1
|
Abdelrahman AH, Azab ME, Hegazy MA, Labena A, Ramadan SK. Design, Synthesis, Antiproliferative Screening, and In Silico Studies of Some Pyridinyl‐Pyrimidine Candidates. J Heterocycl Chem 2025; 62:303-315. [DOI: 10.1002/jhet.4945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/15/2024] [Indexed: 01/12/2025]
Abstract
ABSTRACTUsing pyrimidinethione, a new series of pyridinyl‐pyrimidine candidates was prepared by reacting with diverse carbon‐centered electrophiles like hydrazonoyl chloride, N‐arylchloroacetamide, ethyl chloroacetate, and enaminone derivatives. Some heteroannulated compounds, such as triazolopyrimidine and thiazolopyrimidine derivatives were obtained. The mass fragmentation pathways were investigated by the electron impact mass spectrometry (EI‐MS), and the molecular ion peaks (M+.) were recorded at different intensities. The in vitro antiproliferative efficacy of the prepared compounds against MCF7 and HCT116 cancer cell lines showed the highest potency of pyrimidinethione 2, triazolopyrimidine 4, and thiazolopyrimidine 10. Also, in silico studies were performed to recognize these findings. A molecular docking simulation towards the EGFR enzyme showed the best docking score of thiazolopyrimidine 10 through H‐bonding and hydrophobic interactions in comparison to the interactions of co‐crystallized ligand and doxorubicin. With DFT calculations, compound 10 exhibited the lowest energy gap and the highest softness. Among ADME simulation, compounds 7, 8, 9, and 11 exhibited desirable lead‐likeness. It is hoped that this work may affect advancing new effective antiproliferative agents.
Collapse
Affiliation(s)
- Ali H. Abdelrahman
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Mohammad E. Azab
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Mohamed A. Hegazy
- Petrochemicals Department Egyptian Petroleum Research Institute (EPRI) Cairo Egypt
| | - Ahmed Labena
- Processes Design and Development Department Egyptian Petroleum Research Institute (EPRI) Cairo Egypt
| | - Sayed K. Ramadan
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| |
Collapse
|
2
|
Manna T, Maji S, Maity M, Debnath B, Panda S, Khan SA, Nath R, Akhtar MJ. Anticancer potential and structure activity studies of purine and pyrimidine derivatives: an updated review. Mol Divers 2025; 29:817-848. [PMID: 38856835 DOI: 10.1007/s11030-024-10870-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 06/11/2024]
Abstract
Cancer is the world's leading cause of death impacting millions of lives globally. The increasing research over the past several decades has focused on the development of new anticancer drugs, but still cancer continues to be a global health challenge. Thus, several new alternative therapeutic strategies have been tried for the drug design and discovery. Purine and pyrimidine heterocyclic compounds have received attention recently due to their potential in targeting various cancers. It is evident from the recently published data over the last decade that incorporation of the purine and pyrimidine rings in the synthesized derivatives resulted in the development of potent anticancer molecules. This review presents synthetic strategies encompassing several examples of recently developed purine and pyrimidine-containing compounds as anticancer agents. In addition, their structure-activity relationships are represented in the schemes indicating the fragment or groups that are essential for the enhanced anticancer activities. Purine and pyrimidines combined with other heterocyclic compounds have resulted in many novel anticancer molecules that address the challenges of drug resistance. The purine and pyrimidine derivatives showed significantly enhanced anticancer activities against targeted receptor proteins with numerous compounds with an IC50 value in the nanomolar range. The review will support medicinal chemists and contribute in progression and development of synthesis of more potent chemotherapeutic drug candidates to mitigate the burden of this dreadful disease.
Collapse
Affiliation(s)
- Tanushree Manna
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Sumit Maji
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Mousumi Maity
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Biplab Debnath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shambo Panda
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India
| | - Shah Alam Khan
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman
| | - Rajarshi Nath
- Department of Pharmacy, Bharat Technology, Uluberia, 711316, Howrah, West Bengal, India.
- JIS University, Agarpara Campus, Kolkata-81, Nilgunj Road, Agarpara, Kolkata, 700109, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, National University of Science and Technology, PC 130, Azaiba, Bousher, PO 620, Muscat, Sultanate of Oman.
| |
Collapse
|
3
|
Patil S, Basanagouda MM, Jeyaseelan SC, Mulla BBA, Muddapur GV, Muddapur UM, Sidarai AH. Effect of Concentration of TiO 2 Nanoparticles on Thiadiazole Derivative and Their Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-04051-7. [PMID: 39644371 DOI: 10.1007/s10895-024-04051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/15/2024] [Indexed: 12/09/2024]
Abstract
In the present work, we report the synthesis of TiO2 nanoparticles by hydrothermal method using titanium isopropoxide. The synthesized TiO2 nanoparticles were investigated by Powder X-ray diffraction, FE-SEM with EDX, Photoluminescence, UV-Visible absorption and Fluorescence emission spectroscopy. Fluorescence intensity and absorption values of 4-[5-(2,5-Dimethyl-pyrrol-1-yl)-[1,3,4]thiadiazol-2-ylsulfanylmethyl]-6-methoxy-chromen-2-one (DTYMC) molecule decreases with adding the concentration of TiO2 nanoparticles. Stern-Volmer equation for steady state method is found to be linear and its co-relation coefficient is found to be r = 0.88, which indicates the presence of dynamic quenching. Binding orientations of the DTYMC ligand with targeted proteins are Thymidylate synthase (TS) - PDB ID: 1JU6, The type II topoisomerases (TOP2α) - PDB ID: 4FM9 and Human thymidine phosphorylase (hTP) - PDB ID: 2WK6. The obtained result suggests that, the DTYMC molecule exhibits inhibitory activity against the overexpression of TS receptor which causes non-small cell lung cancer (NSCLC). Antimicrobial study of TiO2 NPs has been determined.
Collapse
Affiliation(s)
- Shivaprasadagouda Patil
- Department of Physics, J.S.S. Arts, Science and Commerce College, Gokak, 591307, Karnataka, India.
| | - Mahanthesh M Basanagouda
- Department of Chemistry, K.L.E. Society's P.C. Jabin Science College, Hubballi, 580031, Karnataka, India
| | | | - Bi Bi Ayisha Mulla
- Department of Studies in Physics, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Gangadhar V Muddapur
- Department of Physics, KLE technological University, Hubli, 580031, Karnataka, India
| | - Uday M Muddapur
- Department of Biotechnology, KLE Technological University, Hubli, 580031, Karnataka, India
| | - Ashok H Sidarai
- Department of Studies in Physics, Karnatak University, Dharwad, 580003, Karnataka, India
| |
Collapse
|
4
|
Ramadan SK, Alzahrani AYA, El-Helw EAE. Some Thiazolopyrimidine Derivatives: Synthesis, DFT, Cytotoxicity, and Pharmacokinetics Modeling Study. Synlett 2024. [DOI: 10.1055/a-2456-9620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
AbstractA pyrimidinethione candidate carrying pyrazole and thiophene scaffolds was produced by a Biginelli cyclocondensation reaction of a pyrazolecarbaldehyde with pentan-2,4-dione and thiourea. To create some heteroannulated thiazolopyrimidines, the pyrimidinethione was subjected to cyclocondensation reactions with ethyl chloroacetate, 1,2-dibromoethane, chloroacetonitrile, and oxalyl chloride. A DFT simulation was performed for a frontier-orbital analysis to determine the molecular geometry. Among the products, 6-acetyl-7-methyl-5-[1-phenyl-3-(2-thienyl)-1H-pyrazol-4-yl]-5H-[1,3]thiazolo[3,2-a]pyrimidine-2,3-dione displayed the highest softness and the lowest energy gap in the DFT calculations. Moreover, it had the highest electrophilicity index, suggesting possible biological impacts. The compounds obtained were evaluated against cell lines of breast adenocarcinoma (MCF7) and hepatocellular carcinoma (HepG2) as antiproliferative agents. A simulation of the molecular docking of our compounds with the epidermal growth factor receptor demonstrated the rationality of our design and identified the binding mode. A model pharmacokinetics analysis showed that the products have the expected and desirable drug-like and bioavailability properties.
