1
|
Wu N, Yang Y, Tian G, An L, Liu S, Yan T, Yi M, Bao X. Synthesis, X-ray Crystal Structure, and Antimicrobial Studies of New Quinazolin-4(3 H)-one Derivatives Containing the 1,2,4-Triazolo[3,4- b][1,3,4]thiadiazole Moiety and 4-Piperidinyl Linker. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19277-19287. [PMID: 38038681 DOI: 10.1021/acs.jafc.3c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A total of 35 new quinazolinone derivatives bearing the 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole scaffold and the 4-piperidinyl linker were designed, prepared, and assessed for their antibacterial and antifungal activities. Among these derivatives, the chemical structure of compound F5 was clearly verified via single-crystal X-ray diffraction analysis. The experimental results revealed that some of the compounds displayed good even excellent inhibitory effects toward the tested phytopathogenic bacteria. For instance, compound F33 was capable of strongly inhibiting Xanthomonas oryzae pv. oryzae (Xoo) in vitro with an EC50 (half-maximal effective concentration) value of 4.1 μg/mL, about 16-fold more effective than the commercialized bactericide bismerthiazol. Significantly, this compound also effectively suppressed the proliferation of Xoo in the potted rice plants, showing a good in vivo protection efficacy of 47.6% at 200 μg/mL. Subsequently, the antibacterial mechanisms of compound F33 were explored by means of different biophysical and biochemical methods. Last, some of the compounds were found to possess relatively good antifungal activities in vitro, like compound F19 against Phytophthora nicotianae (with an inhibition rate of 67.2% at 50 μg/mL). In a word, the current experimental results imply that the 4-piperidinyl-bridged quinazolinone-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives possess potential as lead compounds for developing more efficient anti-Xoo bactericides.
Collapse
Affiliation(s)
- Nan Wu
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Yehui Yang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Guangmin Tian
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Lian An
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Songsong Liu
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Taisen Yan
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Mingyan Yi
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Xiaoping Bao
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
2
|
Zveaghintseva M, Stingaci E, Pogrebnoi S, Smetanscaia A, Valica V, Uncu L, Ch. Kravtsov V, Melnic E, Petrou A, Glamočlija J, Soković M, Carazo A, Mladěnka P, Poroikov V, Geronikaki A, Macaev FZ. Chromenol Derivatives as Novel Antifungal Agents: Synthesis, In Silico and In Vitro Evaluation. Molecules 2021; 26:molecules26144304. [PMID: 34299579 PMCID: PMC8307147 DOI: 10.3390/molecules26144304] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Herein we report the synthesis of some new 1H-1,2,4-triazole functionalized chromenols (3a-3n) via tandem reactions of 1-(alkyl/aryl)-2-(1H-1,2,4-triazole-1-yl) with salicylic aldehydes and the evaluation of their antifungal activity. In silico prediction of biological activity with computer program PASS indicate that the compounds have a high novelty compared to the known antifungal agents. We did not find any close analog among the over 580,000 pharmaceutical agents in the Cortellis Drug Discovery Intelligence database at the similarity cutoff of 70%. The evaluation of antifungal activity in vitro revealed that the highest activity was exhibited by compound 3k, followed by 3n. Their MIC values for different fungi were 22.1-184.2 and 71.3-199.8 µM, respectively. Twelve from fourteen tested compounds were more active than the reference drugs ketoconazole and bifonazole. The most sensitive fungus appeared to be Trichoderma viride, while Aspergillus fumigatus was the most resistant one. It was found that the presence of the 2-(tert-butyl)-2H-chromen-2-ol substituent on the 4th position of the triazole ring is very beneficial for antifungal activity. Molecular docking studies on C. albicans sterol 14α-demethylase (CYP51) and DNA topoisomerase IV were used to predict the mechanism of antifungal activities. According to the docking results, the inhibition of CYP51 is a putative mechanism of antifungal activity of the novel chromenol derivatives. We also showed that most active compounds have a low cytotoxicity, which allows us to consider them promising antifungal agents for the subsequent testing activity in in vivo assays.
