1
|
Wu J, Wu C, Rong C, Tian J, Jiang N, Wu R, Yue X, Shi H. Catalytic mechanisms underlying fungal fatty acid desaturases activities. Crit Rev Biotechnol 2022:1-17. [PMID: 35658758 DOI: 10.1080/07388551.2022.2063106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) have beneficial roles in a variety of human pathologies and disorders. Owing to the limited source of PUFAs in animals and plants, microorganisms, especially fungi, have become a new source of PUFAs. In fungi, fatty acid desaturases (F-FADS) are the main enzymes that convert saturated fatty acids (SFAs) into PUFAs. Their catalytic activities and substrate specificities, which are directly dependent on the structure of the FADS proteins, determine their efficiency to convert SFAs to PUFAs. Catalytic mechanisms underlying F-FADS activities can be determined from the findings of the relationship between their structure and function. In this review, the advances made in the past decade in terms of catalytic activities and substrate specificities of the fungal FADS cluster are summarized. The relationship between the key domain(s) and site(s) in F-FADS proteins and their catalytic activity is highlighted, and the FADS cluster is analyzed phylogenetically. In addition, subcellular localization of F-FADS is discussed. Finally, we provide prospective crystal structures of F-FADSs. The findings may provide a reference for the resolution of the crystal structures of F-FADS proteins and facilitate the increase in fungal PUFA production for human health.
Collapse
Affiliation(s)
- Junrui Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Chen Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Chunchi Rong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jinlong Tian
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Nan Jiang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| | - Haisu Shi
- College of Food Science, Shenyang Agricultural University, Shenyang, China.,Liaoning Engineering Research Center of Food Fermentation Technology, Shenyang Agricultural University, Shenyang, China.,Shenyang Key Laboratory of Microbial Fermentation Technology Innovation, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
2
|
Rong C, Chen H, Tang X, Gu Z, Zhao J, Zhang H, Chen W, Chen YQ. Characterization and molecular docking of new Δ17 fatty acid desaturase genes from Rhizophagus irregularis and Octopus bimaculoides. RSC Adv 2019; 9:6871-6880. [PMID: 35518462 PMCID: PMC9061052 DOI: 10.1039/c9ra00535h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/19/2019] [Indexed: 01/19/2023] Open
Abstract
Fatty acid desaturases are key enzymes in the biosynthesis of n-3 polyunsaturated fatty acids (PUFAs) via conversion of n-6 polyunsaturates to their n-3 counterparts.
Collapse
Affiliation(s)
- Chunchi Rong
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Xin Tang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Wei Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| | - Yong Q. Chen
- State Key Laboratory of Food Science and Technology
- Jiangnan University
- Wuxi
- P. R. China
- School of Food Science and Technology
| |
Collapse
|
3
|
Rong C, Chen H, Wang M, Gu Z, Zhao J, Zhang H, Chen W, Chen YQ. Molecular mechanism of substrate preference for ω-3 fatty acid desaturase from Mortierella alpina by mutational analysis and molecular docking. Appl Microbiol Biotechnol 2018; 102:9679-9689. [DOI: 10.1007/s00253-018-9321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 11/30/2022]
|
4
|
Insight into Arthrospira platensis Δ9 desaturase: a key enzyme in poly-unsaturated fatty acid synthesis. Mol Biol Rep 2018; 45:1873-1879. [DOI: 10.1007/s11033-018-4333-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 08/23/2018] [Indexed: 10/28/2022]
|
5
|
Shi H, Chen H, Gu Z, Song Y, Zhang H, Chen W, Chen YQ. Molecular mechanism of substrate specificity for delta 6 desaturase from Mortierella alpina and Micromonas pusilla. J Lipid Res 2015; 56:2309-21. [PMID: 26486975 DOI: 10.1194/jlr.m062158] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Indexed: 12/16/2022] Open
Abstract
The ω6 and ω3 pathways are two major pathways in the biosynthesis of PUFAs. In both of these, delta 6 desaturase (FADS6) is a key bifunctional enzyme desaturating linoleic acid or α-linolenic acid. Microbial species have different propensity for accumulating ω6- or ω3-series PUFAs, which may be determined by the substrate preference of FADS6 enzyme. In the present study, we analyzed the molecular mechanism of FADS6 substrate specificity. FADS6 cDNAs were cloned from Mortierella alpina (ATCC 32222) and Micromonas pusilla (CCMP1545) that synthesized high levels of arachidonic acid and EPA, respectively. M. alpina FADS6 (MaFADS6-I) showed substrate preference for LA; whereas, M. pusilla FADS6 (MpFADS6) preferred ALA. To understand the structural basis of substrate specificity, MaFADS6-I and MpFADS6 sequences were divided into five sections and a domain swapping approach was used to examine the role of each section in substrate preference. Our results showed that sequences between the histidine boxes I and II played a pivotal role in substrate preference. Based on our domain swapping results, nine amino acid (aa) residues were targeted for further analysis by site-directed mutagenesis. G194L, E222S, M227K, and V399I/I400E substitutions interfered with substrate recognition, which suggests that the corresponding aa residues play an important role in this process.
