1
|
Chen G, Qi L, Zhang S, Peng H, Lin Z, Zhang X, Nie Q, Luo W. Metabolomic, lipidomic, and proteomic profiles provide insights on meat quality differences between Shitou and Wuzong geese. Food Chem 2024; 438:137967. [PMID: 37979274 DOI: 10.1016/j.foodchem.2023.137967] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
A comprehensive comparison of metabolomic, lipidomic, and proteomic profiles was conducted between the breast and leg muscles of Shitou goose (STE) and Wuzhong goose (WZE), which exhibit significant variations in body size and growth rate, to evaluate their impact on meat quality. WZE had higher intramuscular fat content in their breast muscles, which were also chewier and had higher drip and cooking losses than STE. Metabolomic analysis revealed differential regulation of amino acid and purine metabolism between WZE and STE. Lipidomic analysis indicated a higher abundance of PE and PC lipid molecules in WZE. Integration of proteomic and metabolomic data highlighted purine metabolism and amino acid biosynthesis as the major distinguishing pathways between STE and WZE. The primary differential pathways between breast and leg muscles were associated with energy metabolism and fatty acid metabolism. This comprehensive analysis provides valuable insights into the distinct meat quality of STE and WZE.
Collapse
Affiliation(s)
- Genghua Chen
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Lin Qi
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Shuai Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Haoqi Peng
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Zetong Lin
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Xiquan Zhang
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Qinghua Nie
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China
| | - Wen Luo
- State Key Laboratory of Livestock and Poultry Breeding, and Lingnan Guangdong Laboratory of Agriculture, South China Agricultural University, Guangzhou 510642, China; College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
2
|
Alipanah M, Mazloom SM, Gharari F. Detection of selective sweep in European wild sheep breeds. 3 Biotech 2024; 14:122. [PMID: 38560387 PMCID: PMC10978567 DOI: 10.1007/s13205-024-03964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 02/22/2024] [Indexed: 04/04/2024] Open
Abstract
In wild animal populations, there is a differentiation between populations due to natural selection. The direction and pressure of natural selection in the wild sheep are different in the various geographic areas. Linkage disequilibrium studies showed that regions of the genome in whole wild sheep are under natural selection and that natural selection can affect immune or reproductive or metabolic traits. The study aimed to identify genomic regions under natural selection in wild sheep. For this purpose, the genetic information of 24 European wild sheep and 24 Sardinian wild sheep was used. The genotypes were determined using Illumina 50 K SNPChip arrays based on Oar_4.0 version of the sheep genome. After quality control steps, finally, 31,560 SNP markers were analyzed. The value of LD was calculated by calculating the r2 statistic between all pairs of locations through PLINK software. To identify signs of selection based on linkage disequilibrium methods, an extended haplotype homozygosity test of XP-EHH crossing population and iHS intrapopulation was used. The results of iHS studies showed that in European and Sardinian wild sheep, the highest iHS coefficient under natural selection was observed on 3 and 2 chromosome numbers, respectively. Also, the results of XP-EHH studies showed that the largest XP-EHH coefficients under natural selection in European wild sheep compared to Sardinian and vice versa in Sardinian wild sheep compared to European wild sheep were observed on 3 and 16 chromosome numbers, respectively. In addition, the results of gene cycle studies showed that COPB1, SEC24D, ZDHHC17, BBS4, RFX3, SLC26A8, CAMK2D, GRIA1, GRM1, GRID2, PPP2R1A, CPEB4, PLEKHA5 and KIF13A, VPS39, VPS53, DTNBP1, DYNC1I1, FAM91A genes are under natural selection in Sardinian and European wild sheeps, respectively. The direction and selection pressure of natural selection in the two breeds of wild sheep is different due to different geographic conditions.
Collapse
Affiliation(s)
- Masoud Alipanah
- Department of Plant Production, University of Torbat Heydarieh, Torbat Heydarieh, 9516168595 Iran
| | - Seyed Mostafa Mazloom
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, 9177948974 Iran
| | - Faezeh Gharari
- Department of Plant Production, University of Torbat Heydarieh, Torbat Heydarieh, 9516168595 Iran
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad, 9177948974 Iran
| |
Collapse
|
3
|
Li Q, Hao M, Zhu J, Yi L, Cheng W, Xie Y, Zhao S. Comparison of differentially expressed genes in longissimus dorsi muscle of Diannan small ears, Wujin and landrace pigs using RNA-seq. Front Vet Sci 2024; 10:1296208. [PMID: 38249550 PMCID: PMC10796741 DOI: 10.3389/fvets.2023.1296208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Pig growth is an important economic trait that involves the co-regulation of multiple genes and related signaling pathways. High-throughput sequencing has become a powerful technology for establishing the transcriptome profiles and can be used to screen genome-wide differentially expressed genes (DEGs). In order to elucidate the molecular mechanism underlying muscle growth, this study adopted RNA sequencing (RNA-seq) to identify and compare DEGs at the genetic level in the longissimus dorsi muscle (LDM) between two indigenous Chinese pig breeds (Diannan small ears [DSE] pig and Wujin pig [WJ]) and one introduced pig breed (Landrace pig [LP]). Methods Animals under study were from two Chinese indigenous pig breeds (DSE pig, n = 3; WJ pig, n = 3) and one introduced pig breed (LP, n = 3) were used for RNA sequencing (RNA-seq) to identify and compare the expression levels of DEGs in the LDM. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Then, functional annotation, Gene Ontology (GO) enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, and Protein-Protein Interaction (PPI) network analysis were performed on these DEGs. Results The results revealed that for the DSE, WJ, and LP libraries, more than 66, 65, and 71 million clean reads were generated by transcriptome sequencing, respectively. A total of 11,213 genes were identified in the LDM tissue of these pig breeds, of which 7,127 were co-expressed in the muscle tissue of the three samples. In total, 441 and 339 DEGs were identified between DSE vs. WJ and LP vs. DSE in the study, with 254, 193 up-regulated genes and 187, 193 down-regulated genes in DSE compared to WJ and LP. GO analysis and KEGG signaling pathway analysis showed that DEGs are significantly related to contractile fiber, sarcolemma, and dystrophin-associated glycoprotein complex, myofibril, sarcolemma, and myosin II complex, Glycolysis/Gluconeogenesis, Propanoate metabolism, and Pyruvate metabolism, etc. In combination with functional annotation of DEGs, key genes such as ENO3 and JUN were identified by PPI network analysis. Discussion In conclusion, the present study revealed key genes including DES, FLNC, PSMD1, PSMD6, PSME4, PSMB4, RPL11, RPL13A, ROS23, RPS29, MYH1, MYL9, MYL12B, TPM1, TPM4, ENO3, PGK1, PKM2, GPI, and the unannotated new gene ENSSSCG00000020769 and related signaling pathways that influence the difference in muscle growth and could provide a theoretical basis for improving pig muscle growth traits in the future.