Collapse
Affiliation(s)
- Marina Zveaghintseva
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Eugenia Stingaci
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Serghei Pogrebnoi
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
| | - Anastasia Smetanscaia
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Vladimir Valica
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Livia Uncu
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
| | - Victor Ch. Kravtsov
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Str. Academiei 5, MD-2028 Chișinău, Moldova; (V.C.K.); (E.M.)
| | - Elena Melnic
- Laboratory of Physical Methods of Solid State Investigation “Tadeusz Malinowski”, Institute of Applied Physics, Str. Academiei 5, MD-2028 Chișinău, Moldova; (V.C.K.); (E.M.)
| | - Anthi Petrou
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Jasmina Glamočlija
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Beograd, Serbia; (J.G.); (M.S.)
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11060 Beograd, Serbia; (J.G.); (M.S.)
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, 500 05 Hradec Králové, Czech Republic; (A.C.); (P.M.)
| | - Vladimir Poroikov
- Laboratory of Structure-Function Based Drug Design, Institute of Biomedical Chemistry, Pogodinskaya Str. 10, Bldg. 8, 119121 Moscow, Russia;
| | - Athina Geronikaki
- Department of Pharmacy, School of Health, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Correspondence: (A.G.); (F.Z.M.); Tel.: +30-2310-99-76-16 (A.G.)
| | - Fliur Z. Macaev
- Laboratory of Organic Synthesis, Institute of Chemistry, 3 Str. Academiei 3, MD-2028 Chișinău, Moldova; (M.Z.); (E.S.); (S.P.)
- Scientific Center for Drug Research, “Nicolae Testemițanu” State University of Medicine and Pharmacy, Bd. Stefan Cel Mare și Sfant 165, MD-2004 Chișinău, Moldova; (A.S.); (V.V.); (L.U.)
- Correspondence: (A.G.); (F.Z.M.); Tel.: +30-2310-99-76-16 (A.G.)
| |
Collapse
|
3
|
Li Y, Lin X, Hu J, Shuai J, Wei Y, He D. Synthesis and biological evaluation of stilbene-based peptoid mimics against the phytopathogenic bacterium Xanthomonas citri pv. citri. PEST MANAGEMENT SCIENCE 2021; 77:343-353. [PMID: 32741107 DOI: 10.1002/ps.6024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/26/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND The emergence of drug-resistant phytopathogenic bacteria and the need for new types of biological disease-control agents have accelerated efforts toward searching for alternative candidates with a low propensity for resistance development. In this study, a new series of stilbene-based peptoid mimics were synthesized, and their biological activities were evaluated against citrus pathogenic bacteria in vitro and in vivo. RESULTS Antibacterial bioassay results showed that the dicationic peptoid mimics 9a and 9b displayed excellent bioactivity against Xanthomonas citri pv. citri, with the minimum inhibitory concentration values of 25 μM, which were superior to those of commercial copper biocides Delite (200 μM) and Kasumin Bordeaux (100 μM). In vivo bioassay further confirmed their control efficacy against plant bacterial diseases. In addition, the antibacterial mechanism of action elucidated their membrane-disruption effects resulting in the leakage of the bacterial membranes, which was similar to that of antimicrobial peptides. Moreover, the inhibition effect on biofilm formation of peptoid mimics has also been demonstrated. CONCLUSION Stilbene-based peptoid mimics synthesized in this study showed promising antibacterial activity with a potent membrane-disruptive mechanism. The results suggested that stilbene-based peptoid mimics have the potential as a candidate new type of bactericide for citrus disease protection.
Collapse
Affiliation(s)
- Yan Li
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xingdong Lin
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jianqing Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jianbo Shuai
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yinan Wei
- Department of Chemistry, College of Arts and Sciences, University of Kentucky, Lexington, Kentucky, 40506, USA
| | - Daohang He
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
4
|
Du H, Ding M, Luo N, Shi J, Huang J, Bao X. Design, synthesis, crystal structure and in vitro antimicrobial activity of novel 1,2,4-triazolo[1,5-a]pyrimidine-containing quinazolinone derivatives. Mol Divers 2020; 25:711-722. [PMID: 32006295 DOI: 10.1007/s11030-020-10043-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Abstract
A series of novel 1,2,4-triazolo[1,5-a]pyrimidine-containing quinazolin-4(3H)-one derivatives (8a-8o) were designed, synthesized and assessed for their in vitro antibacterial and antifungal activities in agriculture. All the title compounds were completely characterized via 1H NMR, 13C NMR, HRMS and IR spectroscopic data. In particular, the molecular structure of compound 8f was further corroborated through a single-crystal X-ray diffraction measurement. The turbidimetric method revealed that some of the compounds displayed noticeable bactericidal potencies against the tested plant pathogenic bacteria. For example, compounds 8m, 8n and 8o possessed higher antibacterial efficacies in vitro against Xanthomonas oryzae pv. oryzae with EC50 values of 69.0, 53.3 and 58.9 μg/mL, respectively, as compared with commercialized agrobactericide bismerthiazol (EC50 = 91.4 μg/mL). Additionally, compound 8m displayed an EC50 value of 71.5 μg/mL toward Xanthomonas axonopodis pv. citri, comparable to control bismerthiazol (EC50 = 60.5 μg/mL). A preliminary structure-activity relationship (SAR) analysis was also conducted, based on the antibacterial results. Finally, some compounds were also found to have a certain antifungal efficacy in vitro at the concentration of 50 μg/mL.