Collapse
|
5
|
Farouk F, Elmaaty AA, Elkamhawy A, Tawfik HO, Alnajjar R, Abourehab MAS, Saleh MA, Eldehna WM, Al‐Karmalawy AA. Investigating the potential anticancer activities of antibiotics as topoisomerase II inhibitors and DNA intercalators: in vitro, molecular docking, molecular dynamics, and SAR studies. J Enzyme Inhib Med Chem 2023; 38:2171029. [PMID: 36701269 PMCID: PMC9881673 DOI: 10.1080/14756366.2023.2171029] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Topoisomerase II (TOP-2) is a promising molecular target for cancer therapy. Numerous antibiotics could interact with biologically relevant macromolecules and provoke antitumor potential. Herein, molecular docking studies were used to investigate the binding interactions of 138 antibiotics against the human topoisomerase II-DNA complex. Followed by the MD simulations for 200 ns and MM-GBSA calculations. On the other hand, the antitumor activities of the most promising candidates were investigated against three cancer cell lines using doxorubicin (DOX) as a reference drug. Notably, spiramycin (SP) and clarithromycin (CL) showed promising anticancer potentials on the MCF-7 cell line. Moreover, azithromycin (AZ) and CL exhibited good anticancer potentials against the HCT-116 cell line. Finally, the TOP-2 enzyme inhibition assay was carried out to confirm the proposed rationale. Briefly, potent TOP-2 inhibitory potentials were recorded for erythromycin (ER) and roxithromycin (RO). Additionally, a SAR study opened eyes to promising anticancer pharmacophores encountered by these antibiotics.HighlightsMolecular docking studies of 139 antibiotics against the topoisomerase II-DNA complex.SP, RO, AZ, CL, and ER were the most promising and commercially available candidates.Molecular dynamics simulations for 200 ns for the most promising five complexes.MM-GBSA calculations for the frontier five complexes.SP and CL showed promising anticancer potentials on the MCF-7 cell line, besides, AZ and CL exhibited good anticancer potentials against the HCT-116 cell line.Potent TOP-2 inhibitory potentials were recorded for ER and RO.
Collapse
Affiliation(s)
- Faten Farouk
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ahmed Elkamhawy
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea,Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Haytham O. Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Radwan Alnajjar
- Department of Chemistry, Faculty of Science, University of Benghazi, Benghazi, Libya,PharmD, Faculty of Pharmacy, Libyan International Medical University, Benghazi, Libya,Department of Chemistry, University of Cape Town, Rondebosch, South Africa
| | | | - Mohamed A. Saleh
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, the United Arab Emirates,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt,School of Biotechnology, Badr University in Cairo, Badr City, Egypt
| | - Ahmed A. Al‐Karmalawy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt,CONTACT Ahmed A. Al‐Karmalawy Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| |
Collapse
|
6
|
Jubeen F, Jabeen I, Aftab U, Noor S, Hareem ME, Sultan M, Kazi M. Synthesis, Characterization, Theoretical and Experimental Anticancer Evaluation of Novel Cocrystals of 5-Fluorouracil and Schiff Bases against SW480 Colorectal Carcinoma. Pharmaceutics 2023; 15:1929. [PMID: 37514115 PMCID: PMC10383612 DOI: 10.3390/pharmaceutics15071929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The chemotherapeutic agent known as 5-fluorouracil (5-FU) is an artificial fluoropyrimidine antimetabolite that has been widely used for its antineoplastic properties. Cocrystals of 5-fluorouracil (5-FU) with five different Schiff bases (benzylidene-urea (BU), benzylidene-aniline (BA), salicylidene-aniline (SA), salicylidene-phenylhydrazine (SPH), and para-hydroxy benzylideneaniline (HBA)) are reported in this study. The newly synthesized cocrystals were analyzed by FTIR and PXRD. In this study, we investigated the antitumor efficacy of 5-FU derivatives in SW480 colon cancer cells via MTT assay at varying dose concentrations. Molecular docking was performed to predict the binding mechanism of TS with various 5-FU complexes. FTIR revealed the presence of respective functional groups in the prepared cocrystals. The frequencies (v) of N-H (3220.24 cm-1) and carbonyl groups (1662.38 cm-1) in the spectrum of 5-FU shifted considerably in all derivative cocrystal new interactions. There was a noticeable transformation in the PXRD peak of 5-FU at 2θ = 28.37° in all derivatives. The novelty of the present study lies in the fact that 5-FU-BA showed an anticancer potential IC50 (6.4731) far higher than that of 5-FU (12.116), almost comparable to that of the reference drug doxorubicin (3.3159), against SW480 cancel cell lines, followed by 5-Fu-HBA (10.2174). The inhibition rates of 5-FU-BA and 5-FU-HBA were highest among the derivatives (99.85% and 99.37%, respectively) in comparison with doxorubicin (97.103%). The results revealed that the synthesized 5-FU cocrystals have promising antitumor efficacy compared with previously reported 5-FU and 5-FU. The activities of the cocrystals were rationalized by a molecular modeling approach to envisage binding modes with the target cancer protein.
Collapse
Affiliation(s)
- Farhat Jubeen
- Department of Chemistry, Government College Women University, Arfa Kareem Road, Faisalabad 38000, Pakistan
| | - Ishrat Jabeen
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Sector H12, Islamabad 44000, Pakistan
| | - Usman Aftab
- Department of Pharmacology, University of Health Sciences, Lahore 54600, Pakistan
| | - Sadia Noor
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Sector H12, Islamabad 44000, Pakistan
- Department of Inorganic Chemistry, University of Hohenheim, 70599 Stuttgart, Germany
| | - Mah E Hareem
- School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Sector H12, Islamabad 44000, Pakistan
| | - Misbah Sultan
- Institute of Chemistry, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Elbatrawy OR, Hagras M, El Deeb MA, Agili F, Hegazy M, El-Husseiny AA, Mokhtar MM, Elkhawaga SY, Eissa IH, El-Kalyoubi S. Discovery of New Uracil and Thiouracil Derivatives as Potential HDAC Inhibitors. Pharmaceuticals (Basel) 2023; 16:966. [PMID: 37513878 PMCID: PMC10384246 DOI: 10.3390/ph16070966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Background: Histone deacetylase inhibitors (HDACIs) are a relatively new class of potential drugs for treating cancer. Aim: Discovery of new anticancer agents targeting HDAC. Methods: New uracil and thiouracil derivatives panels were designed and synthesized as HDAC inhibitors. The synthesized compounds were tested against MCF-7, HepG2, and HCT-116. HDAC1 and HDAC4 inhibitory activities of these compounds were tested. The most active member was tested for its potential against cell cycle, apoptosis, caspase-3, and caspase-8. Docking studies were carried out against HDAC1. Results: Compounds 5a, 5b, 5f, 5i, 5k, and 5m exhibited promising cytotoxic activities. HDAC1 and HDAC4 inhibitory activities of these compounds were tested. Regarding the HDAC1 inhibitory activity, compound 5m was the most potent member (IC50 = 0.05 µg/mL) compared to trichostatin A (IC50 = 0.0349 µg/mL). For HDAC4, compound 5m showed superior activity (IC50 = 2.83 µg/mL) than trichostatin A (IC50 = 3.349 µg/mL). Compound 5m showed a high potential to arrest the HCT116 cell cycle at the G0-G1 phase. In addition, it showed an almost 17 times apoptotic effect (37.59%) compared to the control cells (2.17%). Furthermore, Compound 5m showed significant increases in the levels of caspase-3 and caspase-8. Finally, the uracil and thiouracil derivatives showed accepted binding mods against HDAC. Conclusions: Compound 5m has potential anticancer activity targeting HDAC with a significant apoptotic effect.
