1
|
Dong J, Chen Z, Sun C, Tian Y, Hu J, Lu M, Ye X. Cloning, SNP detection, and growth correlation analysis of the 5' flanking regions of two myosin heavy chain-7 genes in Mandarin fish (Siniperca chuatsi). Comp Biochem Physiol B Biochem Mol Biol 2018; 228:10-16. [PMID: 30419288 DOI: 10.1016/j.cbpb.2018.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 11/16/2022]
Abstract
Myosin heavy chains (MYHs) play important roles in muscle growth and contraction. In fish, MYHs contribute to hyperplasia and hypertrophy of muscle fibers, which can continue into adult life and thus result in indeterminate growth in some species. We previously identified two MYH genes, MYH-7a and MYH-7b, that are differentially expressed in Mandarin fish (Siniperca chuatsi) and appear to function in early growth. However, the regulatory role of their 5' flanking regions is unknown. To examine the effects of single nucleotide polymorphisms (SNPs) in these regions, we used genome walking to amplify their flanking sequences and analyzed the regulatory elements and binding sites. A single SNP locus was found in the flanking sequence of each gene. These SNP loci are located in the conserved glucocorticoid receptor binding region (MYH-7a: G-614A; Allele frequency: G:A = 94.9:5.1; GG (89.76) and AG (10.24) genotypes) and the LIM homeobox domain transcription factor binding sequence (MYH-7b: C-1933A; Allele frequency: C:A = 54.8:45.2; AA (20.82), AC (48.81), and CC (30.37) genotypes). At the G-614A loci, the GG genotype exhibited more superior growth traits (total length, body length, body height, etc.) than the AG genotype, with the exception of caudal peduncle length. Alternatively, at the C-1933A loci, the AC and AA genotypes showed significant differences in all growth traits, except for head length, with AC exhibiting superior traits. The AA and CC genotypes showed significant differences in caudal peduncle length and height, while no differences were observed between the AC and CC genotypes. Thus, these SNPs in the 5' flanking regions of MYH-7a and MYH-7b are correlated with superior growth and can be used for selecting Mandarin fish during breeding.
Collapse
Affiliation(s)
- Junjian Dong
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Zhihang Chen
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Chengfei Sun
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Yuanyuan Tian
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Jie Hu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Maixin Lu
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Xing Ye
- Key Laboratory of Tropical & Subtropical Fisheries Resource Application & Cultivation, Ministry of Agriculture, Pearl River Fisheries Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Jullien N, Romanet P, Philippon M, Quentien MH, Beck-Peccoz P, Bergada I, Odent S, Reynaud R, Barlier A, Saveanu A, Brue T, Castinetti F. Heterozygous LHX3 mutations may lead to a mild phenotype of combined pituitary hormone deficiency. Eur J Hum Genet 2018; 27:216-225. [PMID: 30262920 DOI: 10.1038/s41431-018-0264-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 07/03/2018] [Accepted: 08/09/2018] [Indexed: 12/31/2022] Open
Abstract
LHX3 is an LIM domain transcription factor involved in the early steps of pituitary ontogenesis. We report here functional studies of three allelic variants, including the first heterozygous variant of LHX3 NM_178138.5(LHX3):c.587T>C (p.(Leu196Pro)) that may be responsible for a milder phenotype of hypopituitarism. Our functional studies showed that NM_178138.5(LHX3):c.587T>C (p.(Leu196Pro)) was not able to activate target promoters in vitro, as it did not bind DNA, and likely affected LHX3 function via a mechanism of haplo-insufficiency. Our study demonstrates the possibility that patients with a heterozygous variant of LHX3 may have pituitary deficiencies, with a milder phenotype than patients with homozygous variants. It is thus of vital to propose an optimal follow-up of such patients, who, until now, were considered as not being at risk of presenting pituitary deficiency. The second variant NM_178138.5(LHX3):c.622C>G (p.(Arg208Gly)), present in a homozygous state, displayed decreased transactivating ability without loss of binding capacity in vitro, concordant with in silico analysis; it should thus be considered to affect LHX3 function. In contrast, the NM_178138.5(LHX3):c.929G>C (p.(Arg310Pro)) variant, in a heterozygous state, also predicted as deleterious in silico, proved functionally active in vitro, and should thus still be classified as a variant of unknown significance. Our study emphasizes the need for functional studies due to the limits of software-based predictions of new variants, and the possible association of a pituitary phenotype to heterozygous LHX3 variants.
