1
|
Vatanavicharn T, Matjank W, Masrinoul P, Supungul P, Tassanakajon A, Rimphanitchayakit V, Ponprateep S. Antiviral properties of Penaeus monodon cyclophilin A in response to white spot syndrome virus infection in the black tiger shrimp. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109299. [PMID: 38104700 DOI: 10.1016/j.fsi.2023.109299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Cyclophilin A (CypA) or peptidylprolyl isomerase A, plays an important role in protein folding, trafficking, environmental stress, cell signaling and apoptosis etc. In shrimp, the mRNA expression level of PmCypA was stimulated by LPS. In this study, all three types of shrimp hemocytes: hyaline cell, granulocyte and semi-granulocyte expressed the PmCypA protein. The mRNA expression level of PmCypA was found to be up-regulate to four-fold in white spot syndrome virus (WSSV) infected hemocytes at 48 h. Interestingly, PmCypA protein was only detected extracellularly in shrimp plasma at 24 h post WSSV infection. To find out the function of extracellular PmCypA, the recombinant PmCypA (rPmCypA) was produced and administrated in shrimp primary hemocyte cell culture to observe the antiviral properties. In rPmCypA-administrated hemocyte cell culture, the mRNA transcripts of WSSV intermediate early gene, ie1 and early gene, wsv477 were significantly decreased but not that of late gene, vp28. To explore the antiviral mechanism of PmCypA, the expression of PmCypA in shrimp hemocytes was silenced and the expression of immune-related genes were investigated. Surprisingly, the suppression of PmCypA affected other gene expression, decreasing of penaeidin, PmHHAP and PmCaspase and increasing of C-type lectin. Our results suggested that the PmCypA might plays important role in anti-WSSV via apoptosis pathway. Further studies of PmCypA underlying antiviral mechanism are underway to show its biological function in shrimp immunity.
Collapse
Affiliation(s)
- Tipachai Vatanavicharn
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Watchalaya Matjank
- Department of Biology, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University, 25/25 Phuttamonthon 4 Road, Salaya, Nakhon Pathom, 73170, Thailand
| | - Premruethai Supungul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 110120, Thailand
| | - Anchalee Tassanakajon
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vichien Rimphanitchayakit
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sirikwan Ponprateep
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, 10110, Thailand.
| |
Collapse
|
2
|
Xu Y, Zhang B, Yu C, Hung Z, Hu N, Cai Y, Li Y. Comparative transcriptome analysis reveals the effects of different feeding times on the hepatopancreas of Chinese mitten crabs. Chronobiol Int 2023:1-12. [PMID: 36927299 DOI: 10.1080/07420528.2023.2189481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Feeding rhythms affect a range of physiological functions in crustaceans. To investigate their effect on the physiological functions of Eriocheir sinensis, herein, we analyzed the influence of different feeding times on the hepatopancreas transcriptome via high-throughput sequencing. We harvested the hepatopancreas of crabs at 12:00 on day 11 of the experiment. We weighted the crabs before and after the experiment and found that those in the 06:00 group had the highest weight gain rate. In addition, 512 differentially expressed genes (DEGs) were grouped into nine distinct clusters. Functional enrichment analysis of DEGs showed that E. sinensis metabolic and immune processes were affected by the feeding time. Furthermore, we mapped the DEGs involved in retinol metabolism and the lysosome pathway. To our knowledge, this is the first comparative transcriptomic analysis of the hepatopancreas of E. sinensis based on different feeding times, which provides multi-level information to reveal the mechanism underlying the regulation of feeding rhythms in E. sinensis.
