi
- Centre for Biotechnology, Anna University Chennai Tamil Nadu India
| | | | - Hitendra M Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120 Gujarat India
| |
Collapse
|
4
|
Exploring the Relationship between Reactivity and Electronic Structure in Isorhodanine Derivatives Using Computer Simulations. Molecules 2023; 28:molecules28052360. [PMID: 36903606 PMCID: PMC10004983 DOI: 10.3390/molecules28052360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
The electronic structure and reactivity of 22 isorhodanine (IsRd) derivatives in the Diels-Alder reaction with dimethyl maleate (DMm) were investigated under two different environments (gas phase and continuous solvent CH3COOH), using free Gibbs activation energy, free Gibbs reaction energy, and frontier molecular orbitals to analyze their reactivity. The results revealed both inverse electronic demand (IED) and normal electronic demand (NED) characteristics in the Diels-Alder reaction and also provided insights into the aromaticity of the IsRd ring by employing HOMA values. Additionally, the electronic structure of the IsRd core was analyzed through topological examination of the electron density and electron localization function (ELF). Specifically, the study demonstrated that ELF was able to successfully capture chemical reactivity, highlighting the potential of this method to provide valuable insights into the electronic structure and reactivity of molecules.
Collapse
|
5
|
Lozynskyi A, Senkiv J, Ivasechko I, Finiuk N, Klyuchivska O, Kashchak N, Lesyk D, Karkhut A, Polovkovych S, Levytska O, Karpenko O, Boshkayeva A, Sayakova G, Gzella A, Stoika R, Lesyk R. 1,4-Naphthoquinone Motif in the Synthesis of New Thiopyrano[2,3-d]thiazoles as Potential Biologically Active Compounds. Molecules 2022; 27:molecules27217575. [PMID: 36364402 PMCID: PMC9658586 DOI: 10.3390/molecules27217575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
A series of 11-substituted 3,5,10,11-tetrahydro-2H-benzo[6,7]thiochromeno[2,3-d][1,3]thiazole-2,5,10-triones were obtained via hetero-Diels-Alder reaction of 5-alkyl/arylallylidene/-4-thioxo-2-thiazolidinones and 1,4-naphthoquinones. The structures of newly synthesized compounds were established by spectral data and a single-crystal X-ray diffraction analysis. According to U.S. NCI protocols, compounds 3.5 and 3.6 were screened for their anticancer activity; 11-Phenethyl-3,11-dihydro-2H-benzo[6,7]thiochromeno[2,3-d]thiazole-2,5,10-trione (3.6) showed pronounced cytotoxic effect on leukemia (Jurkat, THP-1), epidermoid (KB3-1, KBC-1), and colon (HCT116wt, HCT116 p53-/-) cell lines. The cytotoxic action of 3.6 on p53-deficient colon carcinoma cells was two times weaker than on HCT116wt, and it may be an interesting feature of the mechanism action.
Collapse
Affiliation(s)
- Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Julia Senkiv
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Iryna Ivasechko
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Nataliya Finiuk
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Olga Klyuchivska
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Nataliya Kashchak
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Danylo Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Andriy Karkhut
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Bandera 12, 79013 Lviv, Ukraine
| | - Svyatoslav Polovkovych
- Department of Technology of Biologically Active Substances, Pharmacy and Biotechnology, Lviv Polytechnic National University, Bandera 12, 79013 Lviv, Ukraine
| | - Oksana Levytska
- Department of Organization and Economics of Pharmacy, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | | | - Assyl Boshkayeva
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Galiya Sayakova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, Asfendiyarov Kazakh National Medical University, Almaty 050000, Kazakhstan
| | - Andrzej Gzella
- Department of Organic Chemistry, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznan, Poland
| | - Rostyslav Stoika
- Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov14/16, 79005 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
- Department of Biotechnology and Cell Biology, Medical College, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland
- Correspondence: ; Tel.: +380-677-038-010
| |
Collapse
|
6
|
Synthesis and structure elucidation of thiopyrano[2,3-d]thiazole-6-carbonitriles as adducts of Michael reaction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
7
|
Synthesis, antimicrobial and antioxidant evaluation with in silico studies of new thiazole Schiff base derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Lozynskyi A, Karkhut A, Polovkovych S, Karpenko O, Holota S, Gzella AK, Lesyk R. 3-Phenylpropanal and citral in the multicomponent synthesis of novel thiopyrano[2,3-d]thiazoles. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
9
|
Synthesis and Biological Activity Evaluation of Novel 5-Methyl-7-phenyl-3H-thiazolo[4,5-b]pyridin-2-ones. Sci Pharm 2021. [DOI: 10.3390/scipharm89040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
A series of 5-methyl-7-phenyl-3H-thiazolo[4,5-b]pyridin-2-ones has been designed, synthesized, and characterized by spectral data. Target compounds were screened for their antimicrobial activity against some pathogenic bacteria and fungi, and most of them showed moderate activity, especially compound 3g, which displayed the potent inhibitory effect against Pseudomonas aeruginosa and Escherichia coli with MIC value of 0.21 μM. The active thiazolopyridine derivatives 3c, 3f, and 3g were screened for their cytotoxicity effects on HaCat, Balb/c 3T3 cells using MTT assay, which revealed promising results. In silico assessment for compounds 3c, 3f, and 3g also revealed suitable drug-like parameters and ADME properties. The binding interactions of the most active compound 3g were performed through molecular docking against MurD and DNA gyrase, with binding energies and an inhibitory constant compared to the reference drug ciprofloxacin. The tested thiazolo[4,5-b]pyridines constitute an exciting background for the further development of new synthetic antimicrobial agents.