Collapse
Affiliation(s)
- Qiuyan Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Meilin Hao
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Junhong Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Lanlan Yi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Wenjie Cheng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yuxiao Xie
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| | - Sumei Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Kaewsatuan P, Poompramun C, Kubota S, Yongsawatdigul J, Molee W, Uimari P, Molee A. Thigh muscle metabolic response is linked to feed efficiency and meat characteristics in slow-growing chicken. Poult Sci 2023; 102:102741. [PMID: 37186966 DOI: 10.1016/j.psj.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
The Korat chicken (KR) is a slow-growing Thai chicken breed with relatively poor feed efficiency (FE) but very tasty meat with high protein and low fat contents, and a unique texture. To enhance the competitiveness of KR, its FE should be improved. However, selecting for FE has an unknown effect on meat characteristics. Thus, understanding the genetic basis underlying FE traits and meat characteristics is needed. In this study, 75 male KR birds were raised up to 10 wk of age. For each bird, the feed conversion ratio (FCR), residual feed intake (RFI), and physicochemical properties, flavor precursors, and biological compounds in the thigh meat were evaluated. At 10 wk of age, thigh muscle samples from 6 birds (3 with high FCR and 3 with low FCR values) were selected, and their proteomes were investigated using a label-free proteomic method. Weighted gene coexpression network analysis (WGCNA) was used to screen the key protein modules and pathways. The WGCNA results revealed that FE and meat characteristics significantly correlated with the same protein module. However, the correlation was unfavorable; improving FE may result in a decrease in meat quality through the alteration in biological processes including glycolysis/gluconeogenesis, metabolic pathway, carbon metabolism, biosynthesis of amino acids, pyruvate metabolism, and protein processing in the endoplasmic reticulum. The hub proteins of the significant module (TNNT1, TNNT3, TNNI2, TNNC2, MYLPF, MYH10, GADPH, PGK1, LDHA, and GPI) were also identified to be associated with energy metabolism, and muscle growth and development. Given that the same proteins and pathways are present in FE and meat characteristics but in opposite directions, selection practices for KR should simultaneously consider both trait groups to maintain the high meat quality of KR while improving FE.
Collapse
Affiliation(s)
- Pramin Kaewsatuan
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chotima Poompramun
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Satoshi Kubota
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Jirawat Yongsawatdigul
- School of Food Technology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Wittawat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pekka Uimari
- Department of Agricultural Sciences, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki 00790, Finland
| | - Amonrat Molee
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
5
|
Shi J, Zhang Q, Song Y, Lei Z, Fu L, Cheng S. Exploring the effects of different male parent crossings on sheep muscles and related regulatory genes using mRNA-Seq. Anim Biosci 2022; 35:1129-1140. [PMID: 34991197 PMCID: PMC9262716 DOI: 10.5713/ab.21.0463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/17/2021] [Indexed: 11/27/2022] Open
Abstract
Objective With improvements in living standards and increase in population globally, the demand for meat products has been increasing; improved meat production from livestock could effectively meet this demand. In this study, we examined the differences in the muscle traits of different male crossbred sheep and attempted to identify key genes that regulate these traits. Methods Dubo sheep × Small-tailed Han sheep (DP×STH) and Suffolk × Small-tailed Han sheep (SFK×STH) were selected to determine meat quality and production performance by Masson staining. Transcriptome sequencing and bioinformatic analysis were performed to identify differentially expressed genes (DEGs) related to meat quality. The presence of DEGs was confirmed by real-time polymerase chain reaction (qPCR). Results The production performance of SFK×STH sheep was better than that of DP×STH sheep, but the meat quality of DP×STH sheep was better than that of SFK×STH sheep. The muscle fiber diameter of DP×STH sheep was smaller than that of SFK×STH sheep. Twenty-two DEGs were identified. Among them, four Gene Ontology terms were related to muscle traits, and three DEGs were related to muscle or muscle fibers. There were no significant differences in the number of single nucleotide mutations and mutation sites in the different male parent cross combinations. Conclusion This study provides genetic resources for future sheep muscle development and cross-breeding research.
Collapse
Affiliation(s)
- Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yali Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Lingjuan Fu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Shuru Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Hong TK, Shin DM, Choi J, Do JT, Han SG. Current Issues and Technical Advances in Cultured Meat Production: A Review. Food Sci Anim Resour 2021; 41:355-372. [PMID: 34017947 PMCID: PMC8112310 DOI: 10.5851/kosfa.2021.e14] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/12/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
As the global population grows, we need a stable protein supply to meet the demands. Although plant-derived protein sources are widely available, animal meat maintains its popularity as a high-quality and savory protein source. Recently, cultured meat, also known as in vitro meat, has been suggested as a meat analog produced through in vitro cell culture technology. Cultured meat has several advantages over conventional meat, such as environmental protection, disease prevention, and animal welfare. However, cultured meat manufacturing is an emerging technology; thus, its further and dynamic development would be pivotal. Commercialization of cultured meat to the public will take a long time but cultured meat undoubtedly will come to our table someday. Here, we discuss the social and economic aspects of cultured meat production as well as the recent technical advances in cultured meat technology.
