1
|
Mukhtiar A, Ullah S, Yang B, Jiang YQ. Unlocking genetic potential: a review of the role of CRISPR/Cas technologies in rapeseed improvement. STRESS BIOLOGY 2025; 5:31. [PMID: 40332635 PMCID: PMC12058570 DOI: 10.1007/s44154-025-00229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 05/08/2025]
Abstract
Rapeseed (Brassica napus L.) is a globally important oil crop, providing edible vegetable oil and other valuable sources for humans. Being an allotetraploid, rapeseed has a complex genome that has undergone whole-genome duplication, making molecular breeding rather difficult. Fortunately, clustered regularly interspacedshort palindromic repeat (CRISPR)/CRISPR-associated (Cas) technologies have emerged as a potent tool in plant breeding, providing unprecedented accuracy as well as effectiveness in genome editing. This review focuses on the application and progresses of CRISPR/Cas technologies in rapeseed. We discussed the principles and mechanisms of CRISPR/Cas systems focusing on their use in rapeseed improvement such as targeted gene knockout, gene editing and transcriptional regulation. Furthermore, we summarized the regulatory frameworks governing CRISPR-edited crops as well as the challenges and opportunities for their commercialization and adoption. The potential advantages of CRISPR-mediated traits in rapeseed such as increased yield, disease and stress resistance and oil quality are discussed along with biosafety and environmental implications. The purpose of this review is to provide insights into the transformative role of CRISPR/Cas technologies in rapeseed breeding and its potential to address global agricultural challenges while ensuring sustainable crop production.
Collapse
Affiliation(s)
- Asif Mukhtiar
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production. College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Saeed Ullah
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production. College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Bo Yang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production. College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yuan-Qing Jiang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production. College of Life Sciences, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
2
|
Zhang Y, Liu Y, Zong Z, Guo L, Shen W, Zhao H. Integrative omics analysis reveals the genetic basis of fatty acid composition in Brassica napus seeds. Genome Biol 2025; 26:83. [PMID: 40176168 PMCID: PMC11966889 DOI: 10.1186/s13059-025-03558-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 03/25/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The fatty acid content represents a crucial quality trait in Brassica napus or rapeseed. Improvements in fatty acid composition markedly enhance the quality of rapeseed oil. RESULTS Here, we perform a genome-wide association study (GWAS) to identify quantitative trait locus (QTLs) associated with fatty acid content. We identify a total of seven stable QTLs and find two loci, qFA.A08 and qFA.A09.1, subjected to strong selection pressure. By transcriptome-wide association analysis (TWAS), we characterize 3295 genes that are significantly correlated with the composition of at least one fatty acid. To elucidate the genetic underpinnings governing fatty acid composition, we then employ a combination of GWAS, TWAS, and dynamic transcriptomic analysis during seed development, along with the POCKET algorithm. We predict six candidate genes that are associated with fatty acid composition. Experimental validation reveals that four genes (BnaA09.PYRD, BnaA08.PSK1, BnaA08.SWI3, and BnaC02.LTP15) positively modulate oleic acid content while negatively impact erucic acid content. Comparative analysis of transcriptome profiles suggests that BnaA09.PYRD may influence fatty acid composition by regulating energy metabolism during seed development. CONCLUSIONS This study establishes a genetic framework for a better understanding of plant oil biosynthesis in addition to providing theoretical foundation and valuable genetic resources for enhancing fatty acid composition in rapeseed breeding.
Collapse
Affiliation(s)
- Yuting Zhang
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Yunhao Liu
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Zhanxiang Zong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- Yazhouwan National Laboratory, Sanya, 572025, China.
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Wenhao Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Singh KP, Kumari P, Rai PK. GWAS for the identification of introgressed candidate genes of Sinapis alba with increased branching numbers in backcross lines of the allohexaploid Brassica. FRONTIERS IN PLANT SCIENCE 2024; 15:1381387. [PMID: 38978520 PMCID: PMC11228338 DOI: 10.3389/fpls.2024.1381387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024]
Abstract
Plant architecture is a crucial determinant of crop yield. The number of primary (PB) and secondary branches (SB) is particularly significant in shaping the architecture of Indian mustard. In this study, we analyzed a panel of 86 backcross introgression lines (BCILs) derived from the first stable allohexaploid Brassicas with 170 Sinapis alba genome-specific SSR markers to identify associated markers with higher PB and SB through association mapping. The structure analysis revealed three subpopulations, i.e., P1, P2, and P3, in the association panel containing a total of 11, 33, and 42 BCILs, respectively. We identified five novel SSR markers linked to higher PB and SB. Subsequently, we explored the 20 kb up- and downstream regions of these SSR markers to predict candidate genes for improved branching and annotated them through BLASTN. As a result, we predicted 47 complete genes within the 40 kb regions of all trait-linked markers, among which 35 were identified as candidate genes for higher PB and SB numbers in BCILs. These candidate genes were orthologous to ANT, RAMOSUS, RAX, MAX, MP, SEU, REV, etc., branching genes. The remaining 12 genes were annotated for additional roles using BLASTP with protein databases. This study identified five novel S. alba genome-specific SSR markers associated with increased PB and SB, as well as 35 candidate genes contributing to plant architecture through improved branching numbers. To the best of our knowledge, this is the first report of introgressive genes for higher branching numbers in B. juncea from S. alba.
Collapse
Affiliation(s)
- Kaushal Pratap Singh
- Plant Protection Unit, Indian Council of Agricultural Research (ICAR)-Directorate of Rapeseed Mustard Research, Sewar, Bharatpur, India
| | - Preetesh Kumari
- Genetics Division, ICAR-Indian Agricultural Research Institute, New Delhi, India
- School of Agriculture, Sanskriti University, Mathura - Delhi Highway, Chhata, Mathura, India
| | - Pramod Kumar Rai
- Plant Protection Unit, Indian Council of Agricultural Research (ICAR)-Directorate of Rapeseed Mustard Research, Sewar, Bharatpur, India
| |
Collapse
|
4
|
Havlickova L, He Z, Berger M, Wang L, Sandmann G, Chew YP, Yoshikawa GV, Lu G, Hu Q, Banga SS, Beaudoin F, Bancroft I. Genomics of predictive radiation mutagenesis in oilseed rape: modifying seed oil composition. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:738-750. [PMID: 37921406 PMCID: PMC10893948 DOI: 10.1111/pbi.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Rapeseed is a crop of global importance but there is a need to broaden the genetic diversity available to address breeding objectives. Radiation mutagenesis, supported by genomics, has the potential to supersede genome editing for both gene knockout and copy number increase, but detailed knowledge of the molecular outcomes of radiation treatment is lacking. To address this, we produced a genome re-sequenced panel of 1133 M2 generation rapeseed plants and analysed large-scale deletions, single nucleotide variants and small insertion-deletion variants affecting gene open reading frames. We show that high radiation doses (2000 Gy) are tolerated, gamma radiation and fast neutron radiation have similar impacts and that segments deleted from the genomes of some plants are inherited as additional copies by their siblings, enabling gene dosage decrease. Of relevance for species with larger genomes, we showed that these large-scale impacts can also be detected using transcriptome re-sequencing. To test the utility of the approach for predictive alteration of oil fatty acid composition, we produced lines with both decreased and increased copy numbers of Bna.FAE1 and confirmed the anticipated impacts on erucic acid content. We detected and tested a 21-base deletion expected to abolish function of Bna.FAD2.A5, for which we confirmed the predicted reduction in seed oil polyunsaturated fatty acid content. Our improved understanding of the molecular effects of radiation mutagenesis will underpin genomics-led approaches to more efficient introduction of novel genetic variation into the breeding of this crop and provides an exemplar for the predictive improvement of other crops.