Collapse
Affiliation(s)
| | - Pauline Romanet
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Laboratory of Molecular Biology, Marseille, France
| | - Mélanie Philippon
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Department of Endocrinology, Marseille, France
| | | | - Paolo Beck-Peccoz
- Institute of Endocrine Sciences, Ospedale Maggiore IRCCS, University of Milan, Milan, Italy
| | - Ignacio Bergada
- Centro de Investigaciones Endocrinologicas (CEDIE) « Dr. César Bergada » Division de Endocrinologia, Hospital de Ninos Ricardo Guttierrez, Buenos Aires, Argentina
| | - Sylvie Odent
- Service de Génétique Clinique, Centre de référence "Maladies Rares" CLAD-Ouest, université de Rennes 1, CNRS UMR6290, Hôpital SUD, Rennes, France
| | - Rachel Reynaud
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital la Timone Enfants, Department of Pediatrics, Marseille, France
| | - Anne Barlier
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Laboratory of Molecular Biology, Marseille, France
| | - Alexandru Saveanu
- Aix Marseille Univ, INSERM, MMG, UMR1251 Faculté de Médecine, Marseille, France
| | - Thierry Brue
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Department of Endocrinology, Marseille, France
| | - Frederic Castinetti
- Aix Marseille Univ, APHM, INSERM, MMG, Hôpital de la Conception, Department of Endocrinology, Marseille, France.
| |
Collapse
|
3
|
Abstract
Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K(+) channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca(2+), the fast K(+) current is carried solely by Sh channels (unlike neurons in which a second fast K(+) current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression.
Collapse
|
4
|
Bhati M, Lee C, Gadd MS, Jeffries CM, Kwan A, Whitten AE, Trewhella J, Mackay JP, Matthews JM. Solution structure of the LIM-homeodomain transcription factor complex Lhx3/Ldb1 and the effects of a pituitary mutation on key Lhx3 interactions. PLoS One 2012; 7:e40719. [PMID: 22848397 PMCID: PMC3405102 DOI: 10.1371/journal.pone.0040719] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 06/12/2012] [Indexed: 01/01/2023] Open
Abstract
Lhx3 is a LIM-homeodomain (LIM-HD) transcription factor that regulates neural cell subtype specification and pituitary development in vertebrates, and mutations in this protein cause combined pituitary hormone deficiency syndrome (CPHDS). The recently published structures of Lhx3 in complex with each of two key protein partners, Isl1 and Ldb1, provide an opportunity to understand the effect of mutations and posttranslational modifications on key protein-protein interactions. Here, we use small-angle X-ray scattering of an Ldb1-Lhx3 complex to confirm that in solution the protein is well represented by our previously determined NMR structure as an ensemble of conformers each comprising two well-defined halves (each made up of LIM domain from Lhx3 and the corresponding binding motif in Ldb1) with some flexibility between the two halves. NMR analysis of an Lhx3 mutant that causes CPHDS, Lhx3(Y114C), shows that the mutation does not alter the zinc-ligation properties of Lhx3, but appears to cause a structural rearrangement of the hydrophobic core of the LIM2 domain of Lhx3 that destabilises the domain and/or reduces the affinity of Lhx3 for both Ldb1 and Isl1. Thus the mutation would affect the formation of Lhx3-containing transcription factor complexes, particularly in the pituitary gland where these complexes are required for the production of multiple pituitary cell types and hormones.
Collapse
Affiliation(s)
- Mugdha Bhati
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Christopher Lee
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Morgan S. Gadd
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Cy M. Jeffries
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Ann Kwan
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew E. Whitten
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jill Trewhella
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
| | - Jacqueline M. Matthews
- School of Molecular Bioscience, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
5
|
Zheng Q, Zhao Y. The diverse biofunctions of LIM domain proteins: determined by subcellular localization and protein-protein interaction. Biol Cell 2012; 99:489-502. [PMID: 17696879 DOI: 10.1042/bc20060126] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The LIM domain is a cysteine- and histidine-rich motif that has been proposed to direct protein-protein interactions. A diverse group of proteins containing LIM domains have been identified, which display various functions including gene regulation and cell fate determination, tumour formation and cytoskeleton organization. LIM domain proteins are distributed in both the nucleus and the cytoplasm, and they exert their functions through interactions with various protein partners.