Collapse
Affiliation(s)
- Omnia R Elbatrawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11823, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Moshira A El Deeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo 11823, Egypt
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia
| | - Maghawry Hegazy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Cairo, Egypt
| | - Mahmoud Mohamed Mokhtar
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Samy Y Elkhawaga
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42511, Egypt
| |
Collapse
|
8
|
Elbatrawy OR, El Deeb MA, Hagras M, Agili F, Hegazy M, El-Husseiny AA, Elkady MA, Eissa IH, El-Kalyoubi S. New thiouracil derivatives as histone deacetylase inhibitors and apoptosis inducers: design, synthesis and anticancer evaluation. Future Med Chem 2023; 15:1019-1035. [PMID: 37492951 DOI: 10.4155/fmc-2023-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023] Open
Abstract
Background: Histone deacetylase (HDAC) inhibitors have good contributions in cancer management. Aim: To introduce new active HDAC inhibitors. Methods: Design and synthesis of 16 thiouracil derivatives with deep biological and computational investigation. Results: Compounds 7a, 7c, 7d, 7e, 8a and 8f showed the highest antiproliferative effects against MCF7, HepG2 and HCT116 cell lines. Compound 7e exhibited the highest activities against HDAC1 and HDAC4. Compound 7e arrested the cell cycle of HCT116 cells at G0-G1 with significant apoptotic effect. In addition, treatment with compound 7e was associated with a significant increase in the levels of caspase-3 and caspase-8. The docking studies gave good insight about the binding patterns of the synthesized compounds against HDAC1. Conclusion: Compound 7e has a promising anticancer activity targeting HDAC.
Collapse
Affiliation(s)
- Omnia R Elbatrawy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Moshira A El Deeb
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, 11754, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Fatimah Agili
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan, 82621, Saudi Arabia
| | - Maghawry Hegazy
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829, Cairo, Egypt
| | - Mohamed A Elkady
- Biochemistry & Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Samar El-Kalyoubi
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, 42511, Port Said, Egypt
| |
Collapse
|
9
|
Ahmed NM, Lotfallah AH, Gaballah MS, Awad SM, Soltan MK. Novel 2-Thiouracil-5-Sulfonamide Derivatives: Design, Synthesis, Molecular Docking, and Biological Evaluation as Antioxidants with 15-LOX Inhibition. Molecules 2023; 28:molecules28041925. [PMID: 36838913 PMCID: PMC9963659 DOI: 10.3390/molecules28041925] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
New antioxidant agents are urgently required to combat oxidative stress, which is linked to the emergence of serious diseases. In an effort to discover potent antioxidant agents, a novel series of 2-thiouracil-5-sulfonamides (4-9) were designed and synthesized. In line with this approach, our target new compounds were prepared from methyl ketone derivative 3, which was used as a blocking unit for further synthesis of a novel series of chalcone derivatives 4a-d, thiosemicarbazone derivatives 5a-d, pyridine derivatives 6a-d and 7a-d, bromo acetyl derivative 8, and thiazole derivatives 9a-d. All compounds were evaluated as antioxidants against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2), lipid peroxidation, and 15-lipoxygenase (15-LOX) inhibition activity. Compounds 5c, 6d, 7d, 9b, 9c, and 9d demonstrated significant RSA in all three techniques in comparison with ascorbic acid and 15-LOX inhibitory effectiveness using quercetin as a standard. Molecular docking of compound 9b endorsed its proper binding at the active site pocket of the human 15-LOX which explains its potent antioxidant activity in comparison with standard ascorbic acid.
Collapse
Affiliation(s)
- Naglaa M. Ahmed
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
- Correspondence: or ; Tel.: +20-012-4228559 or Tel./Fax: +20-202-5541601
| | - Ahmed H. Lotfallah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, El-Arish 16020, Egypt
| | - Mohamed S. Gaballah
- Biochemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Samir M. Awad
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo 11795, Egypt
| | - Moustafa K. Soltan
- Ministry of Health, Oman College of Health Sciences, Muscat 132, Oman
- Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
10
|
Phytochemical Characterization of Pterocephalus frutescens with In-Silico Evaluation as Chemotherapeutic Medicine and Oral Pharmacokinetics Prediction Study. Sci Pharm 2023. [DOI: 10.3390/scipharm91010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Virtual screening of the potential lead chemotherapeutic phytochemicals from medicinal plants has useful application in the field of in-silico modelling and computer-based drug design by orienting and scoring ligands in the active binding site of a target protein. The phytochemical investigation of the Pterocephalus frutescens extract in n-butanol resulted in the isolation and structure elucidation of three iridoids and four flavonoids which were identified as Geniposide (1), Geniposidic acid (2), Nepetanudoside C (3), Isovitexin (4), Luteolin-7-O-glucoside (5) Isoorientin (6) and Orientin (7), respectively. Molecular docking studies were used to compare the binding energies of the isolated phytochemicals at four biological cancer-relevant targets; namely, aromatase, carbonic anhydrase IX, fatty acid synthase, and topoisomerase II-DNA complex. The docking study concluded that the isolated compounds have promising cytotoxic activities, in particular, Luteolin-7-O-glucoside (5) and Orientin (7) which exhibited high binding affinities among the isolated compounds at the active sites of the target enzymes; Aromatase (−8.73 Kcal/mol), and Carbonic anhydrase IX (−8.92 Kcal/mol), respectively, surpassing the corresponding binding scores of the co-crystallized ligands and the reference drugs at these target enzymes. Additionally, among the isolated compounds, Luteolin-7-O-glucoside (5) showed the most outstanding binding affinities at the active sites of the target enzymes; Fatty acid synthase, and Topisomerase II-DNA complex with binding scores of −6.82, and −7.99 Kcal/mol, respectively. Finally, the SwissADME online web tool predicted that most of these compounds possessed acceptable oral bioavailability and drug likeness characteristics.
Collapse
|
11
|
Elzahabi HSA, Nossier ES, Alasfoury RA, El-Manawaty M, Sayed SM, Elkaeed EB, Metwaly AM, Hagras M, Eissa IH. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2022; 37:1053-1076. [PMID: 35821615 PMCID: PMC9291687 DOI: 10.1080/14756366.2022.2062752] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 μM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Heba S A Elzahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania A Alasfoury
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - May El-Manawaty
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sara M Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
12
|
Hammoud MM, Nageeb AS, Morsi MA, Gomaa EA, Elmaaty AA, Al-Karmalawy AA. Design, synthesis, biological evaluation, and SAR studies of novel cyclopentaquinoline derivatives as DNA intercalators, topoisomerase II inhibitors, and apoptotic inducers. NEW J CHEM 2022. [DOI: 10.1039/d2nj01646j] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel cyclopentaquinoline derivatives as promising DNA intercalators, topoisomerase II inhibitors, and apoptotic inducers.
Collapse
Affiliation(s)
- Mohamed M. Hammoud
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Alaa S. Nageeb
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - M. A. Morsi
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Esam A. Gomaa
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Ayman Abo Elmaaty
- Department of Medicinal Chemistry, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| |
Collapse
|
13
|
Almalki ASA, Nazreen S, Elbehairi SEI, Asad M, Shati AA, Alfaifi MY, Alhadhrami A, Elhenawy AA, Alorabi AQ, Asiri AM, Alam MM. Design, synthesis, anticancer activity and molecular docking studies of new benzimidazole derivatives bearing 1,3,4-oxadiazole moieties as potential thymidylate synthase inhibitors. NEW J CHEM 2022. [DOI: 10.1039/d2nj01980a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Compounds 10 and 14 arrest the cell cycle at the G1 phase and induce apoptosis without any necrosis in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Abdulraheem SA Almalki
- Department of Chemistry, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
| | - Syed Nazreen
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
- Cell Culture Laboratory, Egyptian Organization for Biological Products and Vaccines, VACSERA Holding Company, Giza 2311, Egypt
| | - Mohammad Asad
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ali A. Shati
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, Abha 9004, Saudi Arabia
| | - Abdulrahman Alhadhrami
- Department of Chemistry, Faculty of Science, Taif University, Taif, Kingdom of Saudi Arabia
| | - Ahmed A. Elhenawy
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Al-Azhar University, 11884 Nasr City, Cairo, Egypt
| | - Ali Q. Alorabi
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Al-Baha University, Al-Baha, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Osman IA, Ayyad RR, Mahdy HA. New pyrimidine-5-carbonitrile derivatives as EGFR inhibitors with anticancer and apoptotic activity: Design, molecular modeling and synthesis. NEW J CHEM 2022. [DOI: 10.1039/d2nj01451c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In connection with our efforts on the development of new anticancer agents, herein we report the design and synthesis of new small pyrimidine-5-carbonitrile based derivatives. The target pyrimidines were evaluated...