Collapse
Affiliation(s)
| | - Zhesi He
- Department of BiologyUniversity of YorkYorkUK
| | | | - Lihong Wang
- Department of BiologyUniversity of YorkYorkUK
| | | | | | - Guilherme V. Yoshikawa
- Department of BiologyUniversity of YorkYorkUK
- Present address:
School of Agriculture, Food and Wine, Waite Research InstituteUniversity of AdelaideGlen OsmondSAAustralia
| | - Guangyuan Lu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
- College of Biology and Food EngineeringGuangdong University of Petrochemical TechnologyMaomingChina
| | - Qiong Hu
- Department of Rapeseed Genetics and Breeding, Oil Crops Research InstituteCAASWuhanChina
| | - Surinder S. Banga
- Department of Plant Breeding and GeneticsPunjab Agricultural UniversityLudhianaIndia
| | | | | |
Collapse
|
5
|
Tan Z, Han X, Dai C, Lu S, He H, Yao X, Chen P, Yang C, Zhao L, Yang QY, Zou J, Wen J, Hong D, Liu C, Ge X, Fan C, Yi B, Zhang C, Ma C, Liu K, Shen J, Tu J, Yang G, Fu T, Guo L, Zhao H. Functional genomics of Brassica napus: Progresses, challenges, and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:484-509. [PMID: 38456625 DOI: 10.1111/jipb.13635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/09/2024]
Abstract
Brassica napus, commonly known as rapeseed or canola, is a major oil crop contributing over 13% to the stable supply of edible vegetable oil worldwide. Identification and understanding the gene functions in the B. napus genome is crucial for genomic breeding. A group of genes controlling agronomic traits have been successfully cloned through functional genomics studies in B. napus. In this review, we present an overview of the progress made in the functional genomics of B. napus, including the availability of germplasm resources, omics databases and cloned functional genes. Based on the current progress, we also highlight the main challenges and perspectives in this field. The advances in the functional genomics of B. napus contribute to a better understanding of the genetic basis underlying the complex agronomic traits in B. napus and will expedite the breeding of high quality, high resistance and high yield in B. napus varieties.
Collapse
Affiliation(s)
- Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Xu Han
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hanzi He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qing-Yong Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Jun Zou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dengfeng Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Chao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bing Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangsheng Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
6
|
Liu Y, Du Z, Li Y, Lu S, Tang S, Guo L. Improving linolenic acid content in rapeseed oil by overexpression of CsFAD2 and CsFAD3 genes. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:9. [PMID: 38298744 PMCID: PMC10825089 DOI: 10.1007/s11032-024-01445-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
With the increasing public attention to the health benefit of polyunsaturated fatty acids (PUFAs) and demand for linolenic acid (C18:3), it is of great significance to increase the C18:3 content in our meal. As an oil crop with high content of C18:3, Camelina sativa has three homologous copies of FAD2 and three homologous copies FAD3. In this study, we seed-specifically overexpressed two Camelina sativa fatty acid desaturase genes, CsFAD2 and CsFAD3, in rapeseed cultivar Zhongshuang 9. The results show that C18:3 content in CsFAD2 and CsFAD3 overexpressed seeds is increased from 8.62% in wild-type (WT) to 10.62-12.95% and 14.54-26.16%, respectively. We crossed CsFAD2 and CsFAD3 overexpression lines, and stable homozygous digenic crossed lines were obtained. The C18:3 content was increased from 8.62% in WT to 28.46-53.57% in crossed overexpression lines. In addition, we found that the overexpression of CsFAD2 and CsFAD3 had no effect on rapeseed growth, development, and other agronomic traits. In conclusion, we successfully generated rapeseed germplasms with high C18:3 content by simultaneously overexpressing CsFAD2 and CsFAD3, which provides a feasible way for breeding high C18:3 rapeseed cultivars. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01445-0.
Collapse
Affiliation(s)
- Yunhao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zhuolin Du
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Ying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shan Tang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070 China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070 China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000 China
| |
Collapse
|
7
|
Amas JC, Thomas WJW, Zhang Y, Edwards D, Batley J. Key Advances in the New Era of Genomics-Assisted Disease Resistance Improvement of Brassica Species. PHYTOPATHOLOGY 2023:PHYTO08220289FI. [PMID: 36324059 DOI: 10.1094/phyto-08-22-0289-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Disease resistance improvement remains a major focus in breeding programs as diseases continue to devastate Brassica production systems due to intensive cultivation and climate change. Genomics has paved the way to understand the complex genomes of Brassicas, which has been pivotal in the dissection of the genetic underpinnings of agronomic traits driving the development of superior cultivars. The new era of genomics-assisted disease resistance breeding has been marked by the development of high-quality genome references, accelerating the identification of disease resistance genes controlling both qualitative (major) gene and quantitative resistance. This facilitates the development of molecular markers for marker assisted selection and enables genome editing approaches for targeted gene manipulation to enhance the genetic value of disease resistance traits. This review summarizes the key advances in the development of genomic resources for Brassica species, focusing on improved genome references, based on long-read sequencing technologies and pangenome assemblies. This is further supported by the advances in pathogen genomics, which have resulted in the discovery of pathogenicity factors, complementing the mining of disease resistance genes in the host. Recognizing the co-evolutionary arms race between the host and pathogen, it is critical to identify novel resistance genes using crop wild relatives and synthetic cultivars or through genetic manipulation via genome-editing to sustain the development of superior cultivars. Integrating these key advances with new breeding techniques and improved phenotyping using advanced data analysis platforms will make disease resistance improvement in Brassica species more efficient and responsive to current and future demands.
Collapse
Affiliation(s)
- Junrey C Amas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - William J W Thomas
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Yueqi Zhang
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - David Edwards
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| | - Jacqueline Batley
- School of Biological Sciences and The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia 6001
| |
Collapse
|
8
|
Jhingan S, Kumar A, Harloff HJ, Dreyer F, Abbadi A, Beckmann K, Obermeier C, Jung C. Direct access to millions of mutations by whole genome sequencing of an oilseed rape mutant population. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:866-880. [PMID: 36575585 DOI: 10.1111/tpj.16079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Induced mutations are an essential source of genetic variation in plant breeding. Ethyl methanesulfonate (EMS) mutagenesis has been frequently applied, and mutants have been detected by phenotypic or genotypic screening of large populations. In the present study, a rapeseed M2 population was derived from M1 parent cultivar 'Express' treated with EMS. Whole genomes were sequenced from fourfold (4×) pools of 1988 M2 plants representing 497 M2 families. Detected mutations were not evenly distributed and displayed distinct patterns across the 19 chromosomes with lower mutation rates towards the ends. Mutation frequencies ranged from 32/Mb to 48/Mb. On average, 284 442 single nucleotide polymorphisms (SNPs) per M2 DNA pool were found resulting from EMS mutagenesis. 55% of the SNPs were C → T and G → A transitions, characteristic for EMS induced ('canonical') mutations, whereas the remaining SNPs were 'non-canonical' transitions (15%) or transversions (30%). Additionally, we detected 88 725 high confidence insertions and deletions per pool. On average, each M2 plant carried 39 120 canonical mutations, corresponding to a frequency of one mutation per 23.6 kb. Approximately 82% of such mutations were located either 5 kb upstream or downstream (56%) of gene coding regions or within intergenic regions (26%). The remaining 18% were located within regions coding for genes. All mutations detected by whole genome sequencing could be verified by comparison with known mutations. Furthermore, all sequences are accessible via the online tool 'EMSBrassica' (http://www.emsbrassica.plantbreeding.uni-kiel.de), which enables direct identification of mutations in any target sequence. The sequence resource described here will further add value for functional gene studies in rapeseed breeding.
Collapse
Affiliation(s)
- Srijan Jhingan
- Plant Breeding Institute, Christian-Albrechts-Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Avneesh Kumar
- Plant Breeding Institute, Christian-Albrechts-Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| | - Felix Dreyer
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany
| | - Amine Abbadi
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany
| | - Katrin Beckmann
- NPZ Innovation GmbH, Hohenlieth-Hof, 24363, Holtsee, Germany
| | - Christian Obermeier
- Department of Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-Kiel University, Olshausenstrasse 40, 24098, Kiel, Germany
| |
Collapse
|
9
|
Zandberg JD, Fernandez CT, Danilevicz MF, Thomas WJW, Edwards D, Batley J. The Global Assessment of Oilseed Brassica Crop Species Yield, Yield Stability and the Underlying Genetics. PLANTS (BASEL, SWITZERLAND) 2022; 11:2740. [PMID: 36297764 PMCID: PMC9610009 DOI: 10.3390/plants11202740] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The global demand for oilseeds is increasing along with the human population. The family of Brassicaceae crops are no exception, typically harvested as a valuable source of oil, rich in beneficial molecules important for human health. The global capacity for improving Brassica yield has steadily risen over the last 50 years, with the major crop Brassica napus (rapeseed, canola) production increasing to ~72 Gt in 2020. In contrast, the production of Brassica mustard crops has fluctuated, rarely improving in farming efficiency. The drastic increase in global yield of B. napus is largely due to the demand for a stable source of cooking oil. Furthermore, with the adoption of highly efficient farming techniques, yield enhancement programs, breeding programs, the integration of high-throughput phenotyping technology and establishing the underlying genetics, B. napus yields have increased by >450 fold since 1978. Yield stability has been improved with new management strategies targeting diseases and pests, as well as by understanding the complex interaction of environment, phenotype and genotype. This review assesses the global yield and yield stability of agriculturally important oilseed Brassica species and discusses how contemporary farming and genetic techniques have driven improvements.
