1
|
Molecular characterization and transcriptional regulation of two types of H +-pyrophosphatases in the scuticociliate parasite Philasterides dicentrarchi. Sci Rep 2021; 11:8519. [PMID: 33875762 PMCID: PMC8055999 DOI: 10.1038/s41598-021-88102-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 04/08/2021] [Indexed: 02/02/2023] Open
Abstract
Proton-translocating inorganic pyrophosphatases (H+-PPases) are an ancient family of membrane bound enzymes that couple pyrophosphate (PPi) hydrolysis to H+ translocation across membranes. In this study, we conducted a molecular characterization of two isoenzymes (PdVP1 and PdVP2) located in respectively the alveolar sacs and in the membranes of the intracellular vacuoles of a scuticociliate parasite (Philasterides dicentrarchi) of farmed turbot. We analyzed the genetic expression of the isoenzymes after administration of antiparasitic drugs and after infection in the host. PdVP1 and PdVP2 are encoded by two genes of 2485 and 3069 bp, which respectively contain 3 and 11 exons and express proteins of 746 and 810 aa of molecular mass 78.9 and 87.6 kDa. Topological predictions from isoenzyme sequences indicate the formation of thirteen transmembrane regions (TMRs) for PdVP1 and seventeen TMRs for PdVP2. Protein structure modelling indicated that both isoenzymes are homodimeric, with three Mg2+ binding sites and an additional K+ binding site in PdVP2. The levels of identity and similarity between the isoenzyme sequences are respectively 33.5 and 51.2%. The molecular weights of the native proteins are 158 kDa (PdVP1) and 178 kDa (PdVP2). The isoenzyme sequences are derived from paralogous genes that form a monophyletic grouping with other ciliate species. Genetic expression of the isoenzymes is closely related to the acidification of alveolar sacs (PdVP1) and intracellular vacuoles (PdVP2): antiparasitic drugs inhibit transcription, while infection increases transcription of both isoenzymes. The study findings show that P. dicentrarchi possesses two isoenzymes with H+-PPase activity which are located in acidophilic cell compartment membranes and which are activated during infection in the host and are sensitive to antiparasitic drugs. The findings open the way to using molecular modelling to design drugs for the treatment of scuticociliatosis.
Collapse
|
2
|
Zhang C, Luo H, Huang L, Lin S. Molecular mechanism of glucose-6-phosphate utilization in the dinoflagellate Karenia mikimotoi. HARMFUL ALGAE 2017; 67:74-84. [PMID: 28755722 DOI: 10.1016/j.hal.2017.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 06/19/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Phosphorus (P) is an essential nutrient for marine phytoplankton as for other living organisms, and the preferred form, dissolved inorganic phosphate (DIP), is often quickly depleted in the sunlit layer of the ocean. Phytoplankton have developed mechanisms to utilize organic forms of P (DOP). Hydrolysis of DOP to release DIP by alkaline phosphatase is believed to be the most common mechanism of DOP utilization. Little effort has been made, however, to understand other potential molecular mechanisms of utilizing different types of DOP. This study investigated the bioavailability of glucose-6-phosphate (G6P) and its underlying molecular mechanism in the dinoflagellate Karenia mikimotoi. Suppression Subtraction Hybridization (SSH) was used to identify genes up- and down-regulated during G6P utilization compared to DIP condition. The results showed that G6P supported the growth and yield of K. mikimotoi as efficiently as DIP. Neither DIP release nor AP activity was detected in the cultures grown in G6P medium, however, suggesting direct uptake of G6P. SSH analysis and RT-qPCR results showed evidence of metabolic modifications, particularly that mitochondrial ATP synthase f1gamma subunit and thioredoxin reductase were up-regulated while diphosphatase and pyrophosphatase were down-regulated in the G6P cultures. All the results indicate that K. mikimotoi has developed a mechanism other than alkaline phosphatase to utilize G6P.
