1
|
Xiao K, Zhu H, Zhu X, Liu Z, Wang Y, Pu W, Guan P, Hu J. Overexpression of PsoRPM3, an NBS-LRR gene isolated from myrobalan plum, confers resistance to Meloidogyne incognita in tobacco. PLANT MOLECULAR BIOLOGY 2021; 107:129-146. [PMID: 34596818 DOI: 10.1007/s11103-021-01185-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGES We reported an NBS-LRR gene, PsoRPM3, is highly expressed following RKN infection, initiating an HR response that promotes plant resistance. Meloidogyne spp. are root-knot nematodes (RKNs) that cause substantial economic losses worldwide. Screening for resistant tree resources and identifying plant resistance genes is currently the most effective way to prevent RKN infestations. Here, we cloned a novel TIR-NB-LRR-type resistance gene, PsoRPM3, from Xinjiang wild myrobalan plum (Prunus sogdiana Vassilcz.) and demonstrated that its protein product localized to the nucleus. In response to Meloidogyne incognita infection, PsoRPM3 gene expression levels were significantly higher in resistant myrobalan plum plants compared to susceptible plants. We investigated this difference, discovering that the - 309 to - 19 bp region of the susceptible PsoRPM3 promoter was highly methylated. Indeed, heterologous expression of PsoRPM3 significantly enhanced the resistance of susceptible tobacco plants to M. incognita. Moreover, transient expression of PsoRPM3 induced a hypersensitive response in tobacco, whereas RNAi-mediated silencing of PsoRPM3 in transgenic tobacco reduced this hypersensitive response. Several hypersensitive response marker genes were considerably up-regulated in resistant myrobalan plum plants when compared with susceptible counterparts inoculated with M. incognita. PsoPR1a (a SA marker gene), PsoPR2 (a JA marker gene), and PsoACS6 (an ET signaling marker gene) were all more highly expressed in resistant than in susceptible plants. Together, these results support a model in which PsoRPM3 is highly expressed following RKN infection, initiating an HR response that promotes plant resistance through activated salicylic acid, jasmonic acid, and ethylene signaling pathways.
Collapse
Affiliation(s)
- Kun Xiao
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| | - Haifeng Zhu
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| | - Xiang Zhu
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
- Institute of Laboratory Animal Science, Guizhou University of Traditional Chinese, Guiyang, China
| | - Zhenhua Liu
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| | - Yan Wang
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| | - Wenjiang Pu
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| | - Pingyin Guan
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China
| | - Jianfang Hu
- Laboratory of Fruit Physiology and Molecular Biology, China Agricultural University, Beijing, China.
| |
Collapse
|
2
|
Nucleotide-Binding Leucine-Rich Repeat Genes CsRSF1 and CsRSF2 Are Positive Modulators in the Cucumis sativus Defense Response to Sphaerotheca fuliginea. Int J Mol Sci 2021; 22:ijms22083986. [PMID: 33924330 PMCID: PMC8069588 DOI: 10.3390/ijms22083986] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cucumber powdery mildew caused by Sphaerotheca fuliginea is a leaf disease that seriously affects cucumber's yield and quality. This study aimed to report two nucleotide-binding site-leucine-rich repeats (NBS-LRR) genes CsRSF1 and CsRSF2, which participated in regulating the resistance of cucumber to S. fuliginea. The subcellular localization showed that the CsRSF1 protein was localized in the nucleus, cytoplasm, and cell membrane, while the CsRSF2 protein was localized in the cell membrane and cytoplasm. In addition, the transcript levels of CsRSF1 and CsRSF2 were different between resistant and susceptible cultivars after treatment with exogenous substances, such as abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA), ethephon (ETH), gibberellin (GA) and hydrogen peroxide (H2O2). The expression analysis showed that the transcript levels of CsRSF1 and CsRSF2 were correlated with plant defense response against S. fuliginea. Moreover, the silencing of CsRSF1 and CsRSF2 impaired host resistance to S. fuliginea, but CsRSF1 and CsRSF2 overexpression improved resistance to S. fuliginea in cucumber. These results showed that CsRSF1 and CsRSF2 genes positively contributed to the resistance of cucumber to S. fuliginea. At the same time, CsRSF1 and CsRSF2 genes could also regulate the expression of defense-related genes. The findings of this study might help enhance the resistance of cucumber to S. fuliginea.