Collapse
Affiliation(s)
- Huan Du
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Na Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jun Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jian Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
5
|
Wang X, Hu H, Zhao X, Chen M, Zhang T, Geng C, Mei Y, Lu A, Yang C. Novel quinazolin-4(3H)-one derivatives containing a 1,3,4-oxadiazole thioether moiety as potential bactericides and fungicides: Design, synthesis, characterization and 3D-QSAR analysis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
6
|
Wang X, Fu X, Chen M, Wang A, Yan J, Mei Y, Wang M, Yang C. Novel 1,3,5-thiadiazine-2-thione derivatives containing a hydrazide moiety: Design, synthesis and bioactive evaluation against phytopathogenic fungi in vitro and in vivo. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.03.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Fischer G. Recent advances in 1,2,4-triazolo[1,5-a]pyrimidine chemistry. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019. [DOI: 10.1016/bs.aihch.2018.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
8
|
Design and synthesis of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N'-phenylacethydrazide derivatives as potential fungicides. Mol Divers 2018; 23:573-583. [PMID: 30465251 DOI: 10.1007/s11030-018-9891-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/03/2018] [Indexed: 02/06/2023]
Abstract
A series of novel 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N'-phenylacethydrazide derivatives were designed, synthesized and evaluated for their antifungal activities against Fusarium graminearum (Fg), Rhizoctonia solani (Rs), Botrytis cinerea (Bc) and Colletotrichum capsici (Cc). The bioassay results in vitro showed that most of the title compounds exhibited impressive antifungal activities against the above plant fungi. Particularly, the compounds 5c, 5f, 5g, 5i, 5m and 5p displayed desirable anti-Rs activities, with the corresponding EC50 values of 0.37, 0.32, 0.49, 0.50, 0.46 and 0.45 µg/mL, respectively, which are superior to the positive control carbendazim (0.55 µg/mL). Further in vivo bioassay results showed that the anti-Rs activity of title compound 5f at 200 µg/mL reached 95.84% on detached rice leaves and 93.96% on rice plants. Featuring convenient synthesis, novel structures and desirable antifungal activity, these 2-(6-thioxo-1,3,5-thiadiazinan-3-yl)-N'-phenylacethydrazide derivatives could be further studied as the potential candidates of novel agricultural fungicides.
Collapse
|
9
|
Wang X, Wang M, Yan J, Chen M, Wang A, Mei Y, Si W, Yang C. Design, Synthesis and 3D-QSAR of New Quinazolin-4(3H
)-one Derivatives Containing a Hydrazide Moiety as Potential Fungicides. ChemistrySelect 2018. [DOI: 10.1002/slct.201801575] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Xiaobin Wang
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Mengqi Wang
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Jinghua Yan
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Min Chen
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - An Wang
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Yudong Mei
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Weijie Si
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| | - Chunlong Yang
- Jiangsu Key Laboratory of Pesticide Science; College of Sciences; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects; Ministry of Agriculture; Nanjing Agricultural University; China Xiao Wei St. Nanjing China 210095
| |
Collapse
|
10
|
Ombiro GS, Sawai T, Noutoshi Y, Nishina Y, Matsui H, Yamamoto M, Toyoda K, Ichinose Y. Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis. Microbiol Res 2018; 215:29-35. [DOI: 10.1016/j.micres.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 11/26/2022]
|
11
|
Fan Z, Shi J, Bao X. Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety. Mol Divers 2018; 22:657-667. [DOI: 10.1007/s11030-018-9821-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 03/07/2018] [Indexed: 01/30/2023]
|