Collapse
Affiliation(s)
- Jaco D. Zandberg
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | | | - Monica F. Danilevicz
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - William J. W. Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - David Edwards
- Center for Applied Bioinformatics, School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
10
|
CRISPR/Cas9-Mediated Gene Editing of BnFAD2 and BnFAE1 Modifies Fatty Acid Profiles in Brassica napus. Genes (Basel) 2022; 13:genes13101681. [PMID: 36292566 PMCID: PMC9602045 DOI: 10.3390/genes13101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
Fatty acid (FA) composition determines the quality of oil from oilseed crops, and thus is a major target for genetic improvement. FAD2 (Fatty acid dehydrogenase 2) and FAE1 (fatty acid elongase 1) are critical FA synthetic genes, and have been the focus of genetic manipulation to alter fatty acid composition in oilseed plants. In this study, to improve the nutritional quality of rapeseed cultivar CY2 (about 50% oil content; of which 40% erucic acid), we generated novel knockout plants by CRISPR/Cas9 mediated genome editing of BnFAD2 and BnFAE1 genes. Two guide RNAs were designed to target one copy of the BnFAD2 gene and two copies of the BnFAE1 gene, respectively. A number of lines with mutations at three target sites of BnFAD2 and BnFAE1 genes were identified by sequence analysis. Three of these lines showed mutations in all three target sites of the BnFAD2 and BnFAE1 genes. Fatty acid composition analysis of seeds revealed that mutations at all three sites resulted in significantly increased oleic acid (70–80%) content compared with that of CY2 (20%), greatly reduced erucic acid levels and slightly decreased polyunsaturated fatty acids content. Our results confirmed that the CRISPR/Cas9 system is an effective tool for improving this important trait.
Collapse
|
11
|
Fu Y, Mason AS, Zhang Y, Yu H. Identification and Development of KASP Markers for Novel Mutant BnFAD2 Alleles Associated With Elevated Oleic Acid in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:715633. [PMID: 34381489 PMCID: PMC8350730 DOI: 10.3389/fpls.2021.715633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/21/2021] [Indexed: 05/25/2023]
Abstract
The fatty acid desaturase FAD2 genes are the main contributors to oleic acid content, and different FAD2 alleles can result in different oleic acid contents in rapeseed oil. Hence, identification of allelic variation in FAD2 is an extremely desirable breeding goal. By performing QTL mapping using 190 F2:3 lines genotyped by genome-wide single nucleotide polymorphism (SNP) markers assayed by the Brassica 60 K Infinium BeadChip Array, four quantitative trait loci (QTL) for C18:1 content were mapped on chromosomes A01, A05, A09 and C05 over 3 years in a population segregating for oleic acid content. Two BnFAD2 genes on A05 and C05 were anchored within the QTL intervals, explaining 45-52 and 15-44% of the observed variation for C18:1 content. Sequence polymorphisms between the corresponding coding regions of the parental lines found two single-nucleotide polymorphisms (SNPs) in BnFAD2.A05 and BnFAD2.C05, respectively, which led to the amino acid changes (C421T and G1073E) in the corresponding proteins. The mutation sites of Bnfad2.A05 and Bnfad2.C05 alleles were located within the second H-box and near the third H-box motif of the protein, respectively, and were found to be novel mutant alleles. Lines resulting from the combination of these two alleles contained up to 88% oleic acid in their seed oil, compared with 63% in wild-type controls. Two competitive allele-specific PCR (KASP) markers based on these two mutation sites were successfully developed and validated in segregating F2 populations. These markers will facilitate breeding for ultra-high seed oleic acid content in oilseed rape.
Collapse
Affiliation(s)
- Ying Fu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Yaofeng Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Huasheng Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
12
|
Affiliation(s)
- Andres Zambelli
- Facultad de Ciencias Agrarias Universidad Nacional de Mar del Plata Ruta Nacional 226 Km 73.5 Balcarce Provincia de Buenos Aires 7620 Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Ruta Nacional 226 Km 73.5 Balcarce 7620 Argentina
| |
Collapse
|
13
|
Gaikwad KB, Rani S, Kumar M, Gupta V, Babu PH, Bainsla NK, Yadav R. Enhancing the Nutritional Quality of Major Food Crops Through Conventional and Genomics-Assisted Breeding. Front Nutr 2020; 7:533453. [PMID: 33324668 PMCID: PMC7725794 DOI: 10.3389/fnut.2020.533453] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 09/03/2020] [Indexed: 01/14/2023] Open
Abstract
Nutritional stress is making over two billion world population malnourished. Either our commercially cultivated varieties of cereals, pulses, and oilseed crops are deficient in essential nutrients or the soils in which these crops grow are becoming devoid of minerals. Unfortunately, our major food crops are poor sources of micronutrients required for normal human growth. To overcome the problem of nutritional deficiency, greater emphasis should be laid on the identification of genes/quantitative trait loci (QTLs) pertaining to essential nutrients and their successful deployment in elite breeding lines through marker-assisted breeding. The manuscript deals with information on identified QTLs for protein content, vitamins, macronutrients, micro-nutrients, minerals, oil content, and essential amino acids in major food crops. These QTLs can be utilized in the development of nutrient-rich crop varieties. Genome editing technologies that can rapidly modify genomes in a precise way and will directly enrich the nutritional status of elite varieties could hold a bright future to address the challenge of malnutrition.
Collapse
Affiliation(s)
- Kiran B. Gaikwad
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sushma Rani
- Indian Council of Agricultural Research (ICAR)-National Institute for Plant Biotechnology, New Delhi, India
| | - Manjeet Kumar
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Vikas Gupta
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Prashanth H. Babu
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Naresh Kumar Bainsla
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Rajbir Yadav
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
14
|
Matuszczak M, Spasibionek S, Gacek K, Bartkowiak-Broda I. Cleaved amplified polymorphic sequences (CAPS) marker for identification of two mutant alleles of the rapeseed BnaA.FAD2 gene. Mol Biol Rep 2020; 47:7607-7621. [PMID: 32979163 PMCID: PMC7588397 DOI: 10.1007/s11033-020-05828-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022]
Abstract
Two mutants of winter rapeseed (Brassica napus L. var. oleifera) with an increased amount of oleic acid in seeds were created by chemical mutagenesis (HOR3-M10453 and HOR4-M10464). The overall performance of the mutated plants was much lower than that of wild-type cultivars. Multiple rounds of crossing with high-yielding double-low ("00") cultivars and breeding lines having valuable agronomic traits, followed by selection of high oleic acid genotypes is then needed to obtain new "00" varieties of rapeseed having high oleic acid content in seeds. To perform such selection, the specific codominant cleaved amplified polymorphic sequences (CAPS) marker was used. This marker was designed to detect the presence of two relevant point mutations in the desaturase gene BnaA.FAD2, and it was previously described and patented. The specific polymerase chain reaction product (732 bp) was digested using FspBI restriction enzyme that recognizes the 5'-C↓TAG-3' sequence which is common to both mutated alleles, thereby yielding band patterns specific for those alleles. The method proposed in the patent was redesigned, adjusted to specific laboratory conditions, and thoroughly tested. Different DNA extraction protocols were tested to optimize the procedure. Two variants of the CAPS method (with and without purification of amplified product) were considered to choose the best option. In addition, the ability of the studied marker to detect heterozygosity in the BnaA.FAD2 locus was also tested. Finally, we also presented some examples for the use of the new CAPS marker in the marker-assisted selection (MAS) during our breeding programs. The standard CTAB method of DNA extraction and the simplified, two-step (amplification/digestion) procedure for the CAPS marker are recommended. The marker was found to be useful for the detection of two mutated alleles of the studied BnaA.FAD2 desaturase gene and can potentially assure the breeders of the purity of their HOLL lines. However, it was also shown that it could not detect any other alleles or genes that were revealed to play a role in the regulation of oleic acid level.