Collapse
|
3
|
Herath V, Verchot J. Transcriptional Regulatory Networks Associate with Early Stages of Potato Virus X Infection of Solanum tuberosum. Int J Mol Sci 2021; 22:2837. [PMID: 33799566 PMCID: PMC8001266 DOI: 10.3390/ijms22062837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/04/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Potato virus X (PVX) belongs to genus Potexvirus. This study characterizes the cellular transcriptome responses to PVX infection in Russet potato at 2 and 3 days post infection (dpi). Among the 1242 differentially expressed genes (DEGs), 268 genes were upregulated, and 37 genes were downregulated at 2 dpi while 677 genes were upregulated, and 265 genes were downregulated at 3 dpi. DEGs related to signal transduction, stress response, and redox processes. Key stress related transcription factors were identified. Twenty-five pathogen resistance gene analogs linked to effector triggered immunity or pathogen-associated molecular pattern (PAMP)-triggered immunity were identified. Comparative analysis with Arabidopsis unfolded protein response (UPR) induced DEGs revealed genes associated with UPR and plasmodesmata transport that are likely needed to establish infection. In conclusion, this study provides an insight on major transcriptional regulatory networked involved in early response to PVX infection and establishment.
Collapse
Affiliation(s)
- Venura Herath
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
- Department of Agriculture Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77802, USA;
| |
Collapse
|
4
|
Wang J, Tian W, Tao F, Wang J, Shang H, Chen X, Xu X, Hu X. TaRPM1 Positively Regulates Wheat High-Temperature Seedling-Plant Resistance to Puccinia striiformis f. sp. tritici. FRONTIERS IN PLANT SCIENCE 2020; 10:1679. [PMID: 32010164 PMCID: PMC6974556 DOI: 10.3389/fpls.2019.01679] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 11/28/2019] [Indexed: 05/13/2023]
Abstract
RPM1 is a CC-NBS-LRR protein that was first shown to be required for resistance to Pseudomonas syringae pv. maculicola in Arabidopsis thaliana. Our previous study showed that TaRPM1 gene in wheat was upregulated about six times following infection by Puccinia striiformis f. sp. tritici (Pst) under high temperature, compared with normal temperature. To study the function of TaRPM1 in wheat high-temperature seedling-plant (HTSP) resistance to Pst, the full length of TaRPM1 was cloned, with three copies each located on chromosomes 1A, 1B, and 1D. Transient expression of the TaRPM1-GFP fusion protein in Nicotiana benthamiana indicated that TaRPM1 localizes in the cytoplasm and nucleus. Profiling TaRPM1 expression indicated that TaRPM1 transcription was rapidly upregulated upon Pst inoculation under high temperature. In addition, TaRPM1 was induced by exogenous salicylic acid hormone application. Silencing TaRPM1 in wheat cultivar Xiaoyan 6 (XY 6) resulted in reduced HTSP resistance to Pst in terms of reduced number of necrotic cells and increased uredinial length, whereas no obvious phenotypic changes were observed in TaRPM1-silenced leaves under normal temperature. Related defense genes TaPR1 and TaPR2 were downregulated in TaRPM1-silenced plants under high temperature. We conclude that TaRPM1 is involved in HTSP resistance to Pst in XY 6.