Collapse
Affiliation(s)
- Quanhui Zheng
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
6
|
Christiaen L, Stolfi A, Davidson B, Levine M. Spatio-temporal intersection of Lhx3 and Tbx6 defines the cardiac field through synergistic activation of Mesp. Dev Biol 2009; 328:552-60. [PMID: 19389354 DOI: 10.1016/j.ydbio.2009.01.033] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/16/2009] [Accepted: 01/23/2009] [Indexed: 11/18/2022]
Abstract
Mesp encodes a bHLH transcription factor required for specification of the cardiac mesoderm in Ciona embryos. The activities of Macho-1 and beta-catenin, two essential maternal determinants, are required for Mesp expression in the B7.5 blastomeres, which constitute the heart field. The T-box transcription factor Tbx6 functions downstream of Macho-1 as a direct activator of Mesp expression. However, Tbx6 cannot account for the restricted expression of Mesp in the B7.5 lineage since it is expressed throughout the presumptive tail muscles. Here we present evidence that the LIM-homeobox gene Lhx3, a direct target of beta-catenin, is essential for localized Mesp expression. Lhx3 is expressed throughout the presumptive endoderm and B7.5 blastomeres. Thus, the B7.5 blastomeres are the only cells to express sustained levels of the Tbx6 and Lhx3 activators. Like mammalian Lhx3 genes, Ci-Lhx3 encodes two isoforms with distinct N-terminal peptides. The Lhx3a isoform appears to be expressed both maternally and zygotically, while the Lhx3b isoform is exclusively zygotic. Misexpression of Lhx3b is sufficient to induce ectopic Mesp activation in cells expressing Tbx6b. Injection of antisense morpholino oligonucleotides showed that the Lhx3b isoform is required for endogenous Mesp expression. Mutations in the Lhx3 half-site of Tbx6/Lhx3 composite elements strongly reduced the activity of a minimal Mesp enhancer. We discuss the delineation of the heart field by the synergistic action of muscle and gut determinants.
Collapse
Affiliation(s)
- Lionel Christiaen
- Department of Molecular & Cell Biology, Division of Genetics, Genomics and Development, Center for Integrative Genomics, University of California Berkeley, CA 94720-3200, USA.
| | | | | | | |
Collapse
|
7
|
Castinetti F, Reynaud R, Saveanu A, Quentien MH, Albarel F, Enjalbert A, Barlier A, Brue T. Congenital pituitary hormone deficiencies: role of LHX3/LHX4 genes. Expert Rev Endocrinol Metab 2008; 3:751-760. [PMID: 30764064 DOI: 10.1586/17446651.3.6.751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
LHX3 and LHX4 are LIM domain transcription factors involved in the early steps of pituitary organogenesis. They are necessary for the proper differentiation of Rathke's pouch that gives rise to the anterior pituitary lobe. Mutations of these transcription factors are involved in congenital hypopituitarism: to date, nine mutations of LHX3 have been reported, responsible for variable pituitary hormone deficiencies and extrapituitary manifestations, including limited neck rotation. By contrast, only five LHX4 mutations have been reported, responsible for variable hormone deficiencies, and pituitary/intracranial abnormalities. Future investigations will aim to better understand human pituitary organogenesis and to shed light on the interspecies differences in the roles of these transcription factors.
Collapse
Affiliation(s)
- Frederic Castinetti
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Rachel Reynaud
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Alexandru Saveanu
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Marie-Helene Quentien
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Frederique Albarel
- a Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France
| | - Alain Enjalbert
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Anne Barlier
- b Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des Déficits Hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France and Laboratoire de Biochimie-Biologie Moléculaire, Hôpital Conception, Marseille, France
| | - Thierry Brue
- c Centre de Recherche en neurobiologie et neurophysiologie de Marseille (CRN2M), UMR6231, Faculté de Médecine Nord, Centre National de la Recherche Scientifique, Université de la Méditerranée and Centre de Référence des déficits hypophysaires, Hôpital de la Timone, Assistance Publique Hôpitaux de Marseille, 13385 Marseille, France.