Collapse
|
15
|
Alsaif NA, Taghour MS, Alanazi MM, Obaidullah AJ, Al-Mehizia AA, Alanazi MM, Aldawas S, Elwan A, Elkady H. Discovery of new VEGFR-2 inhibitors based on bis([1, 2, 4]triazolo)[4,3- a:3',4'- c]quinoxaline derivatives as anticancer agents and apoptosis inducers. J Enzyme Inhib Med Chem 2021; 36:1093-1114. [PMID: 34056992 PMCID: PMC8168755 DOI: 10.1080/14756366.2021.1915303] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/24/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
Herein, a new wave of bis([1, 2, 4]triazolo)[4,3-a:3',4'-c]quinoxaline derivatives have been successfully designed and synthesised. The synthesised derivatives were biologically investigated for their cytotoxic activities against HepG2 and MCF-7. Also, the tested compounds were further examined in vitro for their VEGFR-2 inhibitory activity. The most promising derivative 23j was further investigated for its apoptotic behaviour in HepG2 cell lines using flow cytometric and western-plot analyses. Additional in-silico studies were performed to predict how the synthesised compounds can bind to VEGFR-2 and to determine the drug-likeness profiling of these derivatives. The results revealed that compounds 23a, 23i, 23j, 23l, and 23n displayed the highest antiproliferative activities against the two cell lines with IC50 values ranging from 6.4 to 19.4 µM. Furthermore, compounds 23a, 23d, 23h, 23i, 23j, 23l, 23 m, and 23n showed the highest VEGFR-2 inhibitory activities with IC50 values ranging from 3.7 to 11.8 nM, comparing to sorafenib (IC50 = 3.12 nM). Moreover, compound 23j arrested the HepG2 cell growth at the G2/M phase and induced apoptosis by 40.12% compared to the control cells (7.07%). As well, such compound showed a significant increase in the level of caspase-3 (1.36-fold), caspase-9 (2.80-fold), and BAX (1.65-fold), and exhibited a significant decrease in Bcl-2 level (2.63-fold).
Collapse
Affiliation(s)
- Nawaf A. Alsaif
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmad J. Obaidullah
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A. Al-Mehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M. Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Aldawas
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
16
|
El-Kalyoubi S, Agili F, Adel I, Tantawy MA. Novel Uracil Derivatives Depicted Potential Anticancer Agents: In Vitro, Molecular Docking, and ADME Study. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
17
|
Ma C, Taghour MS, Belal A, Mehany ABM, Mostafa N, Nabeeh A, Eissa IH, Al-Karmalawy AA. Design and Synthesis of New Quinoxaline Derivatives as Potential Histone Deacetylase Inhibitors Targeting Hepatocellular Carcinoma: In Silico, In Vitro, and SAR Studies. Front Chem 2021; 9:725135. [PMID: 34631658 PMCID: PMC8493129 DOI: 10.3389/fchem.2021.725135] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Guided by the structural optimization principle and the promising anticancer effect of the quinoxaline nucleus, a new series of novel HDAC inhibitors were designed and synthesized. The synthesized compounds were designed to bear the reported pharmacophoric features of the HDAC inhibitors in addition to an extra moiety to occupy the non-used vacant deep pocket of the HDAC receptor. The newly prepared compounds were evaluated for their in vitro anti-proliferative activities against HepG-2 and HuH-7 liver cancer cell lines. The tested compounds showed promising anti-proliferative activities against both cell lines. The most active ten candidates (6 c , 6 d , 6 f , 6 g , 6 k , 6 l , 7 b , 8, 10 h , and 12) were further evaluated for their effect on the gene expression levels of Bax as an apoptotic marker and Bcl-2 as an anti-apoptotic one. Moreover, they were evaluated for their ability to inhibit histone deacetylase (HDAC1, HDAC4, and HDAC6) activities. Compound 6 c achieved the best cytotoxic activities on both HepG-2 and HuH-7 cell lines with IC50 values of 1.53 and 3.06 µM, respectively, and also it showed the most inhibitory activities on HDAC1, HDAC4, and HDAC6 with IC50 values of 1.76, 1.39, and 3.46 µM, respectively, compared to suberoylanilide hydroxamic acid (SAHA) as a reference drug (IC50 = 0.86, 0.97, and 0.93 µM, respectively). Furthermore, it achieved a more characteristic arrest in the growth of cell population of HepG-2 at both G0/G1 and S phases with 1.23-, and 1.18-fold, respectively, compared to that of the control, as determined by cell cycle analysis. Also, compound 6 c showed a marked elevation in the AnxV-FITC apoptotic HepG-2 cells percentage in both early and late phases increasing the total apoptosis percentage by 9.98-, and 10.81-fold, respectively, compared to the control. Furthermore, docking studies were carried out to identify the proposed binding mode of the synthesized compounds towards the prospective target (HDAC4). In silico ADMET and toxicity studies revealed that most of the synthesized compounds have accepted profiles of drug-likeness with low toxicity. Finally, an interesting SAR analysis was concluded to help the future design of more potent HDACIs in the future by medicinal chemists.
Collapse
Affiliation(s)
- Chao Ma
- Hepatobiliary and Pancreatic Surgery, Cancer Hospital of Zhengzhou University, Zhengzhou City, China
| | - Mohammed S. Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed B. M. Mehany
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Naglaa Mostafa
- Biophysics Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ahmed Nabeeh
- Zoology Department, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| |
Collapse
|
18
|
Haider K, Rehman S, Pathak A, Najmi AK, Yar MS. Advances in 2-substituted benzothiazole scaffold-based chemotherapeutic agents. Arch Pharm (Weinheim) 2021; 354:e2100246. [PMID: 34467567 DOI: 10.1002/ardp.202100246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 01/25/2023]
Abstract
Targeted therapy plays a pivotal role in cancer therapeutics by countering the drawbacks of conventional treatment like adverse events and drug resistance. Over the last decade, heterocyclic derivatives have received considerable attention as cytotoxic agents by modulating various signaling pathways. Benzothiazole is an important heterocyclic scaffold that has been explored for its therapeutic potential. Benzothiazole-based derivatives have emerged as potent inhibitors of enzymes such as EGFR, VEGFR, PI3K, topoisomerases, and thymidylate kinases. Several researchers have designed, synthesized, and evaluated benzothiazole scaffold-based enzyme inhibitors. Of these, several inhibitors have entered various phases of clinical trials. This review describes the recent advances and developments of benzothiazole architecture-based derivatives as potent anticancer agents.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Sara Rehman
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Ankita Pathak
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Abul K Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| | - Mohammad S Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi, India
| |
Collapse
|
19
|
Discovery of new quinoxaline-2(1H)-one-based anticancer agents targeting VEGFR-2 as inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg Chem 2021; 114:105105. [PMID: 34175720 DOI: 10.1016/j.bioorg.2021.105105] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/22/2021] [Accepted: 06/16/2021] [Indexed: 11/22/2022]
Abstract
VEGF/VEGFR2 pathway is the crucial therapeutic target in the treatment of cancer. So that, a new series of quinoxaline-2(1H)-one derivatives were designed and synthesized. The synthesized compounds were tested against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) aiming to evaluate its anti-proliferative activities. Doxorubicin as a universal anticancer drug and sorafenib as a potent VEGFR-2 inhibitor were used as positive controls. The data obtained from biological activity were found highly correlated with that obtained from molecular modeling studies. The most sensitive cell line to the influence of our new derivatives was HCT-116. Compounds 13b, 15, 16e and 17b exert the highest cytotoxic activities against the tested cell lines. Overall, compound 15 was the most active member with IC50 values of 5.30, 2.20, 5.50 µM against HepG-2, MCF-7 and HCT-116, respectively. Compounds 15 and 17b showed better anti-proliferative activities than doxorubicin and sorafenib against the three cancer cell lines. Additionally, compound 16e showed better anti-proliferative activities than doxorubicin and sorafenib against HepG-2 and HCT-116 but exhibited lower activity against MCF-7 cell line. In addition, the most promising members were further evaluated for their inhibitory activities against VEGFR-2. Compounds 15 and 17b potently inhibited VEGFR-2 at lower IC50 values of 1.09 and 1.19 µM, respectively, compared to sorafenib (IC50 = 1.27 µM). Moreover, docking studies were conducted to investigate the binding pattern of the synthesized compounds against the prospective molecular target VEGFR-2.