Collapse
Affiliation(s)
- Marcin Matuszczak
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland.
| | - Stanisław Spasibionek
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| | - Katarzyna Gacek
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| | - Iwona Bartkowiak-Broda
- Research Division in Poznań, Plant Breeding and Acclimatization Institute, National Research Institute, Strzeszyńska 36, Poznań, Poland
| |
Collapse
|
15
|
Huang H, Cui T, Zhang L, Yang Q, Yang Y, Xie K, Fan C, Zhou Y. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2401-2411. [PMID: 32448919 DOI: 10.1007/s00122-020-03607-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 05/12/2020] [Indexed: 05/05/2023]
Abstract
Genomic editing with CRISPR/Cas9 system can simultaneously modify multiple copies of theBnaFAD2 gene to develop novel variations in fatty acids profiles in polyploidy rapeseed. Fatty acid composition affects edible and processing quality of vegetable oil and has been one of the primary targets for genetic modification in oilseed crops including rapeseed (Brassica napus). Fatty acid desaturase 2 gene, FAD2, is a key player that affects three major fatty acids, namely oleic, linoleic and linolenic acid, in oilseed plants. Previously, we showed that there are four copies of BnaFAD2 in allotetraploid rapeseed. In this study, we further established spatiotemporal expression pattern of each copy of BnaFAD2 using published RNA-seq data. Genomic editing technology based on CRISPR/Cas9 system was used to mutate all the copies of BnaFAD2 to create novel allelic variations in oleic acid and other fatty acid levels. A number of mutants at two targeting sites were identified, and the phenotypic variation in the mutants was systematically evaluated. The oleic acid content in the seed of the mutants increased significantly with the highest exceeding 80% compared with wild type of 66.43%, while linoleic and linolenic acid contents decreased accordingly. Mutations on BnaFAD2.A5 caused more dramatic changes of fatty acid profile than the mutations on BnaFAD2.C5 alleles that were identified with gene editing technique for the first time. Moreover, combining different mutated alleles of BnaFAD2 can even broaden the variation more dramatically. It was found that effects of different mutation types at BnaFAD2 alleles on oleic levels varied, indicating a possibility to manipulate fatty acid levels by precise mutation at specific region of a gene.
Collapse
Affiliation(s)
- Huibin Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingting Cui
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
16
|
Tian Y, Chen K, Li X, Zheng Y, Chen F. Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2. BMC PLANT BIOLOGY 2020; 20:233. [PMID: 32450806 PMCID: PMC7249356 DOI: 10.1186/s12870-020-02441-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/11/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Tobacco seed oil could be used as an appropriate feedstock for biodiesel production. However, the high linoleic acid content of tobacco seed oil makes it susceptible to oxidation. Altering the fatty acid profile by increasing the content of oleic acid could improve the properties of biodiesel produced from tobacco seed oil. RESULTS Four FAD2 genes, NtFAD2-1a, NtFAD2-1b, NtFAD2-2a, and NtFAD2-2b, were identified in allotetraploid tobacco genome. Phylogenetic analysis of protein sequences showed that NtFAD2-1a and NtFAD2-2a originated from N. tomentosiformis, while NtFAD2-1b and NtFAD2-2b from N. sylvestris. Expression analysis revealed that NtFAD2-2a and NtFAD2-2b transcripts were more abundant in developing seeds than in other tissues, while NtFAD2-1a and NtFAD2-1b showed low transcript levels in developing seed. Phylogenic analysis showed that NtFAD2-2a and NtFAD2-2b were seed-type FAD2 genes. Heterologous expression in yeast cells demonstrated that both NtFAD2-2a and NtFAD2-2b protein could introduce a double bond at the Δ12 position of fatty acid chain. The fatty acid profile analysis of tobacco fad2-2 mutant seeds derived from CRISPR-Cas9 edited plants showed dramatic increase of oleic acid content from 11% to over 79%, whereas linoleic acid decreased from 72 to 7%. In addition, the fatty acid composition of leaf was not affected in fad2-2 mutant plants. CONCLUSION Our data showed that knockout of seed-type FAD2 genes in tobacco could significantly increase the oleic acid content in seed oil. This research suggests that CRISPR-Cas9 system offers a rapid and highly efficient method in the tobacco seed lipid engineering programs.
Collapse
Affiliation(s)
- Yinshuai Tian
- College of Landscape and Ecological Engineering, Hebei University of Engineering, No.19 Taiji Road, Economic and technological development area, Handan, 056038, Hebei, China
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chuanda Road, Shuangliu district, Chengdu, 610207, Sichuan, China
| | - Kai Chen
- College of Landscape and Ecological Engineering, Hebei University of Engineering, No.19 Taiji Road, Economic and technological development area, Handan, 056038, Hebei, China
| | - Xiao Li
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou district, Chengdu, 610065, Sichuan, China
| | - Yunpu Zheng
- School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, No.19 Taiji Road, Economic and technological development area, Handan, 056038, Hebei, China
| | - Fang Chen
- Institute of New Energy and Low-carbon Technology, Sichuan University, Chuanda Road, Shuangliu district, Chengdu, 610207, Sichuan, China.
- Key Laboratory of Bio-resources and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, No.29 Wangjiang Road, Wuhou district, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
17
|
Kaur H, Wang L, Stawniak N, Sloan R, van Erp H, Eastmond P, Bancroft I. The impact of reducing fatty acid desaturation on the composition and thermal stability of rapeseed oil. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:983-991. [PMID: 31553825 PMCID: PMC7061866 DOI: 10.1111/pbi.13263] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/11/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
Oilseed rape (Brassica napus) is the third largest source of vegetable oil globally. In addition to food uses, there are industrial applications that exploit the ability of the species to accumulate the very-long-chain fatty acid (VLCFA) erucic acid in its seed oil, controlled by orthologues of FATTY ACID ELONGASE 1 (Bna.FAE1.A8 and Bna.FAE1.C3). The proportion of polyunsaturated fatty acids (PUFAs) in rapeseed oil is predicted to affect its thermal stability and is controlled by orthologues of FATTY ACID DESATURASE 2, particularly Bna.FAD2.C5. Our aim was to develop rapeseed lines combining high erucic and low PUFA characters and to assess the impact on thermal stability of the oil they produce. The new type of rapeseed oil (high erucic low polyunsaturate; HELP) contained a substantially greater proportion of erucic acid (54%) compared with high erucic rapeseed oil (46%). Although the total VLCFA content was greater in oil from HELP lines (64%) than from high erucic rapeseed (57%), analysis of triacylglycerol composition showed negligible incorporation of VLCFAs into the sn-2 position. Rancimat analysis showed that the thermal stability of rapeseed oil was improved greatly as a consequence of reduction of PUFA content, from 3.8 and 4.2 h in conventional low erucic and high erucic rapeseed oils, respectively, to 11.3 and 16.4 h in high oleic low PUFA (HOLP) and HELP oils, respectively. Our results demonstrate that engineering of the lipid biosynthetic pathway of rapeseed, using traditional approaches, enables the production of renewable industrial oils with novel composition and properties.
Collapse
Affiliation(s)
- Harjeevan Kaur
- University of YorkHeslingtonYorkUK
- Present address:
Punjab Agricultural UniversityLudhianaIndia
| | | | | | | | | | | | | |
Collapse
|
18
|
Salimonti A, Carbone F, Romano E, Pellegrino M, Benincasa C, Micali S, Tondelli A, Conforti FL, Perri E, Ienco A, Zelasco S. Association Study of the 5'UTR Intron of the FAD2-2 Gene With Oleic and Linoleic Acid Content in Olea europaea L. FRONTIERS IN PLANT SCIENCE 2020; 11:66. [PMID: 32117401 PMCID: PMC7031445 DOI: 10.3389/fpls.2020.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/16/2020] [Indexed: 05/21/2023]
Abstract
Cultivated olive (Olea europaea L. subsp. europaea var. europaea) is the most ancient and spread tree crop in the Mediterranean basin. An important quality trait for the extra virgin olive oil is the fatty acid composition. In particular, a high content of oleic acid and low of linoleic, linolenic, and palmitic acid is considered very relevant in the health properties of the olive oil. The oleate desaturase enzyme encoding-gene (FAD2-2) is the main responsible for the linoleic acid content in the olive fruit mesocarp and, therefore, in the olive oil revealing to be the most important candidate gene for the linoleic acid biosynthesis. In this study, an in silico and structural analysis of the 5'UTR intron of the FAD2-2 gene was conducted with the aim to explore the natural sequence variability and its role in the gene expression regulation. In order to identify functional allele variants, the 5'UTR intron was isolated and partially sequenced in 97 olive cultivars. The sequence analysis allowed to find a 117-bp insertion including two long duplications never found before in FAD2-2 genes in olive and the existence of many intron-mediated enhancement (IME) elements. The sequence polymorphism analysis led to detect 39 SNPs. The candidate gene association study conducted for oleic and linoleic acids content revealed seven SNPs and one indel significantly associated able to explain a phenotypic variation ranging from 7% to 16% among the years. Our study highlighted new structural variants within the FAD2-2 gene in olive, putatively involved in the regulation mechanisms of gene expression associated with the variation of the content of oleic and linoleic acid.