| |
Collapse
|
8
|
A regulatory network to segregate the identity of neuronal subtypes. Dev Cell 2008; 14:877-89. [PMID: 18539116 DOI: 10.1016/j.devcel.2008.03.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2007] [Revised: 01/30/2008] [Accepted: 03/31/2008] [Indexed: 11/22/2022]
Abstract
Spinal motor neurons (MNs) and V2 interneurons (V2-INs) are specified by two related LIM-complexes, MN-hexamer and V2-tetramer, respectively. Here we show how multiple parallel and complementary feedback loops are integrated to assign these two cell fates accurately. While MN-hexamer response elements (REs) are specific to MN-hexamer, V2-tetramer-REs can bind both LIM-complexes. In embryonic MNs, however, two factors cooperatively suppress the aberrant activation of V2-tetramer-REs. First, LMO4 blocks V2-tetramer assembly. Second, MN-hexamer induces a repressor, Hb9, which binds V2-tetramer-REs and suppresses their activation. V2-INs use a similar approach; V2-tetramer induces a repressor, Chx10, which binds MN-hexamer-REs and blocks their activation. Thus, our study uncovers a regulatory network to segregate related cell fates, which involves reciprocal feedforward gene regulatory loops.
Collapse
|
9
|
Savage JJ, Mullen RD, Sloop KW, Colvin SC, Camper SA, Franklin CL, Rhodes SJ. Transgenic mice expressing LHX3 transcription factor isoforms in the pituitary: effects on the gonadotrope axis and sex-specific reproductive disease. J Cell Physiol 2007; 212:105-17. [PMID: 17311285 DOI: 10.1002/jcp.21010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The LHX3 transcription factor plays critical roles in pituitary and nervous system development. Mutations in the human LHX3 gene cause severe hormone deficiency diseases. The gene produces two mRNAs which can be translated to three protein isoforms. The LHX3a protein contains a central region with LIM domains and a homeodomain, and a carboxyl terminus with the major transactivation domain. LHX3b is identical to LHX3a except that it has a different amino terminus. M2-LHX3 lacks the amino terminus and LIM domains of LHX3a/b. In vitro experiments have demonstrated these three proteins have different biochemical and gene regulatory properties. Here, to investigate the effects of overexpression of LHX3 in vivo, the alpha glycoprotein subunit (alphaGSU) promoter was used to produce LHX3a, LHX3b, and M2-LHX3 in the pituitary glands of transgenic mice. Alpha GSU-beta galactosidase animals were generated as controls. Male alphaGSU-LHX3a and alphaGSU-LHX3b mice are infertile and die at a young age as a result of complications associated with obstructive uropathy including uremia. These animals have a reduced number of pituitary gonadotrope cells, low circulating gonadotropins, and possible sex hormone imbalance. Female alphaGSU-LHX3a and alphaGSU-LHX3b transgenic mice are viable but have reduced fertility. By contrast, alphaGSU-M2-LHX3 mice and control mice expressing beta galactosidase are reproductively unaffected. These overexpression studies provide insights into the properties of LHX3 during pituitary development and highlight the importance of this factor in reproductive physiology.
Collapse
Affiliation(s)
- Jesse J Savage
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Savage JJ, Hunter CS, Clark-Sturm SL, Jacob TM, Pfaeffle RW, Rhodes SJ. Mutations in the LHX3 gene cause dysregulation of pituitary and neural target genes that reflect patient phenotypes. Gene 2007; 400:44-51. [PMID: 17616267 PMCID: PMC2045125 DOI: 10.1016/j.gene.2007.05.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2007] [Accepted: 05/26/2007] [Indexed: 10/23/2022]
Abstract
The LHX3 LIM-homeodomain transcription factor is required for correct development of the mammalian pituitary gland and spinal motoneurons. Mutations in the LHX3 gene underlie complex diseases featuring combined anterior pituitary hormone deficiency and, in specific cases, loss of neck rotation considered to result from nervous system abnormalities. The molecular basis for LHX3 protein actions in both normal and aberrant pituitary and nervous system development is poorly understood. In this study, the gene regulatory abilities of mutant LHX3 proteins associated with distinct types of diseases (LHX3a A210V, LHX3a E173Ter, and LHX3a W224Ter) were investigated. The capacity of these proteins to activate pituitary hormone and transcription factor gene promoters, nervous system target genes, and to localize to the nucleus of pituitary cells was measured. Consistent with the symptoms of patients with these mutations, the abnormal proteins displayed diminished capacities to activate the promoters of genes expressed in the pituitary gland. On nervous system promoters, several mutant proteins retained some activity. The ability of the mutant proteins to concentrate in the nucleus of pituitary cells was correlated with the retention of defined nuclear localization signals in the protein sequence, except for the E173Ter protein which unexpectedly localizes to the nucleus, likely due to the insertion of cryptic nuclear localization signals by a frame shift caused by the mutation. This study extends the molecular characterization of the severe neuroendocrine diseases associated with LHX3 gene mutations.