Collapse
Affiliation(s)
- Tae Kyung Hong
- Department of Stem Cell and Regenerative
Biotechnology, KU Institute of Science and Technology, Konkuk
University, Seoul 05029, Korea
| | - Dong-Min Shin
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| | - Joonhyuk Choi
- Department of Stem Cell and Regenerative
Biotechnology, KU Institute of Science and Technology, Konkuk
University, Seoul 05029, Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative
Biotechnology, KU Institute of Science and Technology, Konkuk
University, Seoul 05029, Korea
| | - Sung Gu Han
- Department of Food Science and
Biotechnology of Animal Resources, Konkuk University,
Seoul 05029, Korea
| |
Collapse
|
7
|
Zhang J, Cao J, Geng A, Wang H, Chu Q, Yang L, Yan Z, Zhang X, Zhang Y, Dai J, Liu H. Comprehensive Proteomic Characterization of the Pectoralis Major at Three Chronological Ages in Beijing-You Chicken. Front Physiol 2021; 12:658711. [PMID: 33815156 PMCID: PMC8012914 DOI: 10.3389/fphys.2021.658711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 11/13/2022] Open
Abstract
Chronological age is one of the important factors influencing muscle development and meat quality in chickens. To evaluate the protein expression profiles during skeletal muscle development, we performed a tandem mass tag (TMT)-based quantitative proteomic strategy in pectoralis major (breast muscle) of Beijing-You chicken (BYC) at the chronological age of 90, 120, and 150 days. Each chronological age contained 3 pooling samples or 15 birds (five birds per pooling sample). A total of 1,413 proteins were identified in chicken breast muscle with FDR < 1% and 197 of them were differentially expressed (fold change ≥1.2 or ≤0.83 and p < 0.05). There were 110 up- and 71 down-regulated proteins in 120 d vs 90 d group, 13 up- and 10 down-regulated proteins in 150 d vs 120 d group. The proteomic profiles of BYC at 120 d were very similar to those at 150 d and highly different from those at 90 d, suggesting that 120 d might be an important chronological age for BYC. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that these differentially expressed proteins were mainly involved in the pathway of glycolysis/gluconeogenesis, adrenergic signaling in cardiomyocytes, focal adhesion, oocyte meiosis and phagosome. Furthermore, some DEPs were quantified using parallel reaction monitoring (PRM) to validate the results from TMT analysis. In summary, these results provided some candidate protein-coding genes for further functional validation and contribute to a comprehensive understanding of muscle development and age-dependent meat quality regulation by proteins in chickens.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jing Cao
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ailian Geng
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Haihong Wang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Qin Chu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Linbing Yang
- Shanghai Bioprofile Technology Co., Ltd., Shanghai, China
| | - Zhixun Yan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Xiaoyue Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yao Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jie Dai
- Shanghai Bioprofile Technology Co., Ltd., Shanghai, China
| | - Huagui Liu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
8
|
Identification of Differentially Expressed Genes in Different Types of Broiler Skeletal Muscle Fibers Using the RNA-seq Technique. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9478949. [PMID: 32695825 PMCID: PMC7362283 DOI: 10.1155/2020/9478949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/10/2020] [Accepted: 06/27/2020] [Indexed: 11/17/2022]
Abstract
The difference in muscle fiber types is very important to the muscle development and meat quality of broilers. At present, the molecular regulation mechanisms of skeletal muscle fiber-type transformation in broilers are still unclear. In this study, differentially expressed genes between breast and leg muscles in broilers were analyzed using RNA-seq. A total of 767 DEGs were identified. Compared with leg muscle, there were 429 upregulated genes and 338 downregulated genes in breast muscle. Gene Ontology (GO) enrichment indicated that these DEGs were mainly involved in cellular processes, single organism processes, cells, and cellular components, as well as binding and catalytic activity. KEGG analysis shows that a total of 230 DEGs were mapped to 126 KEGG pathways and significantly enriched in the four pathways of glycolysis/gluconeogenesis, starch and sucrose metabolism, insulin signalling pathways, and the biosynthesis of amino acids. Quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) was used to verify the differential expression of 7 selected DEGs, and the results were consistent with RNA-seq data. In addition, the expression profile of MyHC isoforms in chicken skeletal muscle cells showed that with the extension of differentiation time, the expression of fast fiber subunits (types IIA and IIB) gradually increased, while slow muscle fiber subunits (type I) showed a downward trend after 4 days of differentiation. The differential genes screened in this study will provide some new ideas for further understanding the molecular mechanism of skeletal muscle fiber transformation in broilers.
Collapse
|
9
|
Guo M, Qiu J, Shen F, Wang S, Yu J, Zuo H, Yao J, Xu S, Hu T, Wang D, Zhao Y, Hu Y, Shen F, Ma X, Lu J, Gu X, Xu L. Comprehensive analysis of circular RNA profiles in skeletal muscles of aging mice and after aerobic exercise intervention. Aging (Albany NY) 2020; 12:5071-5090. [PMID: 32182212 PMCID: PMC7138574 DOI: 10.18632/aging.102932] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/09/2020] [Indexed: 12/16/2022]
Abstract
Aging induces gradual accumulation of damages in cells and tissues, which leads to physiological dysfunctions. Aging-associated muscle dysfunction is commonly seen in aged population and severely affects their physical activity and life quality, against which aerobic training has been shown to exert antagonizing or alleviating effects. Circular RNAs (circRNAs) play important roles in various physiological processes, yet their involvement in aging-associated muscle dysfunction is not well understood. In this study, we performed comprehensive analysis of circRNAs profiles in quadriceps muscles in sedentary young and aging mice, as well as aging mice with aerobic exercise using RNA sequencing. Our results identified circRNAs altered by factors of aging and aerobic exercise. Their host genes were then predicted and analyzed by gene ontology enrichment analysis. Importantly, we found that circBBS9 featured decreased levels in aging compared to young mice and elevated expression in exercise versus sedentary aging mice. Besides, we performed GO and KEGG analysis on circBBS9 target genes, as well as established the circBBS9-miRNA-mRNAs interaction network. Our results indicate that circBBS9 may play active roles in muscle aging by mediating the benefits of aerobic training intervention, thus may serve as a novel therapeutic target combating aging-associated muscle dysfunction.