Collapse
Affiliation(s)
- Amelia Salimonti
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Fabrizio Carbone
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Elvira Romano
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | | | - Cinzia Benincasa
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | - Sabrina Micali
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Roma, Italy
| | - Alessandro Tondelli
- Research Centre for Genomics and Bioinformatics, CREA, Fiorenzuola D’Arda, Italy
| | - Francesca L. Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Enzo Perri
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
| | | | - Samanta Zelasco
- Research Centre for Olive, Citrus and Tree Fruit, CREA, Rende, Italy
- *Correspondence: Samanta Zelasco,
| |
Collapse
|
19
|
Zhao Q, Wu J, Cai G, Yang Q, Shahid M, Fan C, Zhang C, Zhou Y. A novel quantitative trait locus on chromosome A9 controlling oleic acid content in Brassica napus. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:2313-2324. [PMID: 31037811 PMCID: PMC6835171 DOI: 10.1111/pbi.13142] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
One of the most important goals in the breeding of oilseed crops, including Brassica napus, is to improve the quality of edible vegetable oil, which is mainly determined by the seed fatty acid composition, particularly the C18:1 content. Previous studies have indicated that the C18:1 content is a polygenic trait, and no stable quantitative trait loci (QTLs) except for FAD2 have been reported. By performing a GWAS using 375 low erucic acid B. napus accessions genotyped with the Brassica 60K SNP array and constructing a high-density SNP-based genetic map of a 150 DH population, we identified a novel QTL on the A9 chromosome. The novel locus could explain 11.25%, 5.72% and 6.29% of phenotypic variation during three consecutive seasons and increased the C18:1 content by approximately 3%-5%. By fine mapping and gene expression analysis, we found three potential candidate genes and verified the fatty acids in a homologous gene mutant of Arabidopsis. A metal ion-binding protein was found to be the most likely candidate gene in the region. Thus, the C18:1 content can be further increased to about 80% with this novel locus together with FAD2 mutant allele without compromise of agronomic performance. A closely linked marker, BnA129, for this novel QTL (OLEA9) was developed so that we can effectively identify materials with high C18:1 content at an early growth stage by marker-assisted selection. Our results may also provide new insight for understanding the complex genetic mechanism of fatty acid metabolism.
Collapse
Affiliation(s)
- Qing Zhao
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jian Wu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Present address:
Jiangsu Provincial Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhou225009JiangsuChina
| | - Guangqin Cai
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Qingyong Yang
- Hubei Key Laboratory of Agricultural BioinformaticsCollege of InformaticsHuazhong Agricultural UniversityWuhanHubeiChina
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
20
|
Liu F, Ma L, Wang Y, Li Y, Zhang X, Xue F, Nie X, Zhu Q, Sun J. GhFAD2-3 is required for anther development in Gossypium hirsutum. BMC PLANT BIOLOGY 2019. [PMID: 31500565 DOI: 10.1186/s12870-019-2010-2019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND In higher plants, the FAD2 gene encodes the microsomal oleate Δ12-desaturase, one of the key enzymes essential for the biosynthesis of the polyunsaturated lipids that serve many important functions in plant development and stress responses. FAD2 catalyzes the first step, in the biosynthesis of the polyunsaturated fatty acids (PUFAs) found in the cell membrane and cell wall, and it is thus of great importance to investigate the regulatory role of FAD2 in anther development. RESULTS We reported the molecular characterization of the cotton (Gossypium hirsutum) GhFAD2 gene family and the essential role of GhFAD2-3 in cotton anther development. G. hirsutum contains four pairs of homoeologous FAD2 genes (GhFAD2-1 to GhFAD2-4). GhFAD2-3 is ubiquitously and relatively highly expressed in all analyzed tissues, particularly in anthers. Specific inhibition of GhFAD2-3 using the RNA interference approach resulted in male sterility due to impaired anther development at the stages from meiosis to maturation. The cellular phenotypic abnormality observed at the meiosis stage of the GhFAD2-3 silenced plant (fad2-3) coincides with the significant reduction of C18:2 in anthers at the same stage. Compared with that of the wild type (WT), the content of C18:1 was 41.48%, which increased by 5 fold in the fad2-3 anther at the pollen maturation stage. Moreover, the ratio of monounsaturated to polyunsaturated fatty acid was 5.43 in fad2-3 anther, which was much higher than that of the WT (only 0.39). Through compositional analysis of anthers cuticle and transcriptome data, we demonstrated it was unfavorable to the development of anther by regulating GhFAD2-3 expression level to increase the oleic acid content. CONCLUSIONS Our work demonstrated the importance of C18:2 and/or C18:3 in the development of the pollen exine and anther cuticle in cotton and provided clue for further investigation of the physiological significance of the fatty acid composition for plant growth and development.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Lihong Ma
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Youwu Wang
- College of Plant Science and Technology, Tarim University, Alar, Xinjiang, 843300, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xinhui Nie
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia.
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
21
|
Liu F, Ma L, Wang Y, Li Y, Zhang X, Xue F, Nie X, Zhu Q, Sun J. GhFAD2-3 is required for anther development in Gossypium hirsutum. BMC PLANT BIOLOGY 2019; 19:393. [PMID: 31500565 PMCID: PMC6734329 DOI: 10.1186/s12870-019-2010-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/30/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND In higher plants, the FAD2 gene encodes the microsomal oleate Δ12-desaturase, one of the key enzymes essential for the biosynthesis of the polyunsaturated lipids that serve many important functions in plant development and stress responses. FAD2 catalyzes the first step, in the biosynthesis of the polyunsaturated fatty acids (PUFAs) found in the cell membrane and cell wall, and it is thus of great importance to investigate the regulatory role of FAD2 in anther development. RESULTS We reported the molecular characterization of the cotton (Gossypium hirsutum) GhFAD2 gene family and the essential role of GhFAD2-3 in cotton anther development. G. hirsutum contains four pairs of homoeologous FAD2 genes (GhFAD2-1 to GhFAD2-4). GhFAD2-3 is ubiquitously and relatively highly expressed in all analyzed tissues, particularly in anthers. Specific inhibition of GhFAD2-3 using the RNA interference approach resulted in male sterility due to impaired anther development at the stages from meiosis to maturation. The cellular phenotypic abnormality observed at the meiosis stage of the GhFAD2-3 silenced plant (fad2-3) coincides with the significant reduction of C18:2 in anthers at the same stage. Compared with that of the wild type (WT), the content of C18:1 was 41.48%, which increased by 5 fold in the fad2-3 anther at the pollen maturation stage. Moreover, the ratio of monounsaturated to polyunsaturated fatty acid was 5.43 in fad2-3 anther, which was much higher than that of the WT (only 0.39). Through compositional analysis of anthers cuticle and transcriptome data, we demonstrated it was unfavorable to the development of anther by regulating GhFAD2-3 expression level to increase the oleic acid content. CONCLUSIONS Our work demonstrated the importance of C18:2 and/or C18:3 in the development of the pollen exine and anther cuticle in cotton and provided clue for further investigation of the physiological significance of the fatty acid composition for plant growth and development.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Lihong Ma
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Youwu Wang
- College of Plant Science and Technology, Tarim University, Alar, Xinjiang, 843300, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Fei Xue
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Xinhui Nie
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China
| | - Qianhao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, 2601, Australia.
| | - Jie Sun
- Key Laboratory of Oasis Eco-agriculture, College of Agriculture, Shihezi University, Shihezi, Xinjiang, 832000, China.
| |
Collapse
|
22
|
Bai S, Engelen S, Denolf P, Wallis JG, Lynch K, Bengtsson JD, Van Thournout M, Haesendonckx B, Browse J. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:33-41. [PMID: 30536486 PMCID: PMC6604813 DOI: 10.1111/tpj.14195] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/16/2018] [Accepted: 11/30/2018] [Indexed: 05/05/2023]
Abstract
Producing healthy, high-oleic oils and eliminating trans-fatty acids from foods are two goals that can be addressed by reducing activity of the oleate desaturase, FAD2, in oilseeds. However, it is essential to understand the consequences of reducing FAD2 activity on the metabolism, cell biology and physiology of oilseed crop plants. Here, we translate knowledge from studies of fad2 mutants in Arabidopsis (Arabidopsis thaliana) to investigate the limits of non-GMO approaches to maximize oleic acid in the seed oil of canola (Brassica napus), a species that expresses three active FAD2 isozymes. A series of hypomorphic and null mutations in the FAD2.A5 isoform were characterized in yeast (Saccharomyes cerevisiae). Then, four of these were combined with null mutations in the other two isozymes, FAD2.C5 and FAD2.C1. The resulting mutant lines contained 71-87% oleic acid in their seed oil, compared with 62% in wild-type controls. All the mutant lines grew well in a greenhouse, but in field experiments we observed a clear demarcation in plant performance. Mutant lines containing less than 80% oleate in the seed oil were indistinguishable from wild-type controls in growth parameters and seed oil content. By contrast, lines with more than 80% oleate in the seed oil had significantly lower seedling establishment and vigor, delayed flowering and reduced plant height at maturity. These lines also had 7-11% reductions in seed oil content. Our results extend understanding of the B. napusFAD2 isozymes and define the practical limit to increasing oil oleate content in this crop species.