Collapse
Affiliation(s)
- Yingkai Xu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Baoli Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | | | - Ziwei Hung
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Nan Hu
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yuqiao Cai
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Yingdong Li
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Zhao C, Wen H, Huang S, Weng S, He J. A Novel Disease (Water Bubble Disease) of the Giant Freshwater Prawn Macrobrachium rosenbergii Caused by Citrobacter freundii: Antibiotic Treatment and Effects on the Antioxidant Enzyme Activity and Immune Responses. Antioxidants (Basel) 2022; 11:1491. [PMID: 36009210 PMCID: PMC9405353 DOI: 10.3390/antiox11081491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/10/2022] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii, is an important and economical aquaculture species widely farmed in tropical and subtropical areas of the world. A new disease, "water bubble disease (WBD)", has emerged and resulted in a large loss of M. rosenbergii cultured in China. A water bubble with a diameter of about 7 mm under the carapace represents the main clinical sign of diseased prawns. In the present study, Citrobacter freundii was isolated and identified from the water bubble. The optimum temperature, pH, and salinity of the C. freundii were 32 °C, 6, and 1%, respectively. A challenging experiment showed that C. freundii caused the same typical signs of WBD in prawns. Median lethal dose of the C. freundii to prawn was 104.94 CFU/g. According to the antibiogram tests of C. freundii, florfenicol and ofloxacin were selected to evaluate their therapeutic effects against C. freundii in prawn. After the challenge with C. freundii, 86.67% and 72.22% survival of protective effects against C. freundii were evaluated in the oral florfenicol pellets and oral ofloxacin pellets feding prawns, respectively, whereas the mortality of prawns without fed antibiotics was 93%. After antibiotic treatment and C. freundii infection, the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), malondialdehyde (MDA), acid phosphatase (ACP), alkaline phosphatase (ALP), and lysozyme (LZM) in the hemolymph and hepatopancreas of the prawns and the immune-related gene expression levels of Cu/Zn-SOD, CAT, GPx, GST, LZM, ACP, anti-lipopolysaccharide factor, crustin, cyclophilin A, and C-type lectin in hepatopancreas were all significantly changed, indicating that innate immune responses were induced by C. freundii. These results can be beneficial for the prevention and control of C. freundii in prawns.
Collapse
Affiliation(s)
- Caiyuan Zhao
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
| | - Huagen Wen
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shengsheng Huang
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Shaoping Weng
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China;
- Southtern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Science, Sun Yat-sen University, No.132 Waihuan Dong Road, Higher Education Mega Center, Guangzhou 510006, China; (H.W.); (S.H.); (S.W.)
| |
Collapse
|
4
|
Bowen L, Counihan KL, Ballachey B, Coletti H, Hollmen T, Pister B, Wilson TL. Monitoring nearshore ecosystem health using Pacific razor clams (Siliqua patula) as an indicator species. PeerJ 2020; 8:e8761. [PMID: 32185117 PMCID: PMC7060925 DOI: 10.7717/peerj.8761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/17/2020] [Indexed: 12/05/2022] Open
Abstract
An emerging approach to ecosystem monitoring involves the use of physiological biomarker analyses in combination with gene transcription assays. For the first time, we employed these tools to evaluate the Pacific razor clam (Siliqua patula), which is important both economically and ecologically, as a bioindicator species in the northeast Pacific. Our objectives were to (1) develop biomarker and gene transcription assays with which to monitor the health of the Pacific razor clam, (2) acquire baseline biomarker and gene transcription reference ranges for razor clams, (3) assess the relationship between physiological and gene transcription assays and (4) determine if site-level differences were present. Pacific razor clams were collected in July 2015 and 2016 at three sites within each of two national parks in southcentral Alaska. In addition to determining reference ranges, we found differences in biomarker assay and gene transcription results between parks and sites which indicate variation in both large-scale and local environmental conditions. Our intent is to employ these methods to evaluate Pacific razor clams as a bioindicator of nearshore ecosystem health. Links between the results of the biomarker and gene transcription assays were observed that support the applicability of both assays in ecosystem monitoring. However, we recognize the need for controlled studies to examine the range of responses in physiology and gene transcripts to different stressors.