Collapse
Affiliation(s)
- Haisu Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Haiqin Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China Synergistic Innovation Center for Food Safety and Nutrition, Wuxi 214122, People's Republic of China
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China Synergistic Innovation Center for Food Safety and Nutrition, Wuxi 214122, People's Republic of China
| | - Yuanda Song
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China Synergistic Innovation Center for Food Safety and Nutrition, Wuxi 214122, People's Republic of China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China Synergistic Innovation Center for Food Safety and Nutrition, Wuxi 214122, People's Republic of China
| | - Yong Q Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, People's Republic of China Synergistic Innovation Center for Food Safety and Nutrition, Wuxi 214122, People's Republic of China Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157
| |
Collapse
|
6
|
Song LY, Zhang Y, Li SF, Hu J, Yin WB, Chen YH, Hao ST, Wang BL, Wang RRC, Hu ZM. Identification of the substrate recognition region in the Δ⁶-fatty acid and Δ⁸-sphingolipid desaturase by fusion mutagenesis. PLANTA 2014; 239:753-763. [PMID: 24366682 DOI: 10.1007/s00425-013-2006-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/03/2013] [Indexed: 06/03/2023]
Abstract
Δ⁸-sphingolipid desaturase and Δ⁶-fatty acid desaturase share high protein sequence identity. Thus, it has been hypothesized that Δ⁶-fatty acid desaturase is derived from Δ⁸-sphingolipid desaturase; however, there is no direct proof. The substrate recognition regions of Δ⁶-fatty acid desaturase and Δ⁸-sphingolipid desaturase, which aid in understanding the evolution of these two enzymes, have not been reported. A blackcurrant Δ⁶-fatty acid desaturase and a Δ⁸-sphingolipid desaturase gene, RnD6C and RnD8A, respectively, share more than 80 % identity in their coding protein sequences. In this study, a set of fusion genes of RnD6C and RnD8A were constructed and expressed in yeast. The Δ⁶- and Δ⁸-desaturase activities of the fusion proteins were characterized. Our results indicated that (1) the exchange of the C-terminal 172 amino acid residues can lead to a significant decrease in both desaturase activities; (2) amino acid residues 114-174, 206-257, and 258-276 played important roles in Δ⁶-substrate recognition, and the last two regions were crucial for Δ⁸-substrate recognition; and (3) amino acid residues 114-276 of Δ⁶-fatty acid desaturase contained the substrate recognition site(s) responsible for discrimination between ceramide (a substrate of Δ⁸-sphingolipid desaturase) and acyl-PC (a substrate of Δ⁶-fatty acid desaturase). Substituting the amino acid residues 114-276 of RnD8A with those of RnD6C resulted in a gain of Δ⁶-desaturase activity in the fusion protein but a loss in Δ⁸-sphingolipid desaturase activity. In conclusion, several regions important for the substrate recognition of Δ⁸-sphingolipid desaturase and Δ⁶-fatty acid desaturase were identified, which provide clues in understanding the relationship between the structure and function in desaturases.
