1
|
Recent applications of bio-engineering principles to modulate the functionality of proteins in food systems. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.04.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Madhavan A, Arun KB, Binod P, Sirohi R, Tarafdar A, Reshmy R, Kumar Awasthi M, Sindhu R. Design of novel enzyme biocatalysts for industrial bioprocess: Harnessing the power of protein engineering, high throughput screening and synthetic biology. BIORESOURCE TECHNOLOGY 2021; 325:124617. [PMID: 33450638 DOI: 10.1016/j.biortech.2020.124617] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/19/2020] [Accepted: 12/22/2020] [Indexed: 05/13/2023]
Abstract
Biocatalysts have wider applications in various industries. Biocatalysts are generating bigger attention among researchers due to their unique catalytic properties like activity, specificity and stability. However the industrial use of many enzymes is hindered by low catalytic efficiency and stability during industrial processes. Properties of enzymes can be altered by protein engineering. Protein engineers are increasingly study the structure-function characteristics, engineering attributes, design of computational tools for enzyme engineering, and functional screening processes to improve the design and applications of enzymes. The potent and innovative techniques of enzyme engineering deliver outstanding opportunities for tailoring industrially important enzymes for the versatile production of biochemicals. An overview of the current trends in enzyme engineering is explored with important representative examples.
Collapse
Affiliation(s)
- Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India
| | - Ranjna Sirohi
- The Center for Energy and Environmental Sustainability, Lucknow 226 010, Uttar Pradesh, India
| | - Ayon Tarafdar
- Division of Livestock Production and Management, ICAR - Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi 712 100, China
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, India.
| |
Collapse
|
3
|
Tan H, Wu X, Xie L, Huang Z, Peng W, Gan B. Identification and characterization of a mesophilic phytase highly resilient to high-temperatures from a fungus-garden associated metagenome. Appl Microbiol Biotechnol 2015; 100:2225-41. [PMID: 26536874 DOI: 10.1007/s00253-015-7097-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/06/2015] [Accepted: 10/13/2015] [Indexed: 11/30/2022]
Abstract
Phytases are enzymes degrading phytic acid and thereby releasing inorganic phosphate. While the phytases reported to date are majorly from culturable microorganisms, the fast-growing quantity of publicly available metagenomic data generated in the last decade has enabled bioinformatic mining of phytases in numerous data mines derived from a variety of ecosystems throughout the world. In this study, we are interested in the histidine acid phosphatase (HAP) family phytases present in insect-cultivated fungus gardens. Using bioinformatic approaches, 11 putative HAP phytase genes were initially screened from 18 publicly available metagenomes of fungus gardens and were further overexpressed in Escherichia coli. One phytase from a south pine beetle fungus garden showed the highest activity and was then chosen for further study. Biochemical characterization showed that the phytase is mesophilic but possesses strong ability to withstand high temperatures. To our knowledge, it has the longest half-life time at 100 °C (27 min) and at 80 °C (2.1 h) as compared to all the thermostable phytases publicly reported to date. After 100 °C incubation for 15 min, more than 93 % of the activity was retained. The activity was 3102 μmol P/min/mg at 37 °C and 4135 μmol P/min/mg at 52.5 °C, which is higher than all the known thermostable phytases. For the high activity level demonstrated at mesophilic temperatures as well as the high resilience to high temperatures, the phytase might be promising for potential application as an additive enzyme in animal feed.
Collapse
Affiliation(s)
- Hao Tan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Xiang Wu
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Liyuan Xie
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Zhongqian Huang
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Weihong Peng
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China
| | - Bingcheng Gan
- Soil and Fertilizer Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China. .,Scientific Observing and Experiment Station of Southwestern Region for Agricultural Microbial Resource Utilization, Ministry of Agriculture, Chengdu, China.
| |
Collapse
|
4
|
Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution. Appl Microbiol Biotechnol 2015; 100:227-42. [PMID: 26403922 DOI: 10.1007/s00253-015-6959-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/11/2015] [Indexed: 10/23/2022]
Abstract
Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE, an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.
Collapse
|
5
|
Hydrophobic Mutagenesis and Semi-rational Engineering of Arginine Deiminase for Markedly Enhanced Stability and Catalytic Efficiency. Appl Biochem Biotechnol 2015; 176:1335-50. [DOI: 10.1007/s12010-015-1649-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
|
6
|
Chen W, Ye L, Guo F, Lv Y, Yu H. Enhanced activity of an alkaline phytase from Bacillus subtilis 168 in acidic and neutral environments by directed evolution. Biochem Eng J 2015. [DOI: 10.1016/j.bej.2015.02.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Joshi S, Satyanarayana T. In vitro engineering of microbial enzymes with multifarious applications: prospects and perspectives. BIORESOURCE TECHNOLOGY 2015; 176:273-283. [PMID: 25435065 DOI: 10.1016/j.biortech.2014.10.151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 10/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
The discovery of a novel enzyme from a microbial source takes anywhere between months to years, and therefore, there has been an immense interest in modifying the existing microbial enzymes to suit the present day needs of the industry. The redesigning of industrially useful enzymes for improving their performance has become a challenge because bioinformatics databases have been revealing new facts on a day-to-day basis. Modification of the existing enzymes has become a trend for fine tuning of biocatalysts in the biotech industry. Hydrolases are employed in pharmaceutical, biofuel, detergent, food and feed industries that significantly contribute to the global annual revenue, and therefore, the emphasis has been on engineering them. Although a large data is accumulating on making alterations in microbial enzymes, there is a lack of definite information on redesigning industrial enzymes. This review focuses on the recent developments in improving the characteristics of various biotechnologically important enzymes.
Collapse
Affiliation(s)
- Swati Joshi
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India
| | - Tulasi Satyanarayana
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110 021, India.
| |
Collapse
|
8
|
Abstract
Phytases are phosphohydrolytic enzymes that initiate stepwise removal of phosphate from phytate. Simple-stomached species such as swine, poultry, and fish require extrinsic phytase to digest phytate, the major form of phosphorus in plant-based feeds. Consequently, this enzyme is supplemented in these species’ diets to decrease their phosphorus excretion, and it has emerged as one of the most effective and lucrative feed additives. This chapter provides a comprehensive review of the evolving course of phytase science and technology. It gives realistic estimates of the versatile roles of phytase in animal feeding, environmental protection, rock phosphorus preservation, human nutrition and health, and industrial applications. It elaborates on new biotechnology and existing issues related to developing novel microbial phytases as well as phytase-transgenic plants and animals. And it targets critical and integrated analyses on the global impact, novel application, and future demand of phytase in promoting animal agriculture, human health, and societal sustainability.
Collapse
Affiliation(s)
- Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, New York 14853
| | | | | | | | - Michael J. Azain
- Department of Animal Science, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
9
|
H. J. Ullah A, Sethumadhavan K, Boone S, J. Mullaney E. A Single Mutation in the Hepta-Peptide Active Site of <i>Aspergillus niger</i> PhyA Phytase Leads to Myriad Biochemical Changes. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/aim.2012.23049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Yao MZ, Zhang YH, Lu WL, Hu MQ, Wang W, Liang AH. Phytases: crystal structures, protein engineering and potential biotechnological applications. J Appl Microbiol 2011; 112:1-14. [DOI: 10.1111/j.1365-2672.2011.05181.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|