Collapse
Affiliation(s)
- Mingwei Guo
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Fei Shen
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Sainan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hui Zuo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jing Yao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Sainan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Tianhui Hu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Yepeng Hu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Feixia Shen
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xinran Ma
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jian Lu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xuejiang Gu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lingyan Xu
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Vitali M, Sirri R, Zappaterra M, Zambonelli P, Giannini G, Lo Fiego DP, Davoli R. Functional analysis finds differences on the muscle transcriptome of pigs fed an n-3 PUFA-enriched diet with or without antioxidant supplementations. PLoS One 2019; 14:e0212449. [PMID: 30785965 PMCID: PMC6382273 DOI: 10.1371/journal.pone.0212449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Supplementing pig diets with n-3 polyunsaturated fatty acids (n-3 PUFA) may produce meat products with an increased n-3 fatty acid content, and the combined antioxidants addition could prevent lipid oxidation in the feed. However, to date, the effects of these bioactive compounds at the molecular level in porcine skeletal muscle are mostly unknown. This study aimed to analyse changes in the Longissimus thoracis transcriptome of 35 pigs fed three diets supplemented with: linseed (L); linseed, vitamin E and Selenium (LES) or linseed and plant-derived polyphenols (LPE). Pigs were reared from 80.8 ± 5.6 kg to 151.8 ± 9.9 kg. After slaughter, RNA-Seq was performed and 1182 differentially expressed genes (DEGs) were submitted to functional analysis. The L vs LES comparison did not show differences, while L vs LPE showed 1102 DEGs and LES vs LPE 80 DEGs. LPE compared to the other groups showed the highest number of up-regulated genes involved in preserving muscle metabolism and structure. Results enlighten that the combined supplementation of bioactive lipids (n-3 PUFA from linseed) with plant extracts as a source of polyphenols increases, compared to the only addition of linseed, the expression of genes involved in mRNA metabolic processes and transcriptional regulation, glucose uptake and, finally, in supporting muscle development and physiology. These results improve the knowledge of the biological effect of bioactive compounds in Longissimus thoracis muscle, and sustain the growing interest over their use in pig production.
Collapse
Affiliation(s)
- Marika Vitali
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
| | - Rubina Sirri
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Paolo Zambonelli
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Giulia Giannini
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| | - Domenico Pietro Lo Fiego
- Department of Life Sciences, University of Modena and Reggio Emilia, Reggio Emilia, Italy
- Interdepartmental Research Centre for Agri-Food Biological Resources Improvement and Valorisation (BIOGEST-SITEIA), University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Roberta Davoli
- Interdepartmental Centre for Industrial Agrifood Research (CIRI- AGRO), University of Bologna, Cesena, Italy
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Cho JH, Lee RH, Jeon YJ, Park SM, Shin JC, Kim SH, Jeong JY, Kang HS, Choi NJ, Seo KS, Cho YS, Kim MS, Ko S, Seo JM, Lee SY, Shim JH, Chae JI. Proteomic Assessment of the Relevant Factors Affecting Pork Meat Quality Associated with Longissimus dorsi Muscles in Duroc Pigs. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1653-1663. [PMID: 27165031 PMCID: PMC5088387 DOI: 10.5713/ajas.16.0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/21/2016] [Accepted: 03/29/2016] [Indexed: 11/27/2022]
Abstract
Meat quality is a complex trait influenced by many factors, including genetics, nutrition, feeding environment, animal handling, and their interactions. To elucidate relevant factors affecting pork quality associated with oxidative stress and muscle development, we analyzed protein expression in high quality longissimus dorsi muscles (HQLD) and low quality longissimus dorsi muscles (LQLD) from Duroc pigs by liquid chromatographytandem mass spectrometry (LC-MS/MS)-based proteomic analysis. Between HQLD (n = 20) and LQLD (n = 20) Duroc pigs, 24 differentially expressed proteins were identified by LC-MS/MS. A total of 10 and 14 proteins were highly expressed in HQLD and LQLD, respectively. The 24 proteins have putative functions in the following seven categories: catalytic activity (31%), ATPase activity (19%), oxidoreductase activity (13%), cytoskeletal protein binding (13%), actin binding (12%), calcium ion binding (6%), and structural constituent of muscle (6%). Silver-stained image analysis revealed significant differential expression of lactate dehydrogenase A (LDHA) between HQLD and LQLD Duroc pigs. LDHA was subjected to in vitro study of myogenesis under oxidative stress conditions and LDH activity assay to verification its role in oxidative stress. No significant difference of mRNA expression level of LDHA was found between normal and oxidative stress condition. However, LDH activity was significantly higher under oxidative stress condition than at normal condition using in vitro model of myogenesis. The highly expressed LDHA was positively correlated with LQLD. Moreover, LDHA activity increased by oxidative stress was reduced by antioxidant resveratrol. This paper emphasizes the importance of differential expression patterns of proteins and their interaction for the development of meat quality traits. Our proteome data provides valuable information on important factors which might aid in the regulation of muscle development and the improvement of meat quality in longissimus dorsi muscles of Duroc pigs under oxidative stress conditions.