Collapse
Affiliation(s)
- Lizabeth Bowen
- Western Ecological Research Center, U.S. Geological Survey, Davis, CA, USA
| | | | - Brenda Ballachey
- Alaska Science Center, U.S. Geological Survey, Anchorage, AK, USA
| | - Heather Coletti
- Inventory & Monitoring Program, Southwest Alaska Network, National Park Service, Fairbanks, AK, USA
| | - Tuula Hollmen
- College of Fisheries and Ocean Sciences, Alaska SeaLife Center and University of Alaska Fairbanks, Seward, AK, USA
| | - Benjamin Pister
- Ocean Alaska Science and Learning Center, National Park Service, Seward, AK, USA
| | - Tammy L Wilson
- Department of Natural Resource Management, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
5
|
Maltseva AL, Varfolomeeva MA, Lobov AA, Tikanova P, Panova M, Mikhailova NA, Granovitch AI. Proteomic similarity of the Littorinid snails in the evolutionary context. PeerJ 2020; 8:e8546. [PMID: 32095363 PMCID: PMC7024583 DOI: 10.7717/peerj.8546] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 01/10/2020] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The introduction of DNA-based molecular markers made a revolution in biological systematics. However, in cases of very recent divergence events, the neutral divergence may be too slow, and the analysis of adaptive part of the genome is more informative to reconstruct the recent evolutionary history of young species. The advantage of proteomics is its ability to reflect the biochemical machinery of life. It may help both to identify rapidly evolving genes and to interpret their functions. METHODS Here we applied a comparative gel-based proteomic analysis to several species from the gastropod family Littorinidae. Proteomes were clustered to assess differences related to species, geographic location, sex and body part, using data on presence/absence of proteins in samples and data on protein occurrence frequency in samples of different species. Cluster support was assessed using multiscale bootstrap resampling and the stability of clustering-using cluster-wise index of cluster stability. Taxon-specific protein markers were derived using IndVal method. Proteomic trees were compared to consensus phylogenetic tree (based on neutral genetic markers) using estimates of the Robinson-Foulds distance, the Fowlkes-Mallows index and cophenetic correlation. RESULTS Overall, the DNA-based phylogenetic tree and the proteomic similarity tree had consistent topologies. Further, we observed some interesting deviations of the proteomic littorinid tree from the neutral expectations. (1) There were signs of molecular parallelism in two Littoraria species that phylogenetically are quite distant, but live in similar habitats. (2) Proteome divergence was unexpectedly high between very closely related Littorina fabalis and L. obtusata, possibly reflecting their ecology-driven divergence. (3) Conservative house-keeping proteins were usually identified as markers for cryptic species groups ("saxatilis" and "obtusata" groups in the Littorina genus) and for genera (Littoraria and Echinolittorina species pairs), while metabolic enzymes and stress-related proteins (both potentially adaptively important) were often identified as markers supporting species branches. (4) In all five Littorina species British populations were separated from the European mainland populations, possibly reflecting their recent phylogeographic history. Altogether our study shows that proteomic data, when interpreted in the context of DNA-based phylogeny, can bring additional information on the evolutionary history of species.
Collapse
Affiliation(s)
- Arina L. Maltseva
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Marina A. Varfolomeeva
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Arseniy A. Lobov
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Regenerative Biomedicine, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Polina Tikanova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| | - Marina Panova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Department of Marine Sciences, Tjärnö, University of Gothenburg, Sweden
| | - Natalia A. Mikhailova
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
- Centre of Cell Technologies, Institute of Cytology Russian Academy of Sciences, St. Petersburg, Russia
| | - Andrei I. Granovitch
- Department of Invertebrate Zoology, St. Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
6
|
Stefani F, Casatta N, Ferrarin C, Izzotti A, Maicu F, Viganò L. Gene expression and genotoxicity in Manila clam (Ruditapes philippinarum) modulated by sediment contamination and lagoon dynamics in the Po river delta. MARINE ENVIRONMENTAL RESEARCH 2018; 142:257-274. [PMID: 30389237 DOI: 10.1016/j.marenvres.2018.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/18/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