Collapse
Affiliation(s)
- Chao Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China; Institute of Genetic Engineering, Southern Medical University, Guangzhou, China, Guangdong Province Key Laboratory of Biochip, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Hao Luo
- Key State Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, Fujian, China
| | - Liangmin Huang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, China
| | - Senjie Lin
- Key State Laboratory of Marine Environmental Science and Marine Biodiversity and Global Change Research Center, Xiamen University, Xiamen, Fujian, China; Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA.
| |
Collapse
|
3
|
Sun X, Qi W, Yue Y, Ling H, Wang G, Song R. Maize ZmVPP5 is a truncated Vacuole H(+) -PPase that confers hypersensitivity to salt stress. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:518-528. [PMID: 26728417 PMCID: PMC5071666 DOI: 10.1111/jipb.12462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/31/2015] [Indexed: 05/30/2023]
Abstract
In plants, Vacuole H(+) -PPases (VPPs) are important proton pumps and encoded by multiple genes. In addition to full-length VPPs, several truncated forms are expressed, but their biological functions are unknown. In this study, we functionally characterized maize vacuole H(+) -PPase 5 (ZmVPP5), a truncated VPP in the maize genome. Although ZmVPP5 shares high sequence similarity with ZmVPP1, ZmVPP5 lacks the complete structure of the conserved proton transport and the inorganic pyrophosphatase-related domain. Phylogenetic analysis suggests that ZmVPP5 might be derived from an incomplete gene duplication event. ZmVPP5 is expressed in multiple tissues, and ZmVPP5 was detected in the plasma membrane, vacuole membrane and nuclei of maize cells. The overexpression of ZmVPP5 in yeast cells caused a hypersensitivity to salt stress. Transgenic maize lines with overexpressed ZmVPP5 also exhibited the salt hypersensitivity phenotype. A yeast two-hybrid analysis identified the ZmBag6-like protein as a putative ZmVPP5-interacting protein. The results of bimolecular luminescence complementation (BiLC) assay suggest an interaction between ZmBag6-like protein and ZmVPP5 in vivo. Overall, this study suggests that ZmVPP5 might act as a VPP antagonist and participate in the cellular response to salt stress. Our study of ZmVPP5 has expanded the understanding of the origin and functions of truncated forms of plant VPPs.
Collapse
Affiliation(s)
- Xiaoliang Sun
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Coordinated Crop Biology Research Center(CBRC), Beijing 100193, China
| | - Yihong Yue
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Huiling Ling
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Gang Wang
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Coordinated Crop Biology Research Center(CBRC), Beijing 100193, China
| | - Rentao Song
- Shanghai key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai 200444, China
- Coordinated Crop Biology Research Center(CBRC), Beijing 100193, China
| |
Collapse
|
4
|
Wang Y, Jin S, Wang M, Zhu L, Zhang X. Isolation and characterization of a conserved domain in the eremophyte H+-PPase family. PLoS One 2013; 8:e70099. [PMID: 23922918 PMCID: PMC3726567 DOI: 10.1371/journal.pone.0070099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/14/2013] [Indexed: 11/24/2022] Open
Abstract
H+-translocating inorganic pyrophosphatases (H+-PPase) were recognized as the original energy donors in the development of plants. A large number of researchers have shown that H+-PPase could be an early-originated protein that participated in many important biochemical and physiological processes. In this study we cloned 14 novel sequences from 7 eremophytes: Sophora alopecuroid (Sa), Glycyrrhiza uralensis (Gu), Glycyrrhiza inflata (Gi), Suaeda salsa (Ss), Suaeda rigida (Sr), Halostachys caspica (Hc), and Karelinia caspia (Kc). These novel sequences included 6 ORFs and 8 fragments, and they were identified as H+-PPases based on the typical conserved domains. Besides the identified domains, sequence alignment showed that there still were two novel conserved motifs. A phylogenetic tree was constructed, including the 14 novel H+-PPase amino acid sequences and the other 34 identified H+-PPase protein sequences representing plants, algae, protozoans and bacteria. It was shown that these 48 H+-PPases were classified into two groups: type I and type II H+-PPase. The novel 14 eremophyte H+-PPases were classified into the type I H+-PPase. The 3D structures of these H+-PPase proteins were predicted, which suggested that all type I H+-PPases from higher plants and algae were homodimers, while other type I H+-PPases from bacteria and protozoans and all type II H+-PPases were monomers. The 3D structures of these novel H+-PPases were homodimers except for SaVP3, which was a monomer. This regular structure could provide important evidence for the evolutionary origin and study of the relationship between the structure and function among members of the H+-PPase family.