Collapse
Affiliation(s)
- Jin Hyoung Cho
- Department of Dental Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Korea
| | - Ra Ham Lee
- Department of Dental Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Korea
| | - Young-Joo Jeon
- Department of Dental Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Korea.,National Marine Biodiversity Institute of Korea, Seocheon 33662, Korea
| | - Seon-Min Park
- Pohang Center for Evaluation of Biomaterials, Pohang 37668, Korea
| | - Jae-Cheon Shin
- Pohang Center for Evaluation of Biomaterials, Pohang 37668, Korea
| | - Seok-Ho Kim
- Aging Research Institute, Korea Research Institute of Bioscience & BioTechnology, Daejeon 34141, Korea
| | - Jin Young Jeong
- Division of Animal Genomics and Bioinformatics, National Institute of Animal science, Rural Development Administration, Suwon, 441-706, Korea
| | - Hyun-Sung Kang
- Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Nag-Jin Choi
- Department of Animal Science, College of Agricultural and Life Science, Chonbuk National University, Jeonju 651-756, Korea
| | - Kang Seok Seo
- Department of Animal Science and Technology, Sunchon National University, Suncheon 540-742, Korea
| | - Young Sik Cho
- Department of Pharmacy, Keimyung University, Daegu 704-701, Korea
| | - MinSeok S Kim
- Department of Biomedical Engineering, Konyang University, Daejeon 35365, Korea
| | - Sungho Ko
- Department of Applied Bioscience, CHA University, Seongnam 463-836, Korea
| | - Jae-Min Seo
- Department of Prosthodontics, School of Dentistry and Institute of Oral Bio-Science and Research Institute of Clinical Medicine, Chonbuk National University, Jeonju 561-756, Korea
| | - Seung-Youp Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 561-756, Korea
| | - Jung-Hyun Shim
- Department of Pharmacy, College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Mokpo 534-729, Korea.,The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan 127, China
| | - Jung-Il Chae
- Department of Dental Pharmacology, School of Dentistry and Institute of Dental Bioscience, BK21 plus, Chonbuk National University, Jeonju 651-756, Korea
| |
Collapse
|
12
|
Martínez-Montes AM, Fernández A, Pérez-Montarelo D, Alves E, Benítez RM, Nuñez Y, Óvilo C, Ibañez-Escriche N, Folch JM, Fernández AI. Using RNA-Seq SNP data to reveal potential causal mutations related to pig production traits and RNA editing. Anim Genet 2016; 48:151-165. [PMID: 27642173 DOI: 10.1111/age.12507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2016] [Indexed: 01/13/2023]
Abstract
RNA-Seq technology is widely used in quantitative gene expression studies and identification of non-annotated transcripts. However this technology also can be used for polymorphism detection and RNA editing in transcribed regions in an efficient and cost-effective way. This study used SNP data from an RNA-Seq assay to identify genes and mutations underlying production trait variations in an experimental pig population. The hypothalamic and hepatic transcriptomes of nine extreme animals for growth and fatness from an (Iberian × Landrace) × Landrace backcross were analyzed by RNA-Seq methodology, and SNP calling was conducted. More than 125 000 single nucleotide variants (SNVs) were identified in each tissue, and 78% were considered to be potential SNPs, those SNVs segregating in the context of this study. Potential informative SNPs were detected by considering those showing a homozygous or heterozygous genotype in one extreme group and the alternative genotype in the other group. In this way, 4396 and 1862 informative SNPs were detected in hypothalamus and liver respectively. Out of the 32 SNPs selected for validation, 25 (80%) were confirmed as actual SNPs. Association analyses for growth, fatness and premium cut yields with 19 selected SNPs were carried out, and four potential causal genes (RETSAT, COPA, RNMT and PALMD) were identified. Interestingly, new RNA editing modifications were detected and validated for the NR3C1:g.102797 (ss1985401074) and ACSM2B:g.13374 (ss1985401075) positions and for the COG3:g3.4525 (ss1985401087) modification previously identified across vertebrates, which could lead to phenotypic variation and should be further investigated.
Collapse
Affiliation(s)
- A M Martínez-Montes
- Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y Alimentaria, Ctra. de la Coruña km. 7.5, 28040, Madrid, Spain
| | - A Fernández
- Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y Alimentaria, Ctra. de la Coruña km. 7.5, 28040, Madrid, Spain
| | - D Pérez-Montarelo
- Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y Alimentaria, Ctra. de la Coruña km. 7.5, 28040, Madrid, Spain
| | - E Alves
- Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y Alimentaria, Ctra. de la Coruña km. 7.5, 28040, Madrid, Spain
| | - R M Benítez
- Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y Alimentaria, Ctra. de la Coruña km. 7.5, 28040, Madrid, Spain
| | - Y Nuñez
- Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y Alimentaria, Ctra. de la Coruña km. 7.5, 28040, Madrid, Spain
| | - C Óvilo
- Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y Alimentaria, Ctra. de la Coruña km. 7.5, 28040, Madrid, Spain
| | - N Ibañez-Escriche
- Genètica i Millora Animal, Institut de Recerca i Tecnologies Agroalimentàries, 25198, Lleida, Spain
| | - J M Folch
- Genètica Animal, Centre de Recerca en Agrigenòmica (CRAG), Campus UAB, 08193, Bellaterra, Spain.,Ciència Animal i dels Aliments, Universitat Autonoma de Barcelona, 08193, Bellaterra, Spain
| | - A I Fernández
- Mejora Genética Animal, Instituto Nacional de Tecnología Agraria y Alimentaria, Ctra. de la Coruña km. 7.5, 28040, Madrid, Spain
| |
Collapse
|
13
|
Xing K, Zhu F, Zhai L, Chen S, Tan Z, Sun Y, Hou Z, Wang C. Identification of genes for controlling swine adipose deposition by integrating transcriptome, whole-genome resequencing, and quantitative trait loci data. Sci Rep 2016; 6:23219. [PMID: 26996612 PMCID: PMC4800386 DOI: 10.1038/srep23219] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 03/02/2016] [Indexed: 12/29/2022] Open
Abstract
Backfat thickness is strongly associated with meat quality, fattening efficiency, reproductive performance, and immunity in pigs. Fat storage and fatty acid synthesis mainly occur in adipose tissue. Therefore, we used a high-throughput massively parallel sequencing approach to identify transcriptomes in adipose tissue, and whole-genome differences from three full-sibling pairs of pigs with opposite (high and low) backfat thickness phenotypes. We obtained an average of 38.69 million reads for six samples, 78.68% of which were annotated in the reference genome. Eighty-nine overlapping differentially expressed genes were identified among the three pair comparisons. Whole-genome resequencing also detected multiple genetic variations between the pools of DNA from the two groups. Compared with the animal quantitative trait loci (QTL) database, 20 differentially expressed genes were matched to the QTLs associated with fatness in pigs. Our technique of integrating transcriptome, whole-genome resequencing, and QTL database information provided a rich source of important differentially expressed genes and variations. Associate analysis between selected SNPs and backfat thickness revealed that two SNPs and one haplotype of ME1 significantly affected fat deposition in pigs. Moreover, genetic analysis confirmed that variations in the differentially expressed genes may affect fat deposition.