Collapse
|
20
|
El-Etrawy AAS, Sherbiny FF. Design, synthesis, biological evaluation and molecular modeling investigation of new N'-(2-Thiouracil-5-oyl) hydrazone derivatives as potential anti-breast cancer and anti-bacterial agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129993] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
El-Metwally SA, Abou-El-Regal MM, Eissa IH, Mehany ABM, Mahdy HA, Elkady H, Elwan A, Elkaeed EB. Discovery of thieno[2,3-d]pyrimidine-based derivatives as potent VEGFR-2 kinase inhibitors and anti-cancer agents. Bioorg Chem 2021; 112:104947. [PMID: 33964580 DOI: 10.1016/j.bioorg.2021.104947] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/05/2021] [Accepted: 04/22/2021] [Indexed: 11/26/2022]
Abstract
Vascular endothelial growth factor-2 (VEGFR-2) is considered one of the most important factors in tumor angiogenesis, and consequently a number of anticancer therapeutics have been developed to inhibit VEGFR-2 signaling. Accordingly, eighteen derivatives of thieno[2,3-d]pyrimidines having structural characteristics similar to VEGFR-2 inhibitors were designed and synthesized. Anticancer activities of the new derivatives were assessed against three human cancer cell lines (HCT-116, HepG2, and MCF-7) using MTT. Sorafenib was used as positive control. Compounds 17c-i, and 20b showed excellent anticancer activities against HCT-116 and HepG2 cell lines, while compounds 17i and 17g was found to be active against MCF-7 cell line. Compound 17f exhibited the highest cytotoxic activities against the examined cell lines, HCT-116 and HepG2, with IC50 values of 2.80 ± 0.16 and 4.10 ± 0.45 µM, respectively. Aiming at exploring the mechanism of action of these compounds, the most active cytotoxic derivatives were in vitro tested for their VEGFR-2 inhibitory activity. Compound 17f showed high activity against VEGFR-2 with an IC50 value of 0.23 ± 0.03 µM, that is equal to that of reference, sorafenib (IC50 = 0.23 ± 0.04 µM). Molecular docking studies also were performed to investigate the possible binding interactions of the target compounds with the active sites of VEGFR-2. The synthesized compounds were analyzed for their ADMET and toxicity properties. Results showed that most of the compounds have low to very low BBB penetration levels and they have non-inhibitory effect against CYP2D6. All compounds were predicted to be non-toxic against developmental toxicity potential model except compounds 17b and 20b.
Collapse
Affiliation(s)
- Souad A El-Metwally
- Department of Basic Science, Higher Technological Institute, 10th of Ramadan City 228, Egypt
| | - Mohsen M Abou-El-Regal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem Elkady
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Alaa Elwan
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Riyadh, Saudi Arabia; Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
22
|
Cui PL, Zhang D, Guo XM, Ji SJ, Jiang QM. Synthesis, antibacterial activities and molecular docking study of thiouracil derivatives containing oxadiazole moiety. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1904990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peng-Lei Cui
- College of Science, Hebei Agricultural University, Baoding, China
| | - Di Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Xiu-Min Guo
- College of Science, Hebei Agricultural University, Baoding, China
| | - Shu-Jing Ji
- College of Science, Hebei Agricultural University, Baoding, China
| | - Qing-Mei Jiang
- College of Science, Hebei Agricultural University, Baoding, China
| |
Collapse
|
23
|
Alesawy MS, Al-Karmalawy AA, Elkaeed EB, Alswah M, Belal A, Taghour MS, Eissa IH. Design and discovery of new 1,2,4-triazolo[4,3-c]quinazolines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000237. [PMID: 33226150 DOI: 10.1002/ardp.202000237] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 10/31/2020] [Indexed: 02/05/2023]
Abstract
A new series of 1,2,4-triazolo[4,3-c]quinazoline derivatives was designed and synthesized as Topo II inhibitors and DNA intercalators. The cytotoxic effect of the new members was evaluated in vitro against a group of cancer cell lines including HCT-116, HepG-2, and MCF-7. Compounds 14c , 14d , 14e , 14e , 15b , 18b , 18c , and 19b exhibited the highest activities with IC50 values ranging from 5.22 to 24.24 µM. Furthermore, Topo II inhibitory activities and DNA intercalating affinities of the most promising candidates were evaluated as a possible mechanism for the antiproliferative effect. The results of the Topo II inhibition and DNA binding tests were coherent with that of in vitro cytotoxicity. Additionally, the most promising compound 18c was analyzed in HepG-2 cells for its apoptotic effect and cell cycle arrest. It was found that 18c can induce apoptosis and arrest the cell cycle at the G2-M phase. Finally, molecular docking studies were carried out for the designed compounds against the crystal structure of the DNA-Topo II complex as a potential target to explore their binding modes. On the basis of these studies, it was hypothesized that the DNA binding and/or Topo II inhibition would participate in the noted cytotoxicity of the synthesized compounds.
Collapse
Affiliation(s)
- Mohamed S Alesawy
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamed Alswah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed Belal
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
24
|
Design, synthesis, biological assessment and molecular docking studies of some new 2-Thioxo-2,3-dihydropyrimidin-4(1H)-ones as potential anticancer and antibacterial agents. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129014] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Yousef RG, Sakr HM, Eissa IH, Mehany ABM, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Abulkhair HS, El-Adl K. New quinoxaline-2(1 H)-ones as potential VEGFR-2 inhibitors: design, synthesis, molecular docking, ADMET profile and anti-proliferative evaluations. NEW J CHEM 2021. [DOI: 10.1039/d1nj02509k] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Eleven new quinoxaline derivatives were designed and synthesized as modified VEGFR-2 inhibitors of our previous work.