Collapse
Affiliation(s)
- Yanqin Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science, Tarim University, Alaer, Xinjiang, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Stress response of plant H+-PPase-expressing transgenic Escherichia coli and Saccharomyces cerevisiae: a potentially useful mechanism for the development of stress-tolerant organisms. J Appl Genet 2012; 54:129-33. [PMID: 23055406 DOI: 10.1007/s13353-012-0117-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022]
Abstract
The simple proton-translocating inorganic pyrophosphatase (H(+)-PPase) found in plants and protists is an evolutionally conserved, essential enzyme that catalyzes the hydrolysis of pyrophosphate (PPi). Little is known about the functional contribution of H(+)-PPase to the cellular response to abiotic stresses, except its high salinity and drought stress. To investigate the role of H(+)-PPase during response to cellular stress, we isolated the cDNA of Arabidopsis thaliana H(+)-PPase (AVP1) and Oryza sativa H(+)-PPase (OVP1) and constructed transgenic Saccharomyces cerevisiae and Escherichia coli lines that express AVP1 and OVP1. In S. cerevisiae, the expression of a chimeric derivative of the AVP1 and OVP1 alleviated the phenotype associated with ipp2-deficient cells in the presence of high salinity (NaCl) and metal stressors (Cd, Mn, and Zn). In E. coli, AVP1 and OVP1 overexpression conferred enhanced tolerance to abiotic stresses, including heat shock and H(2)O(2), as well as NaCl, Cd, Mn, Zn, Ca, and Al. Interestingly, AVP1 and OVP1 overexpression resulted in hypersensitivity to menadione and cobalt. These results demonstrate the cellular capacity of AVP1- and OVP1-expressing transgenic yeast and E. coli in response to physiological, abiotic stresses. Moreover, our results suggest new ways of engineering stress-tolerant plants that are capable of responding to climate change. Here, we provide an outline of an experimental system to examine the alternative roles of plant H(+)-PPase.
Collapse
|
6
|
Zhao LN, Qin Z, Wei P, Guo HS, Dang XL, Wang SG, Tang B. Elongation factor 1β' gene from Spodoptera exigua: characterization and function identification through RNA interference. Int J Mol Sci 2012; 13:8126-8141. [PMID: 22942694 PMCID: PMC3430225 DOI: 10.3390/ijms13078126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 01/07/2023] Open
Abstract
Elongation factor (EF) is a key regulation factor for translation in many organisms, including plants, bacteria, fungi, animals and insects. To investigate the nature and function of elongation factor 1β′ from Spodoptera exigua (SeEF-1β′), its cDNA was cloned. This contained an open reading frame of 672 nucleotides encoding a protein of 223 amino acids with a predicted molecular weight of 24.04 kDa and pI of 4.53. Northern blotting revealed that SeEF-1β′ mRNA is expressed in brain, epidermis, fat body, midgut, Malpighian tubules, ovary and tracheae. RT-PCR revealed that SeEF-1β′ mRNA is expressed at different levels in fat body and whole body during different developmental stages. In RNAi experiments, the survival rate of insects injected with SeEF-1β′ dsRNA was 58.7% at 36 h after injection, which was significantly lower than three control groups. Other elongation factors and transcription factors were also influenced when EF-1β′ was suppressed. The results demonstrate that SeEF-1β′ is a key gene in transcription in S. exigua.
Collapse
Affiliation(s)
- Li-Na Zhao
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; E-Mails: (L.-N.Z.); (Z.Q.); (P.W.); (H.-S.G.); (S.-G.W.)
| | - Zi Qin
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; E-Mails: (L.-N.Z.); (Z.Q.); (P.W.); (H.-S.G.); (S.-G.W.)
| | - Ping Wei
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; E-Mails: (L.-N.Z.); (Z.Q.); (P.W.); (H.-S.G.); (S.-G.W.)
| | - Hong-Shuang Guo
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; E-Mails: (L.-N.Z.); (Z.Q.); (P.W.); (H.-S.G.); (S.-G.W.)
| | - Xiang-Li Dang
- Zhejiang Institute of Subtropical Crops, Wenzhou, Zhejiang 325005, China; E-Mail:
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; E-Mails: (L.-N.Z.); (Z.Q.); (P.W.); (H.-S.G.); (S.-G.W.)