Collapse
Affiliation(s)
- Shuangyi Bai
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, WA 99164-6340, USA
| | - Steven Engelen
- BASF Agricultural Solutions Belgium N.V., Technologiepark 101, B-9052 Ghent, Belgium
| | - Peter Denolf
- BASF Agricultural Solutions Belgium N.V., Technologiepark 101, B-9052 Ghent, Belgium
| | - James G. Wallis
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, WA 99164-6340, USA
| | - Katherine Lynch
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, WA 99164-6340, USA
| | - Jesse D. Bengtsson
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, WA 99164-6340, USA
| | - Michel Van Thournout
- BASF Agricultural Solutions Belgium N.V., Technologiepark 101, B-9052 Ghent, Belgium
| | - Boris Haesendonckx
- BASF Agricultural Solutions Belgium N.V., Technologiepark 101, B-9052 Ghent, Belgium
| | - John Browse
- Institute of Biological Chemistry, Clark Hall, Washington State University, Pullman, WA 99164-6340, USA
- For correspondence ()
| |
Collapse
|
23
|
Lu S, Aziz M, Sturtevant D, Chapman KD, Guo L. Heterogeneous Distribution of Erucic Acid in Brassica napus Seeds. FRONTIERS IN PLANT SCIENCE 2019; 10:1744. [PMID: 32082336 PMCID: PMC7001127 DOI: 10.3389/fpls.2019.01744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/11/2019] [Indexed: 05/03/2023]
Abstract
Brassica napus (B. napus) is the world's most widely grown temperate oilseed crop. Although breeding for human consumption has led to removal of erucic acid from refined canola oils, there is renewed interest in the industrial uses of erucic acid derived from B. napus, and there is a rich germplasm available for use. Here, low- and high-erucic acid accessions of B. napus seeds were examined for the distribution of erucic acid-containing lipids and the gene transcripts encoding the enzymes involved in pathways for its incorporation into triacylglycerols (TAGs) across the major tissues of the seeds. In general, the results indicate that a heterogeneous distribution of erucic acid across B. napus seed tissues was contributed by two isoforms (out of six) of FATTY ACYL COA ELONGASE (FAE1) and a combination of phospholipid:diacylglycerol acyltransferase (PDAT)- and diacylglycerol acyltransferase (DGAT)-mediated incorporation of erucic acid into TAGs in cotyledonary tissues. An absence of the expression of these two FAE1 isoforms accounted for the absence of erucic acid in the TAGs of the low-erucic accession.
Collapse
Affiliation(s)
- Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mina Aziz
- Center for Plant Lipid Research and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
| | - Drew Sturtevant
- Center for Plant Lipid Research and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Kent D. Chapman
- Center for Plant Lipid Research and Department of Biological Sciences, University of North Texas, Denton, TX, United States
- BioDiscovery Institute, University of North Texas, Denton, TX, United States
- *Correspondence: Kent D. Chapman, ; Liang Guo,
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Kent D. Chapman, ; Liang Guo,
| |
Collapse
|
24
|
Wayne LL, Gachotte DJ, Walsh TA. Transgenic and Genome Editing Approaches for Modifying Plant Oils. Methods Mol Biol 2019; 1864:367-394. [PMID: 30415347 DOI: 10.1007/978-1-4939-8778-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vegetable oils are important for human and animal nutrition and as renewable resources for chemical feedstocks. We provide an overview of transgenic and genome editing approaches for modifying plant oils, describing useful model and crop systems and different strategies for transgenic modifications. We also describe new genome editing approaches that are beginning to be applied to oilseed plants and crops. These approaches are illustrated with examples for modifying the nutritional quality of vegetable oils by altering fatty acid desaturation, producing non-native fatty acids in oilseeds, and enhancing the overall accumulation of oil in seeds and leaves.
Collapse
Affiliation(s)
- Laura L Wayne
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Johnston, IA, USA.
| | - Daniel J Gachotte
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| | - Terence A Walsh
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| |
Collapse
|
25
|
Wang Z, Bao LL, Zhao FY, Tang MQ, Chen T, Li Y, Wang BX, Fu B, Fang H, Li GY, Cao J, Ding LN, Zhu KM, Liu SY, Tan XL. BnaMPK3 Is a Key Regulator of Defense Responses to the Devastating Plant Pathogen Sclerotinia sclerotiorum in Oilseed Rape. FRONTIERS IN PLANT SCIENCE 2019; 10:91. [PMID: 30800136 PMCID: PMC6376111 DOI: 10.3389/fpls.2019.00091] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 01/21/2019] [Indexed: 05/18/2023]
Abstract
The disease caused by Sclerotinia sclerotiorum has traditionally been difficult to control, resulting in tremendous economic losses in oilseed rape (Brassica napus). Identification of important genes in the defense responses is critical for molecular breeding, an important strategy for controlling the disease. Here, we report that a B. napus mitogen-activated protein kinase gene, BnaMPK3, plays an important role in the defense against S. sclerotiorum in oilseed rape. BnaMPK3 is highly expressed in the stems, flowers and leaves, and its product is localized in the nucleus. Furthermore, BnaMPK3 is highly responsive to infection by S. sclerotiorum and treatment with jasmonic acid (JA) or the biosynthesis precursor of ethylene (ET), but not to treatment with salicylic acid (SA) or abscisic acid. Moreover, overexpression (OE) of BnaMPK3 in B. napus and Nicotiana benthamiana results in significantly enhanced resistance to S. sclerotiorum, whereas resistance is diminished in RNAi transgenic plants. After S. sclerotiorum infection, defense responses associated with ET, JA, and SA signaling are intensified in the BnaMPK3-OE plants but weakened in the BnaMPK3-RNAi plants when compared to those in the wild type plants; by contrast the level of both H2O2 accumulation and cell death exhibits a reverse pattern. The candidate gene association analyses show that the BnaMPK3-encoding BnaA06g18440D locus is a cause of variation in the resistance to S. sclerotiorum in natural B. napus population. These results suggest that BnaMPK3 is a key regulator of multiple defense responses to S. sclerotiorum, which may guide the resistance improvement of oilseed rape and related economic crops.