The lagoons of the Po River delta are potentially exposed to complex mixtures of contaminants, nevertheless, there is a substantial lack of information about the biological effects of these contaminants in the Po delta lagoons. These environments are highly dynamic and the interactions between chemical and environmental stressors could prevent the proper identification of biological effects and their causes. In this study, we aimed to disentangle such interactions focusing on Manila clams, previously exposed to six lagoons of the Po delta, adopting three complementary tools: a) the detailed description via modelling techniques of lagoon dynamics for salinity and water temperature; b) the response sensitivity of a number of target genes (ahr, cyp4, ρ-gst, σ-gst, hsp22, hsp70, hsp90, ikb, dbh, ach, cat, Mn-sod, Cu/Zn-sod, cyp-a, flp, grx, TrxP) investigated in clam digestive glands by Real Time PCR; and c) the relevance of DNA adducts determined in clams as markers of exposure to genotoxic chemicals. The lagoons showed specific dynamics, and two of them (Marinetta and Canarin) could induce osmotic stress. A group of genes (ahr, cyp4, Mn-sod, σ-gst, hsp-22, cyp-a, TrxP) seemed to be associated with overall lagoon characteristics as may be described by salinity and its variations. Lagoon modelling and a second group of genes (hsp70, hsp90, cat, ikb, ach, grx, Cu/Zn-sod) also suggested that moderate increases of river discharge may imply worse exposure conditions. Oxidative stress seemed to be associated with such events but it was slightly evident also under normal exposure conditions. DNA adduct formation was mainly associated with overwhelmed antioxidant defences (e.g. low Cu/Zn-sod) or seemingly with their lack of response in due time. In Po delta lagoons, Manila clam can be affected by chemical and environmental factors which can contribute to induce oxidative stress, DNA adduct formation and, ultimately, to affect clam condition and health.
Collapse
Affiliation(s)
- Fabrizio Stefani
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Nadia Casatta
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy
| | - Christian Ferrarin
- CNR- National Research Council of Italy, ISMAR - Marine Sciences Institute in Venice, Castello 2737/f, 30122 Venezia, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genoa, Via Pastore 1, 16132, Genoa, Italy; IRCCS Policlinico San Martino, Genoa, Italy
| | - Francesco Maicu
- CNR- National Research Council of Italy, ISMAR - Marine Sciences Institute in Venice, Castello 2737/f, 30122 Venezia, Italy
| | - Luigi Viganò
- CNR- National Research Council of Italy, IRSA - Water Research Institute, Via del Mulino 19, 20861, Brugherio, MB, Italy.
| |
Collapse
|
7
|
Liu G, Chen M, Yu C, Wang W, Yang L, Li Z, Wang W, Chen J. Molecular cloning, characterization and functional analysis of a putative mitogen-activated protein kinase kinase kinase 4 (MEKK4) from blood clam Tegillarca granosa. FISH & SHELLFISH IMMUNOLOGY 2017; 66:372-381. [PMID: 28476674 DOI: 10.1016/j.fsi.2017.05.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The mitogen-activated protein kinase (MAPK) cascades stand for one of the most important signaling mechanisms in response to environmental stimuli. In the present study, we cloned and identified for the first time the full-length cDNA of MAPK kinase kinase 4 (TgMEKK4) from Blood clam Tegillarca granosa using rapid amplification of cDNA ends method. The full-length cDNA of TgMEKK4 was of 1605 bp in length, encoding a polypeptide of 364 amino acids with a predicted molecular mass of 41.22 kDa and theoretical isoelectric point of 6.29. The conserved MEKK4-domain was identified in TgMEKK4 by SMART program analysis. Homology analysis of the deduced amino acid sequence of TgMEKK4 with other known sequences revealed that TgMEKK4 shared 58%-80% identity to MEKK4s from other species. TgMEKK4 mRNA transcripts could be detected in all tissues examined with the highest expression level in the gill by qRT-PCR. The mRNA expression of TgMEKK4 was up-regulated significantly in hemocytes after Vibrio parahaemolyticus, Vibrio alginolyticus and Lipopolysaccharide (LPS) challenges. Overexpression of TgMEKK4 in HEK 293T cells resulted in the activation of JNK and ERK, but not p38. Consistently, In vivo study indicated that LPS stimulation enhanced JNK, ERK and p38 phosphorylation in blood clams. These results suggest that TgMEKK4 is a powerful factor in the regulation of genes that may be involved in innate immune response of blood clam.