Collapse
Affiliation(s)
- Jesse J. Savage
- Dept. Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
- Dept. Biology, Indiana University-Purdue University, Indianapolis, USA
| | - Chad S. Hunter
- Dept. Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
- Dept. Biology, Indiana University-Purdue University, Indianapolis, USA
| | | | - Tanya M. Jacob
- Dept. Biology, Indiana University-Purdue University, Indianapolis, USA
| | | | - Simon J. Rhodes
- Dept. Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, USA
- *Address for correspondence: Simon J. Rhodes, Ph.D. Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Med Sci Room 362A, 635 N. Barnhill Drive, Indianapolis, IN 46202-5120, USA. Tel: 317-278-1797; Fax: 317-274-3318;
| |
Collapse
|
11
|
Hertzano R, Dror AA, Montcouquiol M, Ahmed ZM, Ellsworth B, Camper S, Friedman TB, Kelley MW, Avraham KB. Lhx3, a LIM domain transcription factor, is regulated by Pou4f3 in the auditory but not in the vestibular system. Eur J Neurosci 2007; 25:999-1005. [PMID: 17331196 DOI: 10.1111/j.1460-9568.2007.05332.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A dominant mutation of the gene encoding the POU4F3 transcription factor underlies human non-syndromic progressive hearing loss DFNA15. Using oligonucleotide microarrays to generate expression profiles of inner ears of Pou4f3(ddl/ddl) mutant and wild-type mice, we have identified and validated Lhx3, a LIM domain transcription factor, as an in vivo target gene regulated by Pou4f3. Lhx3 is a hair cell-specific gene expressed in all hair cells of the auditory and vestibular system as early as embryonic day 16. The level of Lhx3 mRNA is greatly reduced in the inner ears of embryonic Pou4f3 mutant mice. Our data also show that the expression of Lhx3 is regulated differently in auditory and vestibular hair cells. This is the first example of a hair cell-specific gene expressed both in auditory and in vestibular hair cells, with differential regulation of expression in these two closely related systems.
Collapse
Affiliation(s)
- Ronna Hertzano
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mullen RD, Colvin SC, Hunter CS, Savage JJ, Walvoord EC, Bhangoo AP, Ten S, Weigel J, Pfäffle RW, Rhodes SJ. Roles of the LHX3 and LHX4 LIM-homeodomain factors in pituitary development. Mol Cell Endocrinol 2007; 265-266:190-5. [PMID: 17210222 PMCID: PMC1853274 DOI: 10.1016/j.mce.2006.12.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The LHX3 and LHX4 LIM-homeodomain transcription factors play essential roles in pituitary gland and nervous system development. Mutations in the genes encoding these regulatory proteins are associated with combined hormone deficiency diseases in humans and animal models. Patients with these diseases have complex syndromes involving short stature, and reproductive and metabolic disorders. Analyses of the features of these diseases and the biochemical properties of the LHX3 and LHX4 proteins will facilitate a better understanding of the molecular pathways that regulate the development of the specialized hormone-secreting cells of the mammalian anterior pituitary gland.