Collapse
Affiliation(s)
- Reda G. Yousef
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Helmy M. Sakr
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ibrahim H. Eissa
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed. B. M. Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M. Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A. Elhendawy
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Mohamed M. Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA
- Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Hamada S. Abulkhair
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Nasr City 11884, Cairo, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Horus University – Egypt, International Costal Road, New Damietta, Egypt
| | - Khaled. El-Adl
- Faculty of Pharmacy (Boys), Pharmaceutical Medicinal Chemistry and Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| |
Collapse
|
26
|
Eissa IH, Ibrahim MK, Metwaly AM, Belal A, Mehany ABM, Abdelhady AA, Elhendawy MA, Radwan MM, ElSohly MA, Mahdy HA. Design, molecular docking, in vitro, and in vivo studies of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors with potential activity against hepatocellular carcinoma. Bioorg Chem 2020; 107:104532. [PMID: 33334586 DOI: 10.1016/j.bioorg.2020.104532] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/09/2023]
Abstract
A series of new VEGFR-2 inhibitors were designed, synthesized and evaluated for their anti-proliferative activities against hepatocellular carcinoma (HepG-2 cell line). Compound 29b (IC50 = 4.33 ± 0.2 µg/ml) was found to be the most potent derivative as it has showed to be more active than doxorubicin (IC50 = 4.50 ± 0.2 µg/ml) and 78% of sorafenib activity (IC50 = 3.40 ± 0.25 µg/ml). The inhibitory profiles against VEGFR-2 were also assessed for the most promising candidates (16b, 20c, 22b, 24a, 24b, 28c, 28e, 29a, 29b and 29c). Compounds 29b, 29c and 29a exhibited potent inhibitory activities towards VEGFR-2 at IC50 values of 3.1 ± 0.04, 3.4 ± 0.05 and 3.7 ± 0.06 µM, respectively, comparing sorafenib (IC50 = 2.4 ± 0.05 µM). Furthermorer, compound 29b induced apoptosis and arrested the cell cycle growth at G2/M phase. Additionally, in vivo antitumor experiments revealed that compounds 29b and 29c have significant tumor growth inhibition. The test of immuno-histochemical expression of activated caspase-3 revealed that there is a time-dependent increase in cleaved caspase-3 protein expression upon exposure of HepG-2 cells to compound 29b. Moreover, the fibroblastic proliferative index test revealed that compound 29b could attenuate liver fibrosis. Docking studies also supported the results concluded from the biological screening via prediction of the possible binding interactions of the target compounds with VEGFR-2 active sites using the crystal structure of VEGFR-2 downloaded from the Protein Data Bank, (PDB ID: 2OH4) using Discovery Studio 2.5 software. Further structural optimization of the most active candidates may serve as a useful strategy for getting new lead compounds in search for powerful and selective antineoplastic agents.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | - Mohammed K Ibrahim
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | | | - Mostafa A Elhendawy
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
27
|
Eissa IH, El-Helby AGA, Mahdy HA, Khalifa MM, Elnagar HA, Mehany AB, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, El-Adl K. Discovery of new quinazolin-4(3H)-ones as VEGFR-2 inhibitors: Design, synthesis, and anti-proliferative evaluation. Bioorg Chem 2020; 105:104380. [DOI: 10.1016/j.bioorg.2020.104380] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 10/12/2020] [Indexed: 02/05/2023]
|
28
|
El-Adl K, El-Helby AGA, Ayyad RR, Mahdy HA, Khalifa MM, Elnagar HA, Mehany ABM, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, and anti-proliferative evaluation of new quinazolin-4(3H)-ones as potential VEGFR-2 inhibitors. Bioorg Med Chem 2020; 29:115872. [PMID: 33214036 DOI: 10.1016/j.bmc.2020.115872] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022]
Abstract
Inhibiting VEGFR-2 has been set up as a therapeutic strategy for treatment of cancer. Thus, nineteen new quinazoline-4(3H)-one derivatives were designed and synthesized. Preliminary cytotoxicity studies of the synthesized compounds were evaluated against three human cancer cell lines (HepG-2, MCF-7 and HCT-116) using MTT assay method. Doxorubicin and sorafenib were used as positive controls. Five compounds were found to have promising cytotoxic activities against all cell lines. Compound 16f, containing a 2-chloro-5-nitrophenyl group, has emerged as the most active member. It was approximately 4.39-, 5.73- and 1.96-fold more active than doxorubicin and 3.88-, 5.59- and 1.84-fold more active than sorafenib against HepG2, HCT-116 and MCF-7 cells, respectively. The most active cytotoxic agents were further evaluated in vitro for their VEGFR-2 inhibitory activities. The results of in vitro VEGFR-2 inhibition were consistent with that of the cytotoxicity data. Molecular docking of these compounds into the kinase domain, moreover, supported the results.
Collapse
Affiliation(s)
- Khaled El-Adl
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt.
| | - Abdel-Ghany A El-Helby
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed M Khalifa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Hamdy A Elnagar
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed B M Mehany
- Zoology Department, Faculty of Science, Al-Azhar University, Cairo 11884, Egypt
| | - Ahmed M Metwaly
- Pharmacognosy Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Mostafa A Elhendawy
- Department of Agriculture Chemistry, Faculty of Agriculture, Damietta University, Damietta, Egypt; National Center for Natural Products Research, University of Mississippi, MS 38677, USA
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, MS 38677, USA; Department of Pharmaceutics and Drug Delivery, University of Mississippi, University, MS 38677, USA
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| |
Collapse
|
29
|
Design, efficient synthesis, docking studies, and anticancer evaluation of new quinoxalines as potential intercalative Topo II inhibitors and apoptosis inducers. Bioorg Chem 2020; 104:104255. [DOI: 10.1016/j.bioorg.2020.104255] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/15/2020] [Accepted: 08/28/2020] [Indexed: 12/11/2022]
|
30
|
El-Zahabi MA, Sakr H, El-Adl K, Zayed M, Abdelraheem AS, Eissa SI, Elkady H, Eissa IH. Design, synthesis, and biological evaluation of new challenging thalidomide analogs as potential anticancer immunomodulatory agents. Bioorg Chem 2020; 104:104218. [DOI: 10.1016/j.bioorg.2020.104218] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/04/2020] [Accepted: 08/22/2020] [Indexed: 01/06/2023]
|
31
|
Nasser AA, Eissa IH, Oun MR, El-Zahabi MA, Taghour MS, Belal A, Saleh AM, Mehany ABM, Luesch H, Mostafa AE, Afifi WM, Rocca JR, Mahdy HA. Discovery of new pyrimidine-5-carbonitrile derivatives as anticancer agents targeting EGFR WT and EGFR T790M. Org Biomol Chem 2020; 18:7608-7634. [PMID: 32959865 DOI: 10.1039/d0ob01557a] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A new series of pyrimidine-5-carbonitrile derivatives has been designed as ATP mimicking tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR). These compounds were synthesized and evaluated for their in vitro cytotoxic activities against a panel of four human tumor cell lines, namely colorectal carcinoma (HCT-116), hepatocellular carcinoma (HepG-2), breast cancer (MCF-7), and non-small cell lung cancer cells (A549). Five of the synthesized compounds, 11a, 11b, 12b, 15b and 16a, were found to exhibit moderate antiproliferative activity against the tested cell lines and were more active than the EGFR inhibitor erlotinib. In particular, compound 11b showed 4.5- to 8.4-fold erlotinib activity against HCT-116, HepG-2, MCF-7, and A549 cells with IC50 values of 3.37, 3.04, 4.14, and 2.4 μM respectively. Moreover, the most cytotoxic compounds that showed promising IC50 values against the four cancer cell lines were subjected to further investigation for their kinase inhibitory activities against EGFRWT and EGFRT790M using homogeneous time resolved fluorescence (HTRF) assay. Compound 11b was also found to be the most active compound against both EGFRWT and mutant EGFRT790M, exhibiting IC50 values of 0.09 and 4.03 μM, respectively. The cell cycle and apoptosis analyses revealed that compound 11b can arrest the cell cycle at the G2/M phase and induce significant apoptotic effects in HCT-116, HepG-2, and MCF-7 cells. Additionally, compound 11b upregulated the level of caspase-3 by 6.5 fold in HepG-2 when compared with the control. Finally, molecular docking studies were carried out to examine the binding mode of the synthesized compounds against the proposed targets; EGFRWT and EGFRT790M. Additional in silico ADMET studies were performed to explore drug-likeness properties.
Collapse
Affiliation(s)
- Ahmed A Nasser
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
El-Helby AGA, Sakr H, Ayyad RR, Mahdy HA, Khalifa MM, Belal A, Rashed M, El-Sharkawy A, Metwaly AM, Elhendawy MA, Radwan MM, ElSohly MA, Eissa IH. Design, synthesis, molecular modeling, in vivo studies and anticancer activity evaluation of new phthalazine derivatives as potential DNA intercalators and topoisomerase II inhibitors. Bioorg Chem 2020; 103:104233. [DOI: 10.1016/j.bioorg.2020.104233] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
|
33
|
Design, synthesis, molecular docking and antiproliferative activity of some novel benzothiazole derivatives targeting EGFR/HER2 and TS. Bioorg Chem 2020; 101:103976. [DOI: 10.1016/j.bioorg.2020.103976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
|
34
|
Ahmed MH, El‐Hashash MA, Marzouk MI, El‐Naggar AM. Synthesis and antitumor activity of some nitrogen heterocycles bearing pyrimidine moiety. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marwa H. Ahmed
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia, Cairo Egypt
| | - Maher A. El‐Hashash
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia, Cairo Egypt
| | - Magda I. Marzouk
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia, Cairo Egypt
| | - Abeer M. El‐Naggar
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia, Cairo Egypt
| |
Collapse
|
35
|
Screening of Some Sulfonamide and Sulfonylurea Derivatives as Anti-Alzheimer’s Agents Targeting BACE1 and PPARγ. J CHEM-NY 2020. [DOI: 10.1155/2020/1631243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
In the last few decades, Alzheimer’s disease (AD) has emerged as a serious global problem, and it has been considered as the most common type of dementia. PPARγ and beta-secretase 1 (BACE1) are considered as potential targets for Alzheimer’s disease management. In the same time, sulfonylureas and sulfonamides have been confirmed to have PPARγ agonistic activity. Aiming to obtain new anti-AD agents, thirty-five compounds of sulfonamide and sulfonylurea derivatives having the same essential pharmacophoric features of the reported PPARγ agonists have been subjected to virtual screening. Docking studies revealed that five compounds (1, 2, 3, 4, and 5) have promising affinities to PPARγ. They were also docked into the binding site of BACE1. In addition, ADMET and physicochemical properties of these compounds were considered. Additionally, these compounds were further evaluated against BACE1 and PPARγ. Compound 2 showed IC50 value of 1.64 μM against BACE1 and EC50 value of 0.289 μM against PPARγ.