Collapse
Affiliation(s)
- Kai Xing
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - LiWei Zhai
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - ShaoKang Chen
- Beijing General Station of Animal Husbandry, Beijing 100125, China
| | - Zhen Tan
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - YangYang Sun
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - ZhuoCheng Hou
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| | - ChuDuan Wang
- National Engineering Laboratory for Animal Breeding and MOA Key Laboratory of Animal Genetics and Breeding, Department of Animal Genetics and Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
14
|
Fontanesi L, Scotti E, Speroni C, Buttazzoni L, Russo V. A selective genotyping approach identifies single nucleotide polymorphisms in porcine chromosome 2 genes associated with production and carcass traits in Italian heavy pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2011.e15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Masopust M, Weisz F, Bartenschlager H, Knoll A, Vykoukalová Z, Geldermann H, Cepica S. Porcine ubiquitin-like 5 (UBL5) gene: genomic organization, polymorphisms, mRNA cloning, splicing variants and association study. Mol Biol Rep 2014; 41:2353-62. [PMID: 24458823 DOI: 10.1007/s11033-014-3089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 01/04/2014] [Indexed: 11/26/2022]
Abstract
Ubiquitin-like 5 (UBL5), which is supposed to be involved in regulation of feed intake, energy metabolism, obesity and type 2 diabetes, is located at position 62.1 cM on the pig chromosome 2 region harbouring quantitative trait loci for carcass and meat quality. The 4,354 bp genomic sequence (FR798948) of the porcine gene encompassing the promoter and entire gene was cloned by polymerase chain reaction. Comparative sequencing revealed 13 polymorphisms in noncoding regions. Synthesis of full-length cDNA sequences using rapid amplification of 5' and 3' ends showed three splice variants. Variants 1 and 2 differ in transcription length for the untranslated part of exon 1 with deduced protein of 73 amino acid (aa) residues and 100 % identities between human, mouse and other species. Variant 3, with 4 bp deletion at the 3' end of exon 2, encodes a truncated protein with 28 aa residues. In a Wild boar×Meishan F2 population (n = 334) with 47 recorded traits, loci FR798948:g.2788G>A and FR798948:g.2141T>C were associated at nominal P < 0.05 with fat deposition, growth and fattening and muscling but after adjustment for multiple testing (Benjamini and Hochberg, J R Stat Soc B 57:289-300, 1995) only eight fat deposition traits showed suggestive association with FR798948:g.2788G>A at adjusted P < 0.10. In a Meishan×Large White (MLW) cross (n = 562) with six trait records available, FR798948:g.2141T>C showed suggestive association with growth (adjusted P = 0.0690). As association mapping conducted in the outbred MLW population is more precise than in the three generation F2 population the UBL5 gene tends to be associated with growth rather than with fat accretion.
Collapse
Affiliation(s)
- Martin Masopust
- Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Liběchov, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
16
|
Investigation of four candidate genes (IGF2, JHDM1A, COPB1 and TEF1) for growth rate and backfat thickness traits on SSC2q in Large White pigs. Mol Biol Rep 2013; 41:309-15. [PMID: 24234674 DOI: 10.1007/s11033-013-2863-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/05/2013] [Indexed: 10/26/2022]
Abstract
As important quantitative traits, the growth rate and backfat thickness are controlled by multiple genes. The aim of this investigation was to evaluate the effect of the single and multiple SNPs of four candidate genes (IGF2, JHDM1A, COPB1 and TEF-1) on growth rate and backfat thickness. The four candidate genes were mapped on the p arm of SSC 2, and there are several QTLs, such as average daily gain, backfat thickness, an imprinted QTLs affecting muscle mass and fat deposition have been reported in this region. The polymorphisms of these genes were detected using PCR-RFLP methods, mixed procedure was used to analyze the single marker association with the growth and backfat thickness traits, and the gene-gene combination was investigated using multiple-markers analysis. The single marker association analysis indicated that the IGF2 intron-3 g.3072G > A and the substitution g.93G > A of TEF-1 gene were significantly associated with the age at 100 kg (P < 0.05). The JHDM1A 3′UTR g.224C > G, the c.3096C > T polymorphism of COPB1 gene and the substitution g.93G > A of TEF-1 gene were all significantly associated with the backfat at the shoulder (P < 0.05), backfat at the last rib, backfat at the lumbar, and the average backfat thickness, respectively. The multiple-markers analysis indicated that IGF2 and TEF-1 integrated gene networks for the age at 100 kg. Therefore, we can suggest that the polymorphism of IGF2 and TEF-1 gene could be used in marker-assisted selection for the age at 100 kg in Large White pigs.