Collapse
Affiliation(s)
- Guosheng Liu
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Mingliang Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China.
| | - Chen Yu
- School of Marine Sciences, Ningbo University, Ningbo, 315211 Zhejiang, China; State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Wei Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Lirong Yang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Zengpeng Li
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Weiyi Wang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China
| | - Jianming Chen
- State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005 Fujian, China.
| |
Collapse
|
8
|
Chemotactic Activity of Cyclophilin A in the Skin Mucus of Yellow Catfish (Pelteobagrus fulvidraco) and Its Active Site for Chemotaxis. Int J Mol Sci 2016; 17:ijms17091422. [PMID: 27589721 PMCID: PMC5037701 DOI: 10.3390/ijms17091422] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 01/18/2023] Open
Abstract
Fish skin mucus is a dynamic barrier for invading pathogens with a variety of anti-microbial enzymes, including cyclophilin A (CypA), a multi-functional protein with peptidyl-prolyl cis/trans isomerase (PPIase) activity. Beside various other immunological functions, CypA induces leucocytes migration in vitro in teleost. In the current study, we have discovered several novel immune-relevant proteins in yellow catfish skin mucus by mass spectrometry (MS). The CypA present among them was further detected by Western blot. Moreover, the CypA present in the skin mucus displayed strong chemotactic activity for yellow catfish leucocytes. Interestingly, asparagine (like arginine in mammals) at position 69 was the critical site in yellow catfish CypA involved in leucocyte attraction. These novel efforts do not only highlight the enzymatic texture of skin mucus, but signify CypA to be targeted for anti-inflammatory therapeutics.
Collapse
|
9
|
Xu T, Xie J, Yang S, Ye S, Luo M, Wu X. First characterization of three cyclophilin family proteins in the oyster, Crassostrea ariakensis Gould. FISH & SHELLFISH IMMUNOLOGY 2016; 55:257-266. [PMID: 27238430 DOI: 10.1016/j.fsi.2016.05.037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
Cyclophilins (CyPs) are a family of proteins that bind the immunosuppressive agent cyclosporin A (CsA) with high-affinity and belong to one of the three superfamilies of peptidyl-prolyl cis-trans isomerases (PPIase). In this report, three cyclophilin genes (Ca-CyPs), including Ca-CyPA, Ca-CyPB and Ca-PPIL3, were identified from oyster, Crassostrea ariakensis Gould in which Ca-CyPA encodes a protein with 165 amino acid sequences, Ca-CyPB encodes a protein with 217 amino acid sequences and Ca-PPIL3 encodes a protein with 162 amino acid sequences. All of the three Ca-CyPs genes contain a typical CyP-PPIase domain with its signature sequences and Ca-CyPB contains an N-signal peptide sequences. Tissue distribution study revealed that Ca-CyPs were ubiquitously expressed in all examined tissues and the highest levels were observed in hemocytes. RLO incubation upregulated the mRNA expression levels of Ca-CyPs, indicating that three Ca-CyPs might be involved in oyster immune response against RLO infection.
Collapse
Affiliation(s)
- Ting Xu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Jiasong Xie
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shoubao Yang
- School of Life Sciences, Shaoxing University, Shaoxing, Zhejiang, China
| | - Shigen Ye
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ming Luo
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinzhong Wu
- Laboratory of Marine Life Science and Technology, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Ocean College, Qinzhou University, Qinzhou City, Guangxi, China.