Collapse
|
36
|
Li Y, Guo F, Guan Y, Chen T, Ma K, Zhang L, Wang Z, Su Q, Feng L, Liu Y, Zhou Y. Novel Anthraquinone Compounds Inhibit Colon Cancer Cell Proliferation via the Reactive Oxygen Species/JNK Pathway. Molecules 2020; 25:molecules25071672. [PMID: 32260423 PMCID: PMC7180728 DOI: 10.3390/molecules25071672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
A series of amide anthraquinone derivatives, an important component of some traditional Chinese medicines, were structurally modified and the resulting antitumor activities were evaluated. The compounds showed potent anti-proliferative activities against eight human cancer cell lines, with no noticeable cytotoxicity towards normal cells. Among the candidate compounds, 1-nitro-2-acyl anthraquinone-leucine (8a) showed the greatest inhibition of HCT116 cell activity with an IC50 of 17.80 μg/mL. In addition, a correlation model was established in a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using Comparative Molecular Field Analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). Moreover, compound 8a effectively killed tumor cells by reactive oxygen species (ROS)-JNK activation, causing an increase in ROS levels, JNK phosphorylation, and mitochondrial stress. Cytochrome c was then released into cytoplasm, which, in turn activated the cysteine protease pathway and ultimately induced tumor cell apoptosis, suggesting a potential use of this compound for colon cancer treatment.
Collapse
|
37
|
Abbass EM, Khalil AK, El‐Naggar AM. Eco‐friendly synthesis of novel pyrimidine derivatives as potential anticancer agents. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Eslam M. Abbass
- Chemistry Department, Faculty of ScienceAin shams University Abbassia, Cairo Egypt
| | - Ali Kh. Khalil
- Chemistry Department, Faculty of ScienceAin shams University Abbassia, Cairo Egypt
| | - Abeer M. El‐Naggar
- Chemistry Department, Faculty of ScienceAin shams University Abbassia, Cairo Egypt
| |
Collapse
|
38
|
El-Naggar AM, Eissa IH, Belal A, El-Sayed AA. Design, eco-friendly synthesis, molecular modeling and anticancer evaluation of thiazol-5(4 H)-ones as potential tubulin polymerization inhibitors targeting the colchicine binding site. RSC Adv 2020; 10:2791-2811. [PMID: 35496078 PMCID: PMC9048505 DOI: 10.1039/c9ra10094f] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/07/2020] [Indexed: 11/21/2022] Open
Abstract
In recent years, suppressing tubulin polymerization has been developed as a therapeutic approach for cancer treatment. Thus, new derivatives based on thiazol-5(4H)-ones have been designed and synthesized in an eco-friendly manner. The synthesized derivatives have the same essential pharmacophoric features of colchicine binding site inhibitors. The anti-proliferative activity of the new derivatives was evaluated on three human cancer cell lines (HCT-116, HepG-2, and MCF-7) using MTT assay procedure and colchicine was used as a positive control. Compounds 4f, 5a, 8f, 8g, and 8k showed superior antiproliferative activities against the three tested cell lines with IC50 values ranging from 2.89 to 9.29 μM. Further investigation for the most active cytotoxic agents as tubulin polymerization inhibitors was also performed in order to explore the mechanism of their anti-proliferative activity. Tubulin polymerization assay results were found to be comperable with the cytotoxicity results. Compounds 4f and 5a were the most potent tubulin polymerization inhibitors with an IC50 value of 9.33 and 9.52 nM, respectively. Further studies revealed the ability of 5a to induce apoptosis and arrest cell cycle growth at the G2/M phase. Molecular docking studies were also conducted to investigate possible binding interactions between the target compounds and the tubulin heterodimer active site. From these studies, it was concluded that inhibition of tubulin polymerization yields the reported cytotoxic activity.
Collapse
Affiliation(s)
- Abeer M El-Naggar
- Chemistry Department, Faculty of Science, Ain Shams University Abbassiya Cairo 11566 Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University Cairo 11884 Egypt
| | - Amany Belal
- Medicinal Chemistry Department, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62415 Egypt
| | - Amira A El-Sayed
- Chemistry Department, Faculty of Science, Ain Shams University Abbassiya Cairo 11566 Egypt
| |
Collapse
|
39
|
Mahdy HA, Ibrahim MK, Metwaly AM, Belal A, Mehany AB, El-Gamal KM, El-Sharkawy A, Elhendawy MA, Radwan MM, Elsohly MA, Eissa IH. Design, synthesis, molecular modeling, in vivo studies and anticancer evaluation of quinazolin-4(3H)-one derivatives as potential VEGFR-2 inhibitors and apoptosis inducers. Bioorg Chem 2020; 94:103422. [DOI: 10.1016/j.bioorg.2019.103422] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/03/2019] [Accepted: 11/03/2019] [Indexed: 01/07/2023]
|
40
|
Ghanem A, Emara HA, Muawia S, Abd El Maksoud AI, Al-Karmalawy AA, Elshal MF. Tanshinone IIA synergistically enhances the antitumor activity of doxorubicin by interfering with the PI3K/AKT/mTOR pathway and inhibition of topoisomerase II: in vitro and molecular docking studies. NEW J CHEM 2020; 44:17374-17381. [DOI: 10.1039/d0nj04088f] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Schematic diagram showing the pharmacophoric features of doxorubicin and tanshinone IIA as DNA intercalators, and their effects on cardiac tissues.
Collapse
Affiliation(s)
- Aml Ghanem
- Department of Molecular Biology
- Genetic Engineering and Biotechnology Research Institute
- University of Sadat City
- Sadat City
- Egypt
| | - Hamdy A. Emara
- Department of Plant Biotechnology
- Genetic Engineering and Biotechnology Research Institute
- University of Sadat City
- Sadat City
- Egypt
| | - Shaden Muawia
- Department of Molecular Biology
- Genetic Engineering and Biotechnology Research Institute
- University of Sadat City
- Sadat City
- Egypt
| | - Ahmed I. Abd El Maksoud
- Department of Industrial Biotechnology
- Genetic Engineering and Biotechnology Research Institute
- University of Sadat City
- Sadat City
- Egypt
| | - Ahmed A. Al-Karmalawy
- Department of Pharmaceutical Medicinal Chemistry
- Faculty of Pharmacy
- Horus University-Egypt
- New Damietta 34518
- Egypt
| | - Mohamed F. Elshal
- Department of Molecular Biology
- Genetic Engineering and Biotechnology Research Institute
- University of Sadat City
- Sadat City
- Egypt
| |
Collapse
|
41
|
Amano Y, Ohta S, Sakura KL, Ito T. Pemetrexed-conjugated hyaluronan for the treatment of malignant pleural mesothelioma. Eur J Pharm Sci 2019; 138:105008. [DOI: 10.1016/j.ejps.2019.105008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 01/27/2023]
|
42
|
Design, synthesis, anticancer evaluation and docking studies of new pyrimidine derivatives as potent thymidylate synthase inhibitors. Bioorg Chem 2019; 91:103159. [DOI: 10.1016/j.bioorg.2019.103159] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 02/08/2023]
|
43
|
Eissa IH, Metwaly AM, Belal A, Mehany ABM, Ayyad RR, El-Adl K, Mahdy HA, Taghour MS, El-Gamal KMA, El-Sawah ME, Elmetwally SA, Elhendawy MA, Radwan MM, ElSohly MA. Discovery and antiproliferative evaluation of new quinoxalines as potential DNA intercalators and topoisomerase II inhibitors. Arch Pharm (Weinheim) 2019; 352:e1900123. [PMID: 31463953 DOI: 10.1002/ardp.201900123] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022]
Abstract
In continuation of our previous work on the design and synthesis of topoisomerase II (Topo II) inhibitors and DNA intercalators, a new series of quinoxaline derivatives were designed and synthesized. The synthesized compounds were evaluated for their cytotoxic activities against a panel of three cancer cell lines (Hep G-2, Hep-2, and Caco-2). Compounds 18b, 19b, 23, 25b, and 26 showed strong potencies against all tested cell lines with IC50 values ranging from 0.26 ± 0.1 to 2.91 ± 0.1 µM, comparable with those of doxorubicin (IC50 values ranging from 0.65 ± 0.1 to 0.81 ± 0.1 µM). The most active compounds were further evaluated for their Topo II inhibitory activities and DNA intercalating affinities. Compounds 19b and 19c exhibited high activities against Topo II (IC50 = 0.97 ± 0.1 and 1.10 ± 0.1 µM, respectively) and bound the DNA at concentrations of 43.51 ± 2.0 and 49.11 ± 1.8 µM, respectively, whereas compound 28b exhibited a significant affinity to bind the DNA with an IC50 value of 37.06 ± 1.8 µM. Moreover, apoptosis and cell-cycle tests of the most promising compound 19b were carried out. It was found that 19b can significantly induce apoptosis in Hep G-2 cells. It has revealed cell-cycle arrest at the G2/M phase. Moreover, compound 19b downregulated the Bcl-2 levels, indicating its potential to enhance apoptosis. Furthermore, molecular docking studies were carried out against the DNA-Topo II complex to examine the binding patterns of the synthesized compounds.