Collapse
|
17
|
Cepica S, Zambonelli P, Weisz F, Bigi M, Knoll A, Vykoukalová Z, Masopust M, Gallo M, Buttazzoni L, Davoli R. Association mapping of quantitative trait loci for carcass and meat quality traits at the central part of chromosome 2 in Italian Large White pigs. Meat Sci 2013; 95:368-75. [PMID: 23747631 DOI: 10.1016/j.meatsci.2013.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/24/2013] [Accepted: 05/01/2013] [Indexed: 01/13/2023]
Abstract
Association mapping of the central part of porcine chromosome 2 harboring QTLs for carcass and meat quality traits was performed with 17 gene-tagged SNPs located between 44.0 and 77.5 Mb on a physical map (Sscrofa10.2) in Italian Large White pigs. For the analyzed animals records of estimated breeding values for average daily gain, back fat thickness, lean cuts, ham weight, feed conversion ratio, pH1, pHu, CIE L*, CIE a*, CIE b* and drip loss were available. A significant QTL for fat deposition (adjusted P=0.0081) and pH1 (adjusted P=0.0972) to MYOD1 at position 44.4 Mb and a QTL for growth and meatiness (adjusted P=0.0238-0.0601) to UBL5 at position 68.9 Mb were mapped. These results from association mapping are much more accurate than those from linkage mapping and facilitate further search for position candidate genes and causative mutations needed for application of markers through marker assisted selection.
Collapse
Affiliation(s)
- S Cepica
- Institute of Animal Physiology and Genetics, The Academy of Sciences of the Czech Republic, Liběchov, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Stratz P, Baes C, Rückert C, Preuss S, Bennewitz J. A two-step approach to map quantitative trait loci for meat quality in connected porcine F(2) crosses considering main and epistatic effects. Anim Genet 2012; 44:14-23. [PMID: 22509991 DOI: 10.1111/j.1365-2052.2012.02360.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2012] [Indexed: 11/30/2022]
Abstract
The aim of this study was to map QTL for meat quality traits in three connected porcine F(2) crosses comprising around 1000 individuals. The three crosses were derived from the founder breeds Chinese Meishan, European Wild Boar and Pietrain. The animals were genotyped genomewide for approximately 250 genetic markers, mostly microsatellites. They were phenotyped for seven meat quality traits (pH at 45 min and 24 h after slaughter, conductivity at 45 min and 24 h after slaughter, meat colour, drip loss and rigour). QTL mapping was conducted using a two-step procedure. In the first step, the QTL were mapped using a multi-QTL multi-allele model that was tailored to analyse multiple connected F(2) crosses. It considered additive, dominance and imprinting effects. The major gene RYR1:g.1843C>T affecting the meat quality on SSC6 was included as a cofactor in the model. The mapped QTL were tested for pairwise epistatic effects in the second step. All possible epistatic effects between additive, dominant and imprinting effects were considered, leading to nine orthogonal forms of epistasis. Numerous QTL were found. The most interesting chromosome was SSC6. Not all genetic variance of meat quality was explained by RYR1:g.1843C>T. A small confidence interval was obtained, which facilitated the identification of candidate genes underlying the QTL. Epistasis was significant for the pairwise QTL on SSC12 and SSC14 for pH24 and for the QTL on SSC2 and SSC5 for rigour. Some evidence for additional pairwise epistatic effects was found, although not significant. Imprinting was involved in epistasis.
Collapse
Affiliation(s)
- P Stratz
- Institute of Animal Husbandry and Breeding, University of Hohenheim, D-70599, Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
19
|
Fontanesi L, Buttazzoni L, Scotti E, Russo V. Confirmation of the association between a single nucleotide polymorphism in the porcine LDHA gene and average daily gain and correlated traits in Italian Large White pigs. Anim Genet 2012; 43:649-50. [PMID: 22497572 DOI: 10.1111/j.1365-2052.2012.02355.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2012] [Indexed: 11/30/2022]
Affiliation(s)
- L Fontanesi
- Department of Agro-Food Science and Technology, Sezione di Allevamenti Zootecnici, University of Bologna, Viale Fanin 48, 40127 Bologna, Italy.
| | | | | | | |
Collapse
|
20
|
D'Andrea M, Dal Monego S, Pallavicini A, Modonut M, Dreos R, Stefanon B, Pilla F. Muscle transcriptome profiling in divergent phenotype swine breeds during growth using microarray and RT-PCR tools. Anim Genet 2011; 42:501-9. [PMID: 21906101 DOI: 10.1111/j.1365-2052.2010.02164.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Using an array consisting of 10 665 70-mer oligonucleotide probes, the longissimus dorsi muscle tissue expression during growth in nine pigs belonging to Casertana (CT), an autochthonous breed characterized by slow growth and a massive accumulation of backfat, was compared with that of two cosmopolitan breeds, Large White (LW) and a crossbreed (CB; Duroc × Landrace × Large White). The results were validated by real-time PCR. All animals were of the same age and were raised under the same environmental conditions. Muscle tissues were collected at 3, 6, 9 and 11 months of age, and a total of 173 genes showed significant differential expression between CT and the cosmopolitan genetic types at 3 months of age. Time series cluster analysis indicated that the CT breed had a different pattern of gene expression compared with that of the LW and the CB. Four of the eight clusters highlighted the gene differences between CT and the other two breeds, which were further supported by statistical analyses: clusters 4 and 5 contained a total of 71 genes that were underexpressed at 3 months of age, and cluster 3 and cluster 7 included 28 and 42 genes respectively that were overexpressed at 3 months of age. As expected, differentially expressed genes belonged to the category of genes coding for contractile fibres and transcription factors involved in muscle development and differentiation. These findings highlight muscle expression genes during pig growth and are useful to understand the genetic meaning of the different developmental rates.