Collapse
Affiliation(s)
- Zheng Wang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ling-Li Bao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Feng-Yun Zhao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Min-Qiang Tang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Ting Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yaoming Li
- School of Agricultural Equipment Engineering, Institute of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Bing-Xu Wang
- Faculty of Science, Jiangsu University, Zhenjiang, China
| | - Benzhong Fu
- College of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Hedi Fang
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guan-Ying Li
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jun Cao
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Li-Na Ding
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-Ming Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Sheng-Yi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiao-Li Tan
- Institute of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Xiao-Li Tan,
| |
Collapse
|
26
|
Zhang K, Nie L, Cheng Q, Yin Y, Chen K, Qi F, Zou D, Liu H, Zhao W, Wang B, Li M. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed ( Brassica napus L.) using CRISPR-Cas9 system. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:225. [PMID: 31548867 PMCID: PMC6753616 DOI: 10.1186/s13068-019-1567-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 09/11/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND Brassica napus is one of the most important oilseed crops, and can supply considerable amounts of edible oil as well as provide raw materials for the production of biodiesel in the biotechnology industry. Lysophosphatidic acid acyltransferase (LPAT), a key enzyme in the Kennedy pathway, catalyses fatty acid chains into 3-phosphoglycerate and promotes further production of oil in the form of triacylglycerol. However, because B. napus is an allotetraploid with two subgenomes, the precise genes which involved in oil production remain unclear due to the intractability of efficiently knocking out all copies with high genetic redundancy. Therefore, a robust gene editing technology is necessary for gene function analysis. RESULTS An efficient gene editing technology was developed for the allotetraploid plant B. napus using the CRISPR-Cas9 system. Previous studies showed poor results in either on-target or off-target activity in B. napus. In the present study, four single-gRNAs and two multi-gRNAs were deliberately designed from the conserved coding regions of BnLPAT2 which has seven homologous genes, and BnLPAT5, which has four homologous genes. The mutation frequency was found to range from 17 to 68%, while no mutation was observed in the putative off-target sites. The seeds of the Bnlpat2/Bnlpat5 mutant were wizened and showed enlarged oil bodies, disrupted distribution of protein bodies and increased accumulation of starch in mature seeds. The oil content decreased, with an average decrease of 32% for Bnlpat2 lines and 29% for Bnlpat5 lines in single-gRNA knockout lines, and a decline of 24% for Bnlpat2 mutant lines (i.e., g123) and 39% for Bnlpat2/Bnlpat5 double mutant lines (i.e., g134) in multi-gRNA knockout lines. CONCLUSIONS Seven BnLPAT2 homologous genes and four BnLPAT5 homologous genes were cleaved completely using the CRISPR-Cas9 system, which indicated that it is effective for editing all homologous genes in allotetraploid rapeseed, despite the relatively low sequence identities of both gene families. The size of the oil bodies increased significantly while the oil content decreased, confirming that BnLPAT2 and BnLPAT5 play a role in oil biosynthesis. The present study lays a foundation for further oil production improvement in oilseed crop species.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| | - Liluo Nie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Qiqi Cheng
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Fuyu Qi
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Dashan Zou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haohao Liu
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Weiguo Zhao
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Baoshan Wang
- College of Life Science, Shandong Normal University, Jinan, 250000 China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang, China
| |
Collapse
|
27
|
Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N. CRISPR/Cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 131:63-69. [PMID: 29753601 DOI: 10.1016/j.plaphy.2018.04.025] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 04/13/2018] [Accepted: 04/22/2018] [Indexed: 05/22/2023]
Abstract
The CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9-mediated genome editing system has been widely applied as a powerful tool for modifying preferable endogenous genes. This system is highly expected to be further applied for the breeding of various agronomically important plant species. Here we report the modification of a fatty acid desaturase 2 gene (FAD2), which encodes an enzyme that catalyzes the desaturation of oleic acid, in Brassica napus cv. Westar using the CRISPR/Cas9 system. Two guide RNAs were designed for BnaA.FAD2.a (FAD2_Aa). Of 22 regenerated shoots with FAD2_Aa editing vectors, three contained mutant alleles. Further analysis revealed that two of three mature plants (Aa1#13 and Aa2#2) contained the mutant alleles. The mutant fad2_Aa allele had a 4-bp deletion, which was inherited by backcross progenies (BC1) in the Aa1#13 line. Furthermore, plants with the fad2_Aa allele without transgenes were selected from the BC1 progenies and plants homozygous for fad2_Aa were then produced by self-crossing these BC1 progenies (BC1S1). Fatty acid composition analysis of their seeds revealed a statistically significant increase in the content of oleic acid compared with that in wild-type seeds. These results showed that the application of the CRISPR/Cas9 system is useful to produce desirable mutant plants with an agronomically suitable phenotype by modifying the metabolic pathway in B. napus.
Collapse
Affiliation(s)
- Ayako Okuzaki
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Takumi Ogawa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan
| | - Chie Koizuka
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Kanako Kaneko
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Mizue Inaba
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Jun Imamura
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan
| | - Nobuya Koizuka
- College of Agriculture, Tamagawa University, 6-1-1 Tamagawa Gakuen, Machida, Tokyo 194-8610, Japan.
| |
Collapse
|
28
|
Long W, Hu M, Gao J, Chen S, Zhang J, Cheng L, Pu H. Identification and Functional Analysis of Two New Mutant BnFAD2 Alleles That Confer Elevated Oleic Acid Content in Rapeseed. Front Genet 2018; 9:399. [PMID: 30294343 PMCID: PMC6158388 DOI: 10.3389/fgene.2018.00399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/31/2018] [Indexed: 01/23/2023] Open
Abstract
Rapeseed (Brassica napus L.) is a vital oil crop worldwide. High oleic acid content is a desirable quality trait for rapeseed oil, which makes it more beneficial to human health. However, many germplasm resources with high oleic acid content in rapeseed have not been evaluated with regard to their genotypes, making it difficult to select the best strains with this trait for the breeding of high oleic acid rapeseed variety. This work was to explore the gene-regulation mechanism of this trait using a new super-high oleic acid content (∼85%) line N1379T as genetic material. In this study, the sequences of four homologous fatty acid desaturase (BnFAD2) genes were compared between super-high (∼85%, N1379T) and normal (∼63%) oleic acid content lines. Results showed that there were two single-nucleotide polymorphisms (SNPs) in BnFAD2-1 and BnFAD2-2, respectively, which led to the amino acid changes (E106K and G303E) in the corresponding proteins. Functional analysis of both genes in yeast confirmed that these SNPs were loss-of-function mutations, thus limiting the conversion of oleic acid to linoleic acid and resulting in the considerable accumulation of oleic acid. Moreover, two specific cleaved amplified polymorphic sequences (CAPS) markers for the two SNPs were developed to identify genotypes of each line in the F2 and BC1 populations. Furthermore, these two mutant loci of BnFAD2-1 and BnFAD2-2 genes were positively associated with elevated oleic acid levels and had a similar effect with regard to the increase of oleic acid content. Taken together, these two novel SNPs in two different BnFAD2 genes jointly regulated the high oleic acid trait in this special germplasm. The study provided insight into the genetic regulation involved in oleic acid accumulation and highlighted the use of new alleles of BnFAD2-1 and BnFAD2-2 in breeding high oleic acid rapeseed varieties.
Collapse
Affiliation(s)
- Weihua Long
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Maolong Hu
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Jianqin Gao
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Song Chen
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Jiefu Zhang
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Li Cheng
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| | - Huiming Pu
- Key Lab of Cotton and Rapeseed (Nanjing) of Ministry of Agriculture, Institute of the Industrial Crops, Jiangsu Academy of Agriculture Sciences, Nanjing, China
| |
Collapse
|
29
|
Mutations in the promoter, intron and CDS of two FAD2 generate multiple alleles modulating linoleic acid level in yellow mustard. Sci Rep 2017; 7:8284. [PMID: 28811544 PMCID: PMC5557838 DOI: 10.1038/s41598-017-08317-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/07/2017] [Indexed: 11/08/2022] Open
Abstract
Linoleic acid (C18:2) is an important polyunsaturated fatty acid in the seed oil of many crops. Here, we report that mutations in the promoter, intron and CDS of the FAD2 genes SalFAD2.LIA1 and SalFAD2.LIA2 generate three alleles LIA 1a , LIA 1b and lia 1 and two alleles LIA 2 and lia 2, respectively, controlling the C18:2 variation (4.4-32.7%) in yellow mustard. The allelic effect on increasing C18:2 content is LIA 1a > LIA 1b > lia 1 , LIA 2 > lia 2, and LIA 1a > LIA 2. The five FAD 2 alleles each contain two exons, one intron and a promoter adjacent to exon 1. LIA 1a has a 1152 bp CDS, a 1221 bp intron with promoter function and a 607 bp promoter. Compared with LIA 1a , the intron of LIA 1b has reduced promoter activity and that of LIA 2 and lia 2 has no promoter function due to extensive SNP and indel mutations. lia 1 differed from LIA 1b by having an insertion of 1223 bp retrotransposon in its intron. lia 2 with mutations in the promoter has reduced promoter activity compared with LIA 2 . This study revealed that complex quantitative variation of trait phenotype in plants could be modulated by multiple alleles of oligogenic loci resulting from mutations in the regulatory region and CDS.
Collapse
|
30
|
Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C. CRISPR-Cas9 Targeted Mutagenesis Leads to Simultaneous Modification of Different Homoeologous Gene Copies in Polyploid Oilseed Rape ( Brassica napus). PLANT PHYSIOLOGY 2017; 174:935-942. [PMID: 28584067 PMCID: PMC5462057 DOI: 10.1104/pp.17.00426] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/13/2017] [Indexed: 05/18/2023]
Abstract
In polyploid species, altering a trait by random mutagenesis is highly inefficient due to gene redundancy. We have stably transformed tetraploid oilseed rape (Brassica napus) with a CRISPR-Cas9 construct targeting two ALCATRAZ (ALC) homoeologs. ALC is involved in valve margin development and, thus, contributes to seed shattering from mature fruits. Knocking out ALC would increase shatter resistance to avoid seed loss during mechanical harvest. We obtained a transgenic T1 plant with four alc mutant alleles by the use of a single target sequence. All mutations were stably inherited to the T2 progeny. The T2 generation was devoid of any wild-type alleles, proving that the underlying T1 was a nonchimeric double heterozygote. T-DNA and ALC loci were not linked, as indicated by random segregation in the T2 generation. Hence, we could select double mutants lacking the T-DNA already in the first offspring generation. However, whole-genome sequencing data revealed at least five independent insertions of vector backbone sequences. We did not detect any off-target effects in two genome regions homologous to the target sequence. The simultaneous alteration of multiple homoeologs by CRISPR-Cas9 mutagenesis without any background mutations will offer new opportunities for using mutant genotypes in rapeseed breeding.