Collapse
|
10
|
Petrou A, Fesatidou M, Geronikaki A. Thiazole Ring-A Biologically Active Scaffold. Molecules 2021; 26:3166. [PMID: 34070661 PMCID: PMC8198555 DOI: 10.3390/molecules26113166] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/15/2021] [Accepted: 05/20/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Thiazole is a good pharmacophore nucleus due to its various pharmaceutical applications. Its derivatives have a wide range of biological activities such as antioxidant, analgesic, and antimicrobial including antibacterial, antifungal, antimalarial, anticancer, antiallergic, antihypertensive, anti-inflammatory, and antipsychotic. Indeed, the thiazole scaffold is contained in more than 18 FDA-approved drugs as well as in numerous experimental drugs. OBJECTIVE To summarize recent literature on the biological activities of thiazole ring-containing compounds Methods: A literature survey regarding the topics from the year 2015 up to now was carried out. Older publications were not included, since they were previously analyzed in available peer reviews. RESULTS Nearly 124 research articles were found, critically analyzed, and arranged regarding the synthesis and biological activities of thiazoles derivatives in the last 5 years.
Collapse
Affiliation(s)
| | | | - Athina Geronikaki
- School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.P.); (M.F.)
| |
Collapse
|
11
|
Lozynskyi A, Zimenkovsky B, Yushyn I, Kaminskyy D, Karpenko O, Gzella AK, Lesyk R. Synthesis of new structurally diverse thiazolidinone-derived compounds based on reaction of isorhodanine with ortho-substituted aldehydes, α-keto- and β-aroylacrylic acids. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Shepeta Y, Lozynskyi A, Sulyma M, Nektegayev I, Grellier P, Lesyk R. Synthesis and biological activity evaluation of new thiazolidinone-diclofenac hybrid molecules. PHOSPHORUS SULFUR 2020. [DOI: 10.1080/10426507.2020.1759060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yulia Shepeta
- Department of Pharmaceutical Сhemistry, National Pirogov Memorial Medical University, Vinnytsya, Ukraine
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Marta Sulyma
- Department of General, Inorganic and Bioinorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Ihor Nektegayev
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Philippe Grellier
- National Museum of Natural History, UMR 7245 CNRS-MNHN, Team BAMEE, Paris, France
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| |
Collapse
|
13
|
Nirwan S, Chahal V, Kakkar R. Thiazolidinones: Synthesis, Reactivity, and Their Biological Applications. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3514] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sonam Nirwan
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Varun Chahal
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Rita Kakkar
- Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
14
|
Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Mol Divers 2019; 23:829-844. [DOI: 10.1007/s11030-018-09910-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/13/2018] [Indexed: 01/24/2023]
|
15
|
Kryshchyshyn A, Roman O, Lozynskyi A, Lesyk R. Thiopyrano[2,3- d]Thiazoles as New Efficient Scaffolds in Medicinal Chemistry. Sci Pharm 2018; 86:scipharm86020026. [PMID: 29903979 PMCID: PMC6027677 DOI: 10.3390/scipharm86020026] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 12/11/2022] Open
Abstract
This review presents the up to date development of fused thiopyranothiazoles that comprise one of the thiazolidine derivatives classes. Thiazolidine and thiazolidinone-related compounds belong to the widely studied heterocycles from a medicinal chemistry perspective. From the chemical point of view, they are perfect heterodienes to undergo hetero-Diels–Alder reaction with a variety of dienophiles, yielding regio- and diastereoselectively thiopyranothiazole scaffolds. The annealing of thiazole and thiopyran cycles in condensed heterosystem is a precondition for the “centers conservative” creation of the ligand-target binding complex and can promote a potential selectivity to biotargets. The review covers possible therapeutic applications of thiopyrano[2,3-d]thiazoles, such as anti-inflammatory, antibacterial, anticancer as well as aniparasitic activities. Thus, thiopyrano[2,3-d]thiazoles may be used as powerful tools in the development of biologically active agents and drug-like molecules.
Collapse
Affiliation(s)
- Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Olexandra Roman
- Department of General, Inorganic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| |
Collapse
|