Collapse
Affiliation(s)
- M D'Andrea
- University of Molise, SAVA, Campobasso, Italy.
| | | | | | | | | | | | | |
Collapse
|
21
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2011; 18:83-98. [PMID: 21178692 DOI: 10.1097/med.0b013e3283432fa7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
22
|
Porcine MuRF2 and MuRF3: molecular cloning, expression and association analysis with muscle production traits. Mol Biol Rep 2010; 38:5115-23. [PMID: 21153918 DOI: 10.1007/s11033-010-0659-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 12/04/2010] [Indexed: 10/18/2022]
Abstract
Muscle specific RING finger protein2 (MuRF2) and Muscle specific RING finger protein3(MuRF3) are two important members of the muscle specific RING finger protein family, which are especially expressed in cardiac and skeletal muscle tissues and play critical roles during the myocyte differentiation, development and morphogenesis. In this study, the molecular characteristics of porcine MuRF2 and MuRF3 gene were reported, and furthermore two variants of MuRF2 were identified. The tissue distribution pattern analyses revealed that MuRF2-b and MuRF3 mRNA was exclusively expressed in striated muscle tissues while MuRF2-a had a low-level expression in liver tissue. Real-time quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR) results displayed MuRF2 mRNA expression levels were significantly varied at three stages of fetal skeletal muscle in Landrace pigs, and the expression of MuRF2-a was lower than that of MuRF2-b in all stages. An essencial region of -396 to -22 for transcription was identified at the 5'UTR of porcine MuRF2 gene, while no active regulatory fragment found in the 5'UTR of mouse MuRF2. A single nucleotide polymorphism (SNP), c.915G > A was identified in MuRF2 exon 5. A HinfI PCR-RFLP was developed for SNP genotyping in two different pig populations. Association of the genotypes with growth and carcass traits showed that different genotypes of MuRF2 were significantly (P < 0.05) associated with average daily gain on test, carcass weight and carcass length. The study suggested that the porcine MuRF2 and MuRF3 genes are involved in the muscle growth and development, and can be considered as potential candidate genes affecting muscle production traits in the pig.
Collapse
|
23
|
Molecular characterization of the porcine JHDM1A gene associated with average daily gain: evaluation its role in skeletal muscle development and growth. Mol Biol Rep 2010; 38:4697-704. [DOI: 10.1007/s11033-010-0604-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 11/23/2010] [Indexed: 01/09/2023]
|
24
|
Xiong Q, Chai J, Zhang PP, Wu J, Jiang SW, Zheng R, Deng CY. MyoD control of SKIP expression during pig skeletal muscle development. Mol Biol Rep 2010; 38:267-74. [PMID: 20336382 DOI: 10.1007/s11033-010-0104-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 03/16/2010] [Indexed: 11/25/2022]
Abstract
Skeletal muscle and kidney enriched inositol phosphatase (SKIP) was identified as a 5'-inositol phosphatase that hydrolyzes PI(3,4,5)P3 to PI(3,4)P2 that negatively regulates insulin-induced phosphatidylinositol 3-kinase signaling in skeletal muscle. In this study, we obtained a 1575-bp mRNA sequence of porcine SKIP that included the full coding region encoding a protein of 450 amino acids. With the use of comparative mapping, we mapped this gene to SSC12 q1.3, where many QTLs affect Backfat thickness at 10th rib, carcass yield, the number of muscle fibers, and ham weight traits. As a candidate gene for growth and carcass traits, a novel single nucleotide polymorphism in exon 12 (G>A) was detected by PCR-RFLP. The results showed that the GG genotype had higher skin percentage (SP), carcass length to first spondyle (CL1), carcass length to first rib (CL2), but lower intramuscular fat (IMF) as compared with genotype AG (P<0.05), and allele G seemed to be associated with an increase in the growth trait. Porcine SKIP was expressed abundantly in skeletal muscle tissue and was transcriptionally upregulated during skeletal muscle differentiation. Analysis of the porcine SKIP promoter sequence demonstrated that MyoD was involved in regulating SKIP mRNA expression in myotubes, partly via the cis-acting elements in SKIP promoter. In summary, we suggested that SKIP might play a role in the regulation of skeletal muscle development in pigs.
Collapse
Affiliation(s)
- Q Xiong
- Agricultural Ministry Key Laboratory of Swine Breeding and Genetics & Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | |
Collapse
|
25
|
Xu ZY, Yang H, Xiong YZ, Deng CY, Li FE, Lei MG, Zuo B. Identification of three novel SNPs and association with carcass traits in porcine TNNI1 and TNNI2. Mol Biol Rep 2010; 37:3609-13. [PMID: 20182806 DOI: 10.1007/s11033-010-0010-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 02/16/2010] [Indexed: 10/19/2022]
Abstract
In this study, two novel SNPs (EU743939:g.5174T>C in intron 4 and EU743939:g.8350C>A in intron 7) in TNNI1 and one SNP (EU696779:g.1167C>T in intron 3) in TNNI2 were identified by PCR-RFLP (PCR restriction fragment length polymorphism) using XbaI, MspI and SmaI restriction enzyme, respectively. The allele frequencies of three novel SNPs were determined in the genetically diverse pig breeds including ten Chinese indigenous pigs and three Western commercial pig breeds. Association analysis of the SNPs with the carcass traits were conducted in a Large White × Meishan F(2) pig population. The linkage of two SNPs (g.5174T>C and g.8350C>A) in TNNI1 gene had significant effect on fat percentage. Besides these, the g.5174T>C polymorphism was also significantly associated with skin percentage (P < 0.05), shoulder fat thickness (P < 0.05) and backfat thickness between sixth and seventh ribs (P < 0.05). The significant effects of g.1167C>T polymorphism in TNNI2 gene on fat percentage (P < 0.01), lean meat percentage (P < 0.05), lion eye area (P < 0.05), thorax-waist backfat thickness (P < 0.01) and average backfat thickness (P < 0.05) were also found.
Collapse
Affiliation(s)
- Z Y Xu
- Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, 430070, Wuhan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|