| |
Collapse
|
10
|
Song L, Wang L, Zhang H, Wang M. The immune system and its modulation mechanism in scallop. FISH & SHELLFISH IMMUNOLOGY 2015; 46:65-78. [PMID: 25797696 DOI: 10.1016/j.fsi.2015.03.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
11
|
Dong X, Qin Z, Hu X, Lan J, Yuan G, Asim M, Zhou Y, Ai T, Mei J, Lin L. Molecular cloning and functional characterization of cyclophilin A in yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2015; 45:422-30. [PMID: 25882636 DOI: 10.1016/j.fsi.2015.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/31/2015] [Accepted: 04/04/2015] [Indexed: 05/04/2023]
Abstract
Cyclophilin A (CypA) is a ubiquitously expressed protein which involves in diverse pathological conditions including infection and inflammation. In this report, a CypA gene (designated as YC-CypA) was cloned from yellow catfish (Pelteobagrus fulvidraco) which is an important cultured fish species in Asian countries. The open reading frame (ORF) of YC-CypA encoded a polypeptide of 164 amino acids with calculated molecular weight of 17.70 kDa. The deduced amino acid sequences of the YC-CypA shared highly conserved structures with CypAs from the other species, indicating that YC-CypA should be a new member of the CypA family. Full-length YC-CypA protein was expressed in Escherichia coli and specific polyclonal antibody against YC-CypA was generated. The YC-CypA protein showed chemotactic activity by transwell migration assay. The mRNA and protein of YC-CypA could be detected in all examined tissues with relatively higher mRNA level in spleen and higher protein level in head kidney, respectively. The temporal expression patterns of YC-CypA, IL-1β and TNF-α mRNAs were analyzed in the liver, spleen and head kidney post of Edwardsiella ictaluri infection. By immunohistochemistry assay, slight enhancement of YC-CypA protein was observed in the liver, spleen, body kidney and head kidney of yellow catfish infected with E. ictaluri. In conclusion, YC-CypA of yellow catfish showed chemotactic activity in vitro and might have been involved in cytokines secretion in yellow catfish during the infection of E. ictaluri.
Collapse
Affiliation(s)
- Xingxing Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Zhendong Qin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Xianqin Hu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, Hubei 430023, China
| | - Jiangfeng Lan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Gailing Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Muhammad Asim
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yang Zhou
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China
| | - Taoshan Ai
- Wuhan Fishery Research Institute, Wuhan, Hubei 430207, China
| | - Jie Mei
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, Hubei 430070, China.
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, Hubei 430070, China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, Hubei 430070, China.
| |
Collapse
|
12
|
Yeh HY, Shoemaker CA, Klesius PH. Chemotactic activity of channel catfish, Ictalurus punctatus (Rafinesque), recombinant cyclophilin A. JOURNAL OF FISH DISEASES 2013; 36:1041-1046. [PMID: 23634847 DOI: 10.1111/jfd.12115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 03/08/2013] [Accepted: 03/16/2013] [Indexed: 06/02/2023]
Affiliation(s)
- H-Y Yeh
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, Auburn, AL, USA
| | | | | |
Collapse
|
13
|
Chen L, Mu C, Zhao J, Wang C. Molecular cloning and characterization of two isoforms of cyclophilin A gene from Venerupis philippinarum. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1218-1223. [PMID: 21782028 DOI: 10.1016/j.fsi.2011.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/23/2011] [Accepted: 07/02/2011] [Indexed: 05/31/2023]
Abstract
Cyclophilin A (CypA) is a ubiquitously distributed intracellular protein belonging to the immunophilin family, which is recognized as the cell receptor for the potent immunosuppressive drug cyclosporine A. In the present study, two isoforms of cyclophilin A gene (named as VpCypA1 and VpCypA2) were isolated and characterized from Venerupis philippinarum by RACE approaches. Both VpCypA1 and VpCypA2 possessed all conserved features critical for the fundamental structure and function of CypA, indicating that the two isoforms of cyclophilin A should be new members of CypA family. The expression of VpCypA2 mRNA in haemocytes was significantly up-regulated and the highest expression level was detected at 96 h post-infection with 7.7-fold increase compared with that in the blank group. On the contrary, the relative expression level of VpCypA1 mRNA was down-regulated rapidly at 6 h post-infection and reached 0.4-fold of the control group. They exhibited different expression profile and identical effect of immune modulation, which might suggest the two VpCypA isoforms exert their function in a manner of synergy. These results provide valuable information for further exploring the roles of cyclophilin A in the immune responses of V. philippinarum.