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China; E-Mails: (L.-N.Z.); (Z.Q.); (P.W.); (H.-S.G.); (S.-G.W.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +86-571-2886-5680; Fax: +86-571-2886-5680
| |
Collapse
|
7
|
Overexpression of the halophyte Kalidium foliatum H⁺-pyrophosphatase gene confers salt and drought tolerance in Arabidopsis thaliana. Mol Biol Rep 2012; 39:7989-96. [PMID: 22539184 DOI: 10.1007/s11033-012-1645-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 04/16/2012] [Indexed: 10/28/2022]
Abstract
According to sequences of H(+)-pyrophosphatase genes from GenBank, a new H(+)-pyrophosphatase gene (KfVP1) from the halophyte Kalidium foliatum, a very salt-tolerant shrub that is highly succulent, was obtained by using reverse transcription PCR and rapid amplification of cDNA ends methods. The obtained KfVP1 cDNA contained a 2295 bp ORF and a 242 bp 3'-untranslated region. It encoded 764 amino acids with a calculated molecular mass of 79.78 kDa. The deduced amino acid sequence showed high identity to those of H(+)-PPase of some Chenopodiaceae plant species. Semi-quantitative PCR results revealed that transcription of KfVP1 in K. foliatum was induced by NaCl, ABA and PEG stress. Transgenic lines of A. thaliana with 35S::KfVP1 were generated. Three transgenic lines grew more vigorous than the wild type (ecotype Col-0) under salt and drought stress. Moreover, the transgenic plants accumulated more Na(+) in the leaves compared to wild type plants. These results demonstrated that KfVP1 from K. foliatum may be a functional tonoplast H(+)-pyrophosphatase in contributing to salt and drought tolerance.
Collapse
|
8
|
Yuan H, Meng X, Gao Q, Qu W, Xu T, Xu Z, Song R. The characterization of two peroxiredoxin genes in Dunaliella viridis provides insights into antioxidative response to salt stress. PLANT CELL REPORTS 2011; 30:1503-1512. [PMID: 21431909 DOI: 10.1007/s00299-011-1060-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 03/06/2011] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Peroxiredoxins (Prxs), a group of antioxidant enzymes, are an important component of the oxidative defense system and have been demonstrated to function as peroxidases, sensors of H(2)O(2)-mediated signaling and/or chaperones. In this study, a cDNA library was constructed from a halotolerant alga, Dunaliella viridis, and was used in a functional complementation screen for antioxidative genes in an oxidative sensitive yeast mutant. Two Prx genes, DvPrx1 and DvPrx2, were obtained from this screen. These two genes were classified as type II Prx and 2-Cys Prx based on amino acid sequence and phylogenetic analysis. When over-expressed in yeast cells, both Prx genes were able to confer better oxidative tolerance and decrease the level of reactive oxygen species (ROS). Subcellular localization experiments in tobacco cells revealed that both DvPrx1 and DvPrx2 were localized in the cytosol. The transcription of DvPrx1 and DvPrx2 can be induced by hypersalinity shock, but is not obviously affected by treatment with high levels of oxidant. Our results shed light on the function and regulation of Prx genes from Dunaliella and their potential roles in salt tolerance.
Collapse
Affiliation(s)
- Huijuan Yuan
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, 99 Shangda Road, 200444, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Gu L, Xu D, You T, Li X, Yao S, Chen S, Zhao J, Lan H, Zhang F. Analysis of gene expression by ESTs from suppression subtractive hybridization library in Chenopodium album L. under salt stress. Mol Biol Rep 2011; 38:5285-95. [PMID: 21246286 DOI: 10.1007/s11033-011-0678-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 01/10/2011] [Indexed: 11/29/2022]
Abstract
To identify genes expression in Chenopodium album exposed to NaCl stress and screen ESTs related to salt stress, a subtractive suppression hybridization (SSH) library of C. album under salt stress was constructed in the present study. Random EST sequencing produced 825 high-quality ESTs with GenBank ID GE746311-GE747007, which had 301 bp of average size and were clustered into 88 contigs and 550 singletons. They were classified into 12 categories according to their function annotations. 635 ESTs (76.97%) showed similarities to gene sequences in the non-redundancy database, while 190 ESTs (23.03%) showed low or no similarities. The transcriptional profiles of 56 ESTs randomly selected from 347 unknown or novel ESTs of SSH library under varying NaCl concentration and at different time points were analyzed. The results indicated that a high proportion of tested ESTs were activated by salt stress. Four in 56 ESTs responded to NaCl were also enhanced in expression level when exposed to ABA and PEG stresses. The above four ESTs were validated by northern blotting which was consistent with the results of RT-PCR. The results suggested that genes corresponded to these ESTs might be involved in stress response or regulation. The complete sequences and detailed function of these ESTs need to be further studied.
Collapse
Affiliation(s)
- Lili Gu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| | | | | | | | | | | | | | | | | |
Collapse
|