Collapse
Affiliation(s)
- Jiahui Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wei Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Fei Tao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jingjing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hongsheng Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xianming Chen
- Agricultural Research Service, United States Department of Agriculture and Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East Malling Research, Kent, United Kingdom
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Duan F, Song W. Overexpression of SoCYP85A1 Increases the Accumulation of Castasterone and Confers Enhanced Black Shank Tolerance in Tobacco Through Modulation of the Antioxidant Enzymes' Activities. FRONTIERS IN PLANT SCIENCE 2019; 10:349. [PMID: 30984218 PMCID: PMC6448038 DOI: 10.3389/fpls.2019.00349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Black shank caused by Phytophthora nicotianae is one of the most devastating diseases in tobacco production. In this study, we characterized a novel cytochromic resistance gene, SoCYP85A1, from spinach, which was upregulated in response to P. nicotianae infection. Overexpression of SoCYP85A1 in tobacco resulted in remarkable resistance to pathogen inoculation, with diverse resistance levels in different transgenic lines. Meanwhile, a significant accumulation of castasterone (CS) was detected in transgenic plants when challenged with the pathogen. Moreover, activities of antioxidant enzymes were enhanced by SoCYP85A1 in the transgenic lines as compared to those in the wild types inoculated with P. nicotianae. In addition, the alteration of CS content resulted in interference of phytohormone homeostasis. Overall, these results demonstrate that SoCYP85A1 can participate in the defense response to P. nicotianae through the involvement of defense enzymes and by interaction with certain phytohormones. Our findings suggest that SoCYP85A1 could be used as a potential candidate gene for improving resistance to black shank disease in tobacco and other economic crops.
Collapse
|
6
|
Xu Y, Liu F, Zhu S, Li X. Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis. PLANT CELL REPORTS 2018; 37:1523-1532. [PMID: 30039463 DOI: 10.1007/s00299-018-2324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Expression of the ZmNBS42 in Arabidopsis plants conferred resistance to bacterial pathogens, providing potential resistance enhancement of maize in further genetic breeding. Nucleotide-binding site (NBS) domain proteins play critical roles in disease resistance. In this study, we isolate a novel NBS gene ZmNBS42 from maize and systematically investigate its function on disease resistance. We find that the expression levels of ZmNBS42 in maize leaf were strikingly increased in response to Bipolaris maydis inoculation and SA treatment. The spatial expression pattern analysis reveals that, during development, ZmNBS42 is ubiquitously highly expressed in maize root, leaf, stem, internode and seed, but lowly expressed in pericarp and embryo. To better understand the roles of ZmNBS42, we overexpressed ZmNBS42 in heterologous systems. Transient overexpression of ZmNBS42 in the leaves of Nicotiana benthamiana induces a hypersensitive response. ZmNBS42 overexpression (ZmNBS42-OE) Arabidopsis plants produced more SA content than Col-0 plants, and increased the expression levels of some defense-responsive genes compared to Col-0 plants. Moreover, the ZmNBS42-OE Arabidopsis plants displayed enhanced resistance against Pseudomonas syringae pathovar tomato DC3000 (Pst DC3000). These results together suggest that ZmNBS42 can serve as an important regulator in disease resistance, thus better understanding of ZmNBS42 would benefit the resistance enhancement in maize breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
7
|
Xu Y, Liu F, Zhu S, Li X. The Maize NBS-LRR Gene ZmNBS25 Enhances Disease Resistance in Rice and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1033. [PMID: 30065743 PMCID: PMC6056734 DOI: 10.3389/fpls.2018.01033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/25/2018] [Indexed: 05/05/2023]
Abstract