Collapse
Affiliation(s)
- Leilei Chen
- Faculty of Life Science and Biotechnology of Ningbo University, Ningbo 315211, PR China
| | | | | | | |
Collapse
|
14
|
Li HJ, Yang Q, Gao XG, Su H, Wang J, He CB. Identification and expression of a putative LPS-induced TNF-α factor from Asiatic hard clam Meretrix meretrix. Mol Biol Rep 2011; 39:865-71. [PMID: 21567197 DOI: 10.1007/s11033-011-0810-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Accepted: 04/30/2011] [Indexed: 12/30/2022]
Abstract
LPS-induced TNF-α (LITAF) is a novel transcriptional factor that mediates the expression of inflammatory cytokines in LPS-induced processes. In the present study, the full-length cDNA encoding LITAF (designated as Mm-LITAF) was identified from Asiatic hard clam, Meretrix meretrix, by expressed sequence tag and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of Mm-LITAF was 1653 bp, consisting of a 5' untranslated region (UTR) of 91 bp, a 3'UTR of 1166 bp with one cytokine RNA instability motif (ATTTA) and one polyadenylation signal (AATAAA), and an open reading frame (ORF) of 396 bp encoding a polypeptide of 131 amino acids with a theoretical isoelectric point of 7.49, and predicted molecular weight of 14.47 kDa. The deduced amino acid of Mm-LITAF shared 29-63% similarity with the LITAFs from other species, indicating that Mm-LITAF should be a member of the LITAF family. Two highly conserved CXXC motifs forming a compact Zn(2+)-binding structure were also identified in Mm-LITAF. A quantitative reverse transcriptase real-time PCR (qRT-PCR) assay was developed to assess the expression of Mm-LITAF mRNA in different tissues, and the temporal expression of Mm-LITAF in clams challenged with Vibrio anguillarum. The mRNA transcript of Mm-LITAF could be detected in all the examined tissues with the highest expression level in the gill. Mm-LITAF expression was up-regulated significantly at 16 h in the gill and at 8 h in haemocytes after bacterial challenge, respectively. These results suggest that the Mm-LITAF is a constitutive and inducible acute-phase protein that perhaps involved in the innate immune response of hard clam.
Collapse
Affiliation(s)
- Hong-Jun Li
- Liaoning Key Laboratory of Marine Fishery Molecular Biology, Liaoning Ocean and Fishery Science Institute, Dalian 116023, China
| | | | | | | | | | | |
Collapse
|
15
|
Xu C, Meng S, Liu X, Sun L, Liu W. Chicken cyclophilin A is an inhibitory factor to influenza virus replication. Virol J 2010; 7:372. [PMID: 21192783 PMCID: PMC3022683 DOI: 10.1186/1743-422x-7-372] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/30/2010] [Indexed: 11/20/2022] Open
Abstract
Background The importance of enhancing influenza resistance in domestic flocks is quite clear both scientifically and economically. Chicken is very susceptible to influenza virus. It has been reported that human cellular cyclophilin A (CypA) impaired influenza virus infection in 293T cells. Whether chicken CypA (chCypA) inhibits influenza virus replication is not known. The molecular mechanism of resistance in chicken to influenza virus remains to be studied. Results The chCypA gene was isolated and characterized in the present study. It contained an ORF of 498 bp encoding a polypeptide of 165 amino acids with an estimated molecular mass of 17.8 kDa sharing high identity with mammalian CypA genes. The chCypA demonstrated an anti-influenza activity as expected. ChCypA protein was shown to be able to specifically interact with influenza virus M1 protein. Cell susceptibility to influenza virus was reduced by over-expression of chCypA in CEF cells. The production of recombinant influenza virus A/WSN/33 reduced to one third in chCypA expressing cells comparing to chCypA absent cells. ChCypA was widely distributed in a variety of chicken tissues. It localized in cytoplasm of chicken embryo fibroblast (CEF) cells. Avian influenza virus infection induced its translocation from cytoplasm into nucleus. ChCypA expression was not significantly up-regulated by avian influenza virus infection. The present study indicated that chCypA was an inhibitory protein to influenza virus replication, suggesting a role as an intrinsic immunity factor against influenza virus infection. Conclusion The present data demonstrates that chCypA possesses anti-influenza virus activity which allows the consideration of genetic improvement for resistance to influenza virus in chickens.