Collapse
Affiliation(s)
- Rachel D. Mullen
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Stephanie C. Colvin
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | - Chad S. Hunter
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | - Jesse J. Savage
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
- Biology, Indiana University-Purdue University, Indianapolis, IN
| | | | | | - Svetlana Ten
- Infants and Children’s Hospital of Brooklyn at Maimonides, Brooklyn, NY
| | | | | | - Simon J. Rhodes
- Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
13
|
Cherrington BD, Farmerie TA, Clay CM. A specific helical orientation underlies the functional contribution of the activin responsive unit to transcriptional activity of the murine gonadotropin-releasing hormone receptor gene promoter. Endocrine 2006; 29:425-33. [PMID: 16943581 DOI: 10.1385/endo:29:3:425] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Revised: 02/23/2006] [Accepted: 03/06/2006] [Indexed: 11/11/2022]
Abstract
Activin responsiveness of the murine GnRH receptor (GnRHR) gene promoter requires two spatially distinct regulatory elements termed the GnRH receptor activating sequence or GRAS and the downstream activin regulatory element or DARE. While GRAS interacts with multiple transcription factors, DARE activity requires tandem homeodomain binding motifs (TAAT) and displays specific binding to the LIM homeodomain protein LHX3. Herein, we find that both the murine GnRHR gene promoter and DARE fused to a minimal heterologous promoter are responsive to LHX3 overexpression. A dominant-repressor of LHX3 attenuates transcriptional activity of the murine GnRHR gene promoter but had no impact on activin responsiveness. Thus, LHX3 would not appear to be the protein mediating activin responsiveness of this promoter. Within DARE itself, the tandem TAAT motifs are separated by 4 bp. Although this arrangement differs from the prototypical P2 or P3 binding sites characterized for paired-like homeodomain proteins and from the directly abutting TAAT motifs found for LHX3, a LIM-class homeodomain protein, we find that separation of the TAAT sites by 5 and 10 bp decreases GnRHR promoter activity to a level similar to promoters containing loss of function mutations in either the proximal or distal TAAT motif. Thus, the juxtaposition of the TAAT sites is critical for the functional activity of DARE. That activin responsiveness of the GnRHR promoter requires both GRAS and DARE suggests that these elements may be both functionally and structurally coupled. As to the latter, GRAS and DARE are separated by 20 bp, thus placing the elements on the same side of the helical backbone. To determine if this spatial organization is functionally relevant, multiples of 5 bp were inserted or deleted between GRAS and DARE. Any insertion or deletion that resulted in a half-turn alteration in the helical positioning between the two elements reduced promoter activity. Thus, an important spatial relationship underlies functional cooperation between GRAS and DARE and the emergence of a complex activin responsive unit (ARU) within the mouse GnRHR promoter.
Collapse
Affiliation(s)
- Brian D Cherrington
- Animal Reproduction and Biotechnology Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
14
|
Yaden BC, Garcia M, Smith TPL, Rhodes SJ. Two promoters mediate transcription from the human LHX3 gene: involvement of nuclear factor I and specificity protein 1. Endocrinology 2006; 147:324-37. [PMID: 16179410 DOI: 10.1210/en.2005-0970] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The LHX3 transcription factor is required for pituitary and nervous system development in mammals. Mutations in the human gene are associated with hormone-deficiency diseases. The gene generates two mRNAs, hLHX3a and hLHX3b, which encode three proteins with different properties. Here, the cis elements and trans-acting factors that regulate the basal transcription of the two mRNAs are characterized. A comparative approach was taken featuring analysis of seven mammalian Lhx3 genes, with a focus on the human gene. Two conserved, TATA-less, GC-rich promoters that are used to transcribe the mRNAs precede exons 1a and 1b of hLHX3. Transcription start sites were mapped for both promoters. Deletion experiments showed most activity for reporter genes containing the basal promoters in the context of -2.0 kb of hLHX3a and 1.8 kb of intron 1a (hLHX3b). Transfection, site-directed mutation, electrophoretic mobility shift, Southwestern blot, and chromatin immunoprecipitation approaches were used to characterize the interaction of transcription factors with conserved elements in the promoters. Specificity protein 1 is a regulator of both promoters through interaction with GC boxes. In addition, a distal element within intron 1a that is recognized by nuclear factor I is critical for hLHX3b promoter function. We conclude that dual promoters allow regulated production of two hLHX3 mRNAs.
Collapse
Affiliation(s)
- Benjamin C Yaden
- Department of Biology (B.C.Y., M.G.), Indiana University-Purdue University Indianapolis, Indianapolis, Indiana 46202, USA
| | | | | | | |
Collapse
|