Collapse
Affiliation(s)
- Janina Braatz
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany (J.B., H.-J.H., C.J.)
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany (M.M., N.S., A.H.); and
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany (M.M.)
| | - Hans-Joachim Harloff
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany (J.B., H.-J.H., C.J.)
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany (M.M., N.S., A.H.); and
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany (M.M.)
| | - Martin Mascher
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany (J.B., H.-J.H., C.J.)
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany (M.M., N.S., A.H.); and
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany (M.M.)
| | - Nils Stein
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany (J.B., H.-J.H., C.J.)
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany (M.M., N.S., A.H.); and
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany (M.M.)
| | - Axel Himmelbach
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany (J.B., H.-J.H., C.J.)
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany (M.M., N.S., A.H.); and
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany (M.M.)
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, 24098 Kiel, Germany (J.B., H.-J.H., C.J.);
- Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, 06466 Stadt Seeland, Germany (M.M., N.S., A.H.); and
- German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, 04103 Leipzig, Germany (M.M.)
| |
Collapse
|
31
|
Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:648-657. [PMID: 27862889 PMCID: PMC5399004 DOI: 10.1111/pbi.12663] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 10/27/2016] [Accepted: 11/07/2016] [Indexed: 05/02/2023]
Abstract
The CRISPR/Cas9 nuclease system is a powerful and flexible tool for genome editing, and novel applications of this system are being developed rapidly. Here, we used CRISPR/Cas9 to target the FAD2 gene in Arabidopsis thaliana and in the closely related emerging oil seed plant, Camelina sativa, with the goal of improving seed oil composition. We successfully obtained Camelina seeds in which oleic acid content was increased from 16% to over 50% of the fatty acid composition. These increases were associated with significant decreases in the less desirable polyunsaturated fatty acids, linoleic acid (i.e. a decrease from ~16% to <4%) and linolenic acid (a decrease from ~35% to <10%). These changes result in oils that are superior on multiple levels: they are healthier, more oxidatively stable and better suited for production of certain commercial chemicals, including biofuels. As expected, A. thaliana T2 and T3 generation seeds exhibiting these types of altered fatty acid profiles were homozygous for disrupted FAD2 alleles. In the allohexaploid, Camelina, guide RNAs were designed that simultaneously targeted all three homoeologous FAD2 genes. This strategy that significantly enhanced oil composition in T3 and T4 generation Camelina seeds was associated with a combination of germ-line mutations and somatic cell mutations in FAD2 genes in each of the three Camelina subgenomes.
Collapse
Affiliation(s)
- Wen Zhi Jiang
- Department of Biochemistry and Center for Plant Science InnovationUniversity of NebraskaLincolnNEUSA
| | - Isabelle M. Henry
- Department of Plant Biology and UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Peter G. Lynagh
- Department of Plant Biology and UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Luca Comai
- Department of Plant Biology and UC Davis Genome CenterUniversity of CaliforniaDavisCAUSA
| | - Edgar B. Cahoon
- Department of Biochemistry and Center for Plant Science InnovationUniversity of NebraskaLincolnNEUSA
| | - Donald P. Weeks
- Department of Biochemistry and Center for Plant Science InnovationUniversity of NebraskaLincolnNEUSA
| |
Collapse
|
32
|
He Z, Wang L, Harper AL, Havlickova L, Pradhan AK, Parkin IAP, Bancroft I. Extensive homoeologous genome exchanges in allopolyploid crops revealed by mRNAseq-based visualization. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:594-604. [PMID: 27808473 PMCID: PMC5399007 DOI: 10.1111/pbi.12657] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 05/21/2023]
Abstract
Polyploidy, the possession of multiple sets of chromosomes, has been a predominant factor in the evolution and success of the angiosperms. Although artificially formed allopolyploids show a high rate of genome rearrangement, the genomes of cultivars and germplasm used for crop breeding were assumed stable and genome structural variation under the artificial selection process of commercial breeding has remained little studied. Here, we show, using a repurposed visualization method based on transcriptome sequence data, that genome structural rearrangement occurs frequently in varieties of three polyploid crops (oilseed rape, mustard rape and bread wheat), meaning that the extent of genome structural variation present in commercial crops is much higher than expected. Exchanges were found to occur most frequently where homoeologous chromosome segments are collinear to telomeres and in material produced as doubled haploids. The new insights into genome structural evolution enable us to reinterpret the results of recent studies and implicate homoeologous exchanges, not deletions, as being responsible for variation controlling important seed quality traits in rapeseed. Having begun to identify the extent of genome structural variation in polyploid crops, we can envisage new strategies for the global challenge of broadening crop genetic diversity and accelerating adaptation, such as the molecular identification and selection of genome deletions or duplications encompassing genes with trait-controlling dosage effects.
Collapse
Affiliation(s)
- Zhesi He
- Department of BiologyUniversity of YorkHeslingtonYorkUK
| | - Lihong Wang
- Department of BiologyUniversity of YorkHeslingtonYorkUK
| | | | | | - Akshay K. Pradhan
- Department of Genetics and Centre for Genetic Manipulation of Crop PlantsUniversity of DelhiNew DelhiIndia
| | | | - Ian Bancroft
- Department of BiologyUniversity of YorkHeslingtonYorkUK
| |
Collapse
|
33
|
Gacek K, Bayer PE, Bartkowiak-Broda I, Szala L, Bocianowski J, Edwards D, Batley J. Genome-Wide Association Study of Genetic Control of Seed Fatty Acid Biosynthesis in Brassica napus. FRONTIERS IN PLANT SCIENCE 2016; 7:2062. [PMID: 28163710 PMCID: PMC5247464 DOI: 10.3389/fpls.2016.02062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/26/2016] [Indexed: 05/03/2023]
Abstract
Fatty acids and their composition in seeds determine oil value for nutritional or industrial purposes and also affect seed germination as well as seedling establishment. To better understand the genetic basis of seed fatty acid biosynthesis in oilseed rape (Brassica napus L.) we applied a genome-wide association study, using 91,205 single nucleotide polymorphisms (SNPs) characterized across a mapping population with high-resolution skim genotyping by sequencing (SkimGBS). We identified a cluster of loci on chromosome A05 associated with oleic and linoleic seed fatty acids. The delineated genomic region contained orthologs of the Arabidopsis thaliana genes known to play a role in regulation of seed fatty acid biosynthesis such as Fatty acyl-ACP thioesterase B (FATB) and Fatty Acid Desaturase (FAD5). This approach allowed us to identify potential functional genes regulating fatty acid composition in this important oil producing crop and demonstrates that this approach can be used as a powerful tool for dissecting complex traits for B. napus improvement programs.
Collapse
Affiliation(s)
- Katarzyna Gacek
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Philipp E. Bayer
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
| | - Iwona Bartkowiak-Broda
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Laurencja Szala
- Plant Breeding and Acclimatization Institute—National Research Institute, Oilseed Crops Research CentrePoznan, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznan University of Life SciencesPoznan, Poland
| | - David Edwards
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
| | - Jacqueline Batley
- School of Plant Biology, University of Western AustraliaPerth, WA, Australia
- *Correspondence: Jacqueline Batley
| |
Collapse
|
34
|
Czyzewicz N, De Smet I. The Arabidopsis thaliana CLAVATA3/EMBRYO-SURROUNDING REGION 26 (CLE26) peptide is able to alter root architecture of Solanum lycopersicum and Brassica napus. PLANT SIGNALING & BEHAVIOR 2016; 11:e1118598. [PMID: 26669515 PMCID: PMC4871666 DOI: 10.1080/15592324.2015.1118598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/06/2015] [Indexed: 05/23/2023]
Abstract
Optimal development of root architecture is vital to the structure and nutrient absorption capabilities of any plant. We recently demonstrated that AtCLE26 regulates A. thaliana root architecture development, possibly by altering auxin distribution to the root apical meristem via inhibition of protophloem development. In addition, we showed that AtCLE26 application is able to induce a root architectural change in the monocots Brachypodium distachyon and Triticum aestivum. Here, we showed that application of the synthetic AtCLE26 peptide similarly affects other important agricultural species, such as Brassica napus and Solanum lycopersicum.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom
- Department of Plant Systems Biology, VIB, B-9052, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052, Ghent, Belgium
- Centre for Plant Integrative Biology, University of Nottingham, Loughborough, LE12 5RD, United Kingdom
| |
Collapse
|