Nucleotide-binding site-leucine-rich repeat (NBS-LRR) domain proteins are immune sensors and play critical roles in plant disease resistance. In this study, we cloned and characterized a novel NBS-LRR gene ZmNBS25 in maize. We found that ZmNBS25 could response to pathogen inoculation and salicylic acid (SA) treatment in maize, and transient overexpression of ZmNBS25 induced a hypersensitive response in tobacco. High-performance liquid chromatography (HPLC) analysis showed that, compared to control plants, ZmNBS25 overexpression (ZmNBS25-OE) in Arabidopsis and rice resulted in higher SA levels. By triggering the expression of certain defense-responsive genes, ZmNBS25-OE enhanced the resistance of Arabidopsis and rice to Pseudomonas syringae pv. tomato DC3000 and sheath blight disease, respectively. Moreover, we found little change of grain size and 1000-grain weight between ZmNBS25-OE rice lines and controls. Together, our results suggest that ZmNBS25 can function as a disease resistance gene across different species, being a valuable candidate for engineering resistance in breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Suwen Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- *Correspondence: Xiaoyu Li, ;
| |
Collapse
|
8
|
Zhang C, Chen H, Cai T, Deng Y, Zhuang R, Zhang N, Zeng Y, Zheng Y, Tang R, Pan R, Zhuang W. Overexpression of a novel peanut NBS-LRR gene AhRRS5 enhances disease resistance to Ralstonia solanacearum in tobacco. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:39-55. [PMID: 27311738 PMCID: PMC5253469 DOI: 10.1111/pbi.12589] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/16/2016] [Accepted: 06/10/2016] [Indexed: 05/20/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is a ruinous soilborne disease affecting more than 450 plant species. Efficient control methods for this disease remain unavailable to date. This study characterized a novel nucleotide-binding site-leucine-rich repeat resistance gene AhRRS5 from peanut, which was up-regulated in both resistant and susceptible peanut cultivars in response to R. solanacearum. The product of AhRRS5 was localized in the nucleus. Furthermore, treatment with phytohormones such as salicylic acid (SA), abscisic acid (ABA), methyl jasmonate (MeJA) and ethephon (ET) increased the transcript level of AhRRS5 with diverse responses between resistant and susceptible peanuts. Abiotic stresses such as drought and cold conditions also changed AhRRS5 expression. Moreover, transient overexpression induced hypersensitive response in Nicotiana benthamiana. Overexpression of AhRRS5 significantly enhanced the resistance of heterogeneous tobacco to R. solanacearum, with diverse resistance levels in different transgenic lines. Several defence-responsive marker genes in hypersensitive response, including SA, JA and ET signals, were considerably up-regulated in the transgenic lines as compared with the wild type inoculated with R. solanacearum. Nonexpressor of pathogenesis-related gene 1 (NPR1) and non-race-specific disease resistance 1 were also up-regulated in response to the pathogen. These results indicate that AhRRS5 participates in the defence response to R. solanacearum through the crosstalk of multiple signalling pathways and the involvement of NPR1 and R gene signals for its resistance. This study may guide the resistance enhancement of peanut and other economic crops to bacterial wilt disease.
Collapse
Affiliation(s)
- Chong Zhang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Hua Chen
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Tiecheng Cai
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ye Deng
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ruirong Zhuang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Ning Zhang
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yuanhuan Zeng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| | - Yixiong Zheng
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
- College of AgronomyZhongkai Agriculture and Engineering CollegeGuangzhouGuangdongChina
| | - Ronghua Tang
- Cash Crops Research InstituteGuangxi Academy of Agricultural SciencesNanningChina
| | - Ronglong Pan
- Department of Life Science and Institute of Bioinformatics and Structural BiologyCollege of Life ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Weijian Zhuang
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
- Fujian Key Laboratory of Crop Molecular and Cell BiologyFujian Agriculture and Forestry UniversityFuzhouFujianChina
| |
Collapse
|
9
|