Collapse
Affiliation(s)
- Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ahmed M Metwaly
- Department of Pharmacognosy, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Amany Belal
- Department of Medicinal Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.,Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Ahmed B M Mehany
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Rezk R Ayyad
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Khaled El-Adl
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Drug Technology, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Hazem A Mahdy
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohammed S Taghour
- Pharmaceutical Medicinal Chemistry Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Kamal M A El-Gamal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Mohamad E El-Sawah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Souad A Elmetwally
- Department of Basic Science, Higher Technological Institute, 10th of Ramadan City, Egypt
| | - Mostafa A Elhendawy
- National Center for Natural Products Research, University of Mississippi, Mississippi
| | - Mohamed M Radwan
- National Center for Natural Products Research, University of Mississippi, Mississippi.,Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Mahmoud A ElSohly
- National Center for Natural Products Research, University of Mississippi, Mississippi.,Department of Pharmaceutics and Drug Delivery, University of Mississippi, Mississippi, Mississippi
| |
Collapse
|
44
|
Dotsenko VV, Frolov KA, Chigorina EA, Khrustaleva AN, Bibik EY, Krivokolysko SG. New possibilities of the Mannich reaction in the synthesis of N-, S,N-, and Se,N-heterocycles. Russ Chem Bull 2019. [DOI: 10.1007/s11172-019-2476-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Jafari F, Baghayi H, Lavaee P, Hadizadeh F, Soltani F, Moallemzadeh H, Mirzaei S, Aboutorabzadeh SM, Ghodsi R. Design, synthesis and biological evaluation of novel benzo- and tetrahydrobenzo-[h]quinoline derivatives as potential DNA-intercalating antitumor agents. Eur J Med Chem 2019; 164:292-303. [DOI: 10.1016/j.ejmech.2018.12.060] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/08/2018] [Accepted: 12/24/2018] [Indexed: 12/15/2022]
|
46
|
Design, synthesis and anticancer evaluation of 1H-pyrazolo[3,4-d]pyrimidine derivatives as potent EGFRWT and EGFRT790M inhibitors and apoptosis inducers. Bioorg Chem 2018; 80:375-395. [DOI: 10.1016/j.bioorg.2018.06.017] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/07/2018] [Accepted: 06/11/2018] [Indexed: 02/01/2023]
|
47
|
Synthesis, docking, QSAR, ADMET and antimicrobial evaluation of new quinoline-3-carbonitrile derivatives as potential DNA-gyrase inhibitors. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Design, synthesis, molecular modeling and anti-proliferative evaluation of novel quinoxaline derivatives as potential DNA intercalators and topoisomerase II inhibitors. Eur J Med Chem 2018; 155:117-134. [DOI: 10.1016/j.ejmech.2018.06.004] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 01/01/2023]
|
49
|
Li XY, Liang JW, Mohamed O K, Zhang TJ, Lu GQ, Meng FH. Design, synthesis and biological evaluation of N-phenyl-(2,4-dihydroxypyrimidine-5-sulfonamido)benzoyl hydrazide derivatives as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur J Med Chem 2018; 154:267-279. [PMID: 29807332 DOI: 10.1016/j.ejmech.2018.05.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/12/2018] [Accepted: 05/14/2018] [Indexed: 02/01/2023]
Abstract
The Inhibition of cellular nucleotide metabolism to promote apoptosis is a key principle of cancer therapy. Thymidylate synthase (TS) is a key rate-limiting enzyme in the initiation of DNA synthesis in cell. Here, we presented two types of thymidylate synthase inhibitors, and, the key pharmacological properties of these two types of thymidylate synthase inhibitor were extracted and combined to design new compounds with inhibitory activity. Therefore, two series of 42 new compounds with the common biological effect of promoting apoptosis are designed and synthesized by combination principle. Most of the compounds had good anti-proliferative activity on A549, OVCAR-3, SGC7901 and MDA-MB-231 cells. The IC50 of compound 10l on A549 cells was 1.26 μM, which was better than that of pemetrexed (PTX, IC50 = 3.31 μM), furthermore, the selection index of compound 10l was higher than PTX. Flow cytometry analysis showed that compound 10l (the apoptosis rate is 39.4%) could induce A549 cell apoptosis and effectively inhibit tumor cell proliferation. Further western blot analysis showed that compound 10l could induce intrinsic apoptosis by activating caspase-3, increasing expression of cleaved caspase-3 and reducing the ratio of bcl-2/bax. All of this makes compound 10l to be a promising compound in future animal tumor models.
Collapse
Affiliation(s)
- Xin-Yang Li
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Jing-Wei Liang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Kamara Mohamed O
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Ting-Jian Zhang
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Guo-Qing Lu
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China
| | - Fan-Hao Meng
- School of Pharmacy, China Medical University, 77 Puhe Road, North New Area, Shenyang, 110122, China.
| |
Collapse
|
50
|
Ferrari S, Severi L, Pozzi C, Quotadamo A, Ponterini G, Losi L, Marverti G, Costi MP. Human Thymidylate Synthase Inhibitors Halting Ovarian Cancer Growth. VITAMINS AND HORMONES 2018; 107:473-513. [PMID: 29544641 DOI: 10.1016/bs.vh.2017.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Human thymidylate synthase (hTS) has an important role in DNA biosynthesis, thus it is essential for cell survival. TS is involved in the folate pathways, specifically in the de novo pyrimidine biosynthesis. Structure and functions are intimately correlated, account for cellular activity and, in a broader view, with in vivo mechanisms. hTS is a target for anticancer agents, some of which are clinical drugs. The understanding of the detailed mechanism of TS inhibition by currently used drugs and of the interaction with the mechanism of action of other anticancer agents can suggest new perspective of TS inhibition able to improve the anticancer effect and to overcome drug resistance. TS-targeting drugs in therapy today are inhibitors that bind at the active site and that mostly resemble the substrates. Nonsubstrate analogs offer an opportunity for allosteric binding and novel mode of inhibition in the cancer cells. This chapter illustrates the relationship among the large number of hTS actions at molecular and clinical levels, its role as a target for ovarian cancer therapy, in particular in cases of overexpression of hTS and other folate proteins such as those induced by platinum drug treatments, and address the potential combination of TS inhibitors with other suitable anticancer agents.
Collapse
Affiliation(s)
| | - Leda Severi
- University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | - Lorena Losi
- University of Modena and Reggio Emilia, Modena, Italy
| | | | | |
Collapse
|