Collapse
Affiliation(s)
- Chongfeng Xu
- Graduate University of Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | |
Collapse
|
16
|
He X, Zhang Y, Wu X, Xiao S, Yu Z. Cloning and characterization of two ferritin subunit genes from bay scallop, Argopecten irradians (Lamarck 1819). Mol Biol Rep 2010; 38:2125-32. [PMID: 20878240 DOI: 10.1007/s11033-010-0339-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 09/04/2010] [Indexed: 10/19/2022]
Abstract
We have cloned two full-length cDNAs from two ferritin genes (Aifer1 and Aifer2) of the bay scallop, Argopecten irradians (Lamarck 1819). The cDNAs are 1,019 and 827 bp in length and encode proteins of 171 and 173 amino acids, respectively. The 5' UTR of each contains a conserved iron response element (IRE) motif. Sequence analyses reveal that both proteins belong to the H-ferritin family with seven conserved amino acids in the ferroxidase center. Highest expression of Aifer1 is found in the mantle and adductor muscle, while that of Aifer2 is only in the latter tissue. These Aifer genes are differentially expressed following bacterial challenge of the scallop. The expression level of Aifer1 was acutely up-regulated (over 10 fold) at 6 h post-bacteria injection, whereas Aifer2 expression was not significantly changed by bacterial challenge. Both genes were effectively expressed in E. coli BL21 (DE3), producing proteins of similar molecular weight, approximately 23 kDa. Purified Aifer1 and Aifer2 proteins exhibited iron-chelating activity of 33.1% and 30.4%, respectively, at a concentration of 5 mg/ml. Cations, Mg(2+), Zn(2+) and Ca(2+), depressed iron-chelating activity of both proteins. Additionally, the E. coli cells expressing recombinant Aifer1 and Aifer2 showed tolerance to H(2)O(2), providing a direct evidence of the antioxidation function of ferritin. The results presented in this study suggest important roles of Aifer1 and Aifer2 in the regulation of iron homeostasis, immune response, and antioxidative stress in A. irradians.
Collapse
Affiliation(s)
- Xiaocui He
- Key Laboratory of Marine Bio-resource Sustainable Utilization and Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | | | | | | | | |
Collapse
|
17
|
Yao X, Zhang J, Sun J, Liu B. Recombinant expression, characterization and expressional analysis of clam Meretrix meretrix cathepsin B, an enzyme involved in nutrient digestion. Mol Biol Rep 2010; 38:1861-8. [DOI: 10.1007/s11033-010-0303-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 09/03/2010] [Indexed: 11/29/2022]
|
18
|
Identification of host-defense genes and development of microsatellite markers from ESTs of hard clam Meretrix meretrix. Mol Biol Rep 2010; 38:769-75. [PMID: 20376702 DOI: 10.1007/s11033-010-0165-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/30/2010] [Indexed: 12/22/2022]
Abstract
The hard clam Meretrix meretrix is an economically important shellfish in China. However, genomic research on this species is still at early stage, and few genomic resources are available. The objective of the present study was to generate expressed sequence tags (ESTs), and identify host-defense genes and microsatellite markers for M. meretrix. Three cDNA libraries for intestine, mantle and hepatopancreas were constructed using highly efficient SMART (Switching Mechanism At 5' end of the RNA Transcript) method. A total of 3224 random clones were single-pass sequenced from 5'-ends, resulting in 3129 high-quality (>100 bp) ESTs averaging 734 bp. All the ESTs were assembled by software Cap 3, producing 1796 unigenes-1490 singletons and 306 contigs. All the unigenes were compared to the public protein database using tblastx, and 696 (38.8%) were homologues to known genes while the remaining 1100 (61.2%) appeared to be novel sequences. A total of 31 EST clusters were related to immune and defense functions. They included immune recognition receptors, proteases and protease inhibitors, and other immune-related genes. The screening of 1796 unigenes identified 55 (3.1%) microsatellite-containing sequences, with 20 having sufficient flanking sequences for primer design. Polymerase chain reaction amplification was successful for 12 primer pairs and 7 of them showed polymorphic. The EST collection and microsatellite markers obtained in this study provide a useful resource for further gene discovery and population genetic analysis in M. meretrix.
Collapse
|