Pilotti M, Brunetti A, Uva P, Lumia V, Tizzani L, Gervasi F, Iacono M, Pindo M. Kinase domain-targeted isolation of defense-related receptor-like kinases (RLK/Pelle) in Platanus×acerifolia: phylogenetic and structural analysis. BMC Res Notes 2014; 7:884. [PMID: 25486898 PMCID: PMC4295470 DOI: 10.1186/1756-0500-7-884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 11/18/2014] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Plant receptor-like kinase (RLK/Pelle) family regulates growth and developmental processes and interaction with pathogens and symbionts.Platanaceae is one of the earliest branches of Eudicots temporally located before the split which gave rise to Rosids and Asterids. Thus investigations into the RLK family in Platanus can provide information on the evolution of this gene family in the land plants.Moreover RLKs are good candidates for finding genes that are able to confer resistance to Platanus pathogens. RESULTS Degenerate oligonucleotide primers targeting the kinase domain of stress-related RLKs were used to isolate for the first time 111 RLK gene fragments in Platanus×acerifolia. Sequences were classified as candidates of the following subfamilies: CrRLK1L, LRR XII, WAK-like, and LRR X-BRI1 group. All the structural features typical of the RLK kinase domain were identified, including the non-RD motif which marks potential pathogen recognition receptors (PRRs). The LRR XII candidates, whose counterpart in Arabidopsis and rice comprises non-RD PRRs, were mostly non-RD kinases, suggesting a group of PRRs. Region-specific signatures of a relaxed purifying selection in the LRR XII candidates were also found, which is novel for plant RLK kinase domain and further supports the role of LRR XII candidates as PRRs. As we obtained CrRLK1L candidates using primers designed on Pto of tomato, we analysed the phylogenetic relationship between CrRLK1L and Pto-like of plant species. We thus classified all non-solanaceous Pto-like genes as CrRLK1L and highlighted for the first time the close phylogenetic vicinity between CrRLK1L and Pto group. The origins of Pto from CrRLK1L is proposed as an evolutionary mechanism. CONCLUSIONS The signatures of relaxed purifying selection highlight that a group of RLKs might have been involved in the expression of phenotypic plasticity and is thus a good candidate for investigations into pathogen resistance.Search of Pto-like genes in Platanus highlighted the close relationship between CrRLK1L and Pto group. It will be exciting to verify if sensu strictu Pto are present in taxonomic groups other than Solanaceae, in order to further clarify the evolutionary link with CrRLK1L.We obtained a first valuable resource useful for an in-depth study on stress perception systems.
Collapse
Affiliation(s)
- Massimo Pilotti
- />Plant Pathology Research Center, CRA-PAV Agricultural Research Council, V. C.G. Bertero 22, 00156 Rome, Italy
| | - Angela Brunetti
- />Plant Pathology Research Center, CRA-PAV Agricultural Research Council, V. C.G. Bertero 22, 00156 Rome, Italy
| | - Paolo Uva
- />CRS4 Bioinformatics Laboratory POLARIS Science and Technology Park, 09010 Pula, Cagliari, Italy
| | - Valentina Lumia
- />Plant Pathology Research Center, CRA-PAV Agricultural Research Council, V. C.G. Bertero 22, 00156 Rome, Italy
| | - Lorenza Tizzani
- />Plant Pathology Research Center, CRA-PAV Agricultural Research Council, V. C.G. Bertero 22, 00156 Rome, Italy
| | - Fabio Gervasi
- />Fruit Tree Research Center, CRA-FRU Agricultural Research Council, V. Fioranello, 52, 00134 Rome, Italy
| | - Michele Iacono
- />Roche Diagnostics SpA, V. G.B. Stucchi 110, 20052 Monza Milano, Italy
| | - Massimo Pindo
- />Research and Innovation Centre, Edmund Mach Foundation, V. E. Mach 1, 38010 San Michele a/A, Trento, Italy
| |
Collapse
|
10
|
Liu Z, Feng S, Pandey MK, Chen X, Culbreath AK, Varshney RK, Guo B. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:453-461. [PMID: 23384141 DOI: 10.1111/jipb.12037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