Collapse
Affiliation(s)
- Li-Ying Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing, 100101, China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Song LY, Lu WX, Hu J, Yin WB, Chen YH, Wang BL, Wang RRC, Hu ZM. The role of C-terminal amino acid residues of a Δ⁶-fatty acid desaturase from blackcurrant. Biochem Biophys Res Commun 2013; 431:675-9. [PMID: 23357423 DOI: 10.1016/j.bbrc.2013.01.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 01/16/2013] [Indexed: 11/18/2022]
Abstract
Δ⁶-fatty acid desaturase is an important enzyme in the catalytic synthesis of polyunsaturated fatty acids. Using domain swapping and a site-directed mutagenesis strategy, we found that the region of the C-terminal 67 amino acid residues of Δ⁶-fatty acid desaturase RnD6C from blackcurrant was essential for its catalytic activity and that seven different residues between RnD6C and RnD8A in that region were involved in the desaturase activity. Compared with RnD6C, the activity of the following mutations, V394A, K395I, F411L, S436P, VK3945AI and IS4356VP, was significantly decreased, whereas the activity of I417T was significantly increased. The amino acids N, T and Y in the last four residues also play a certain role in the desaturase activity.
Collapse
Affiliation(s)
- Li-Ying Song
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Li SF, Song LY, Zhang GJ, Yin WB, Chen YH, Wang RRC, Hu ZM. Newly identified essential amino acid residues affecting Δ8-sphingolipid desaturase activity revealed by site-directed mutagenesis. Biochem Biophys Res Commun 2011; 416:165-71. [DOI: 10.1016/j.bbrc.2011.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/04/2011] [Indexed: 01/24/2023]
|
9
|
Vanhercke T, Shrestha P, Green AG, Singh SP. Mechanistic and structural insights into the regioselectivity of an acyl-CoA fatty acid desaturase via directed molecular evolution. J Biol Chem 2011; 286:12860-9. [PMID: 21300802 PMCID: PMC3075633 DOI: 10.1074/jbc.m110.191098] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 02/03/2011] [Indexed: 11/06/2022] Open
Abstract
Membrane-bound fatty acid desaturases and related enzymes play a pivotal role in the biosynthesis of unsaturated and various unusual fatty acids. Structural insights into the remarkable catalytic diversity and wide range of substrate specificities of this class of enzymes remain limited due to the lack of a crystal structure. To investigate the structural basis of the double bond positioning (regioselectivity) of the desaturation reaction in more detail, we relied on a combination of directed evolution in vitro and a powerful yeast complementation assay to screen for Δx regioselectivity. After two selection rounds, variants of the bifunctional Δ12/Δ9-desaturase from the house cricket (Acheta domesticus) exhibited increased Δ9-desaturation activity on shorter chain fatty acids. This change in specificity was the result of as few as three mutations, some of them near the putative active site. Subsequent analysis of individual substitutions revealed an important role of residue Phe-52 in facilitating Δ9-desaturation of shorter chain acyl substrates and allowed for the redesign of the cricket Δ12/Δ9-desaturase into a 16:0-specific Δ9-desaturase. Our results demonstrate that a minimal number of mutations can have a profound impact on the regioselectivity of acyl-CoA fatty acid desaturases and include the first biochemical data supporting the acyl-CoA acyl carrier specificity of a desaturase able to carry out Δ12-desaturation.
Collapse
Affiliation(s)
- Thomas Vanhercke
- From the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Pushkar Shrestha
- From the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Allan G. Green
- From the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| | - Surinder P. Singh
- From the Commonwealth Scientific and Industrial Research Organisation (CSIRO) Plant Industry, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
10
|
Tian YS, Peng RH, Xu J, Zhao W, Gao F, Fu XY, Xiong AS, Yao QH. Semi-rational site-directed mutagenesis of phyI1s from Aspergillus niger 113 at two residue to improve its phytase activity. Mol Biol Rep 2010; 38:977-82. [DOI: 10.1007/s11033-010-0192-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 05/21/2010] [Indexed: 10/19/2022]
|