Low genetic diversity makes peanut (Arachis hypogaea L.) very vulnerable to plant pathogens, causing severe yield loss and reduced seed quality. Several hundred partial genomic DNA sequences as nucleotide-binding-site leucine-rich repeat (NBS-LRR) resistance genes (R) have been identified, but a small portion with expressed transcripts has been found. We aimed to identify resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs) and to develop polymorphic markers. The protein sequences of 54 known R genes were used to identify homologs from peanut ESTs from public databases. A total of 1,053 ESTs corresponding to six different classes of known R genes were recovered, and assembled 156 contigs and 229 singletons as peanut-expressed RGAs. There were 69 that encoded for NBS-LRR proteins, 191 that encoded for protein kinases, 82 that encoded for LRR-PK/transmembrane proteins, 28 that encoded for Toxin reductases, 11 that encoded for LRR-domain containing proteins and four that encoded for TM-domain containing proteins. Twenty-eight simple sequence repeats (SSRs) were identified from 25 peanut expressed RGAs. One SSR polymorphic marker (RGA121) was identified. Two polymerase chain reaction-based markers (Ahsw-1 and Ahsw-2) developed from RGA013 were homologous to the Tomato Spotted Wilt Virus (TSWV) resistance gene. All three markers were mapped on the same linkage group AhIV. These expressed RGAs are the source for RGA-tagged marker development and identification of peanut resistance genes.
Collapse
Affiliation(s)
- Zhanji Liu
- University of Georgia, Department of Plant Pathology, Tifton, GA 31793, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Liu Z, Crampton M, Todd A, Kalavacharla V. Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2012; 12:42. [PMID: 22443214 PMCID: PMC3353201 DOI: 10.1186/1471-2229-12-42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/23/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is one of the most important legumes in the world. Several diseases severely reduce bean production and quality; therefore, it is very important to better understand disease resistance in common bean in order to prevent these losses. More than 70 resistance (R) genes which confer resistance against various pathogens have been cloned from diverse plant species. Most R genes share highly conserved domains which facilitates the identification of new candidate R genes from the same species or other species. The goals of this study were to isolate expressed R gene-like sequences (RGLs) from 454-derived transcriptomic sequences and expressed sequence tags (ESTs) of common bean, and to develop RGL-tagged molecular markers. RESULTS A data-mining approach was used to identify tentative P. vulgaris R gene-like sequences from approximately 1.69 million 454-derived sequences and 116,716 ESTs deposited in GenBank. A total of 365 non-redundant sequences were identified and named as common bean (P. vulgaris = Pv) resistance gene-like sequences (PvRGLs). Among the identified PvRGLs, about 60% (218 PvRGLs) were from 454-derived sequences. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed that PvRGLs were actually expressed in the leaves of common bean. Upon comparison to P. vulgaris genomic sequences, 105 (28.77%) of the 365 tentative PvRGLs could be integrated into the existing common bean physical map. Based on the syntenic blocks between common bean and soybean, 237 (64.93%) PvRGLs were anchored on the P. vulgaris genetic map and will need to be mapped to determine order. In addition, 11 sequence-tagged-site (STS) and 19 cleaved amplified polymorphic sequence (CAPS) molecular markers were developed for 25 unique PvRGLs. CONCLUSIONS In total, 365 PvRGLs were successfully identified from 454-derived transcriptomic sequences and ESTs available in GenBank and about 65% of PvRGLs were integrated into the common bean genetic map. A total of 30 RGL-tagged markers were developed for 25 unique PvRGLs, including 11 STS and 19 CAPS markers. The expressed PvRGLs identified in this study provide a large sequence resource for development of RGL-tagged markers that could be used further for genetic mapping of disease resistant candidate genes and quantitative trait locus/loci (QTLs). This work also represents an additional method for identifying expressed RGLs from next generation sequencing data.
Collapse
Affiliation(s)
- Zhanji Liu
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Hi-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - Mollee Crampton
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Antonette Todd
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
| | - Venu Kalavacharla
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Center of Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE 19901, USA
| |
Collapse
|