1
|
Wannawilai S, Palasak T, Chamkhuy W, Khongto B, Jeennor S, Laoteng K. Lipid production by robust Aspergillus oryzae BCC7051 and a mathematical model describing its growth and lipid phenotypic traits. J Appl Microbiol 2024; 135:lxae229. [PMID: 39231805 DOI: 10.1093/jambio/lxae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/01/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
AIMS To identify the promising oleaginous Aspergillus oryzae strain and leverage its lipid and biomass production through a mathematical model. METHODS AND RESULTS Comparative profiling of the cell growth and total fatty acid (TFA) content among 13 strains of A. oryzae was performed to explore the discrimination in their lipid productions. The oleaginicity of A. oryzae was found to be strain dependent, where the fungal strain BCC7051 exhibited superior performance in producing lipid-rich biomass by submerged fermentation. The TFA contents of the strain BCC7051 were comparable when cultivated at a range of pH values (pH 3.5-6.5) and temperatures (24-42°C). The mathematical model was generated, well describing and predicting the fungal growth and lipid phenotypic traits at various temperatures and carbon substrates. CONCLUSION The A. oryzae strain BCC7051 was a robust cell factory, acquiring economically feasible options for producing valuable lipid-based products.
Collapse
Affiliation(s)
- Siwaporn Wannawilai
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Thanaporn Palasak
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Warinthon Chamkhuy
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Bhimabol Khongto
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Sukanya Jeennor
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| |
Collapse
|
2
|
Antimanon S, Anantayanon J, Wannawilai S, Khongto B, Laoteng K. Physiological Traits of Dihomo-γ-Linolenic Acid Production of the Engineered Aspergillus oryzae by Comparing Mathematical Models. Front Microbiol 2020; 11:546230. [PMID: 33224108 PMCID: PMC7674286 DOI: 10.3389/fmicb.2020.546230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Dihomo-γ-linolenic acid (DGLA; C20:3 n-6) is expected to dominate the functional ingredients market for its role in anti-inflammation and anti-proliferation. The DGLA production by the engineered strain of Aspergillus oryzae with overexpressing Pythium Δ6-desaturase and Δ6-elongase genes was investigated by manipulating the nutrient and fermentation regimes. Of the nitrogen sources tested, the maximum biomass and DGLA titers were obtained in the cultures using NaNO3 grown at pH 6.0. For establishing economically feasible process of DGLA production, the cost-effective medium was developed by using cassava starch hydrolysate (CSH) and NaNO3 as carbon and nitrogen sources, respectively. The supplementation with 1% (v/v) mother liquor (ML) into the CSH medium promoted the specific yield of DGLA production (Y DGLA / X ) comparable with the culture grown in the defined NaNO3 medium, and the DGLA proportion was over 22% in total fatty acid (TFA). Besides, the GLA was also generated at a similar proportion (about 25% in TFA). The mathematical models of the cultures grown in the defined NaNO3 and CSH/ML media were generated, describing that the lipid and DGLA were growth-associated metabolites corresponding to the relevant kinetic parameters of fermentations. The controlled mode of submerged fermentation of the engineered strain was explored for governing the PUFA biosynthesis and lipid-accumulating process in relation to the biomass production. This study provides an informative perspective in the n-6 fatty acid production through physiological manipulation, thus leading to a prospect in viable production of the DGLA-enriched oil by the engineered strain.
Collapse
Affiliation(s)
| | | | | | | | - Kobkul Laoteng
- Industrial Bioprocess Technology Research Team, Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Khlong Luang, Thailand
| |
Collapse
|
3
|
Jeennor S, Anantayanon J, Panchanawaporn S, Khoomrung S, Chutrakul C, Laoteng K. Reengineering lipid biosynthetic pathways of Aspergillus oryzae for enhanced production of γ-linolenic acid and dihomo-γ-linolenic acid. Gene 2019; 706:106-114. [DOI: 10.1016/j.gene.2019.04.074] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/18/2019] [Accepted: 04/26/2019] [Indexed: 01/14/2023]
|
4
|
Tang W, Ouyang C, Liu L, Li H, Zeng C, Wang J, Fu L, Wu Q, Zeng B, He B. Genome-wide identification of the fatty acid desaturases gene family in four Aspergillus species and their expression profile in Aspergillus oryzae. AMB Express 2018; 8:169. [PMID: 30324529 PMCID: PMC6188973 DOI: 10.1186/s13568-018-0697-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 10/09/2018] [Indexed: 01/09/2023] Open
Abstract
Fatty acid desaturases play a key role in producing polyunsaturated fatty acids by converting single bonds to double bonds. In the present study, a total of 13, 12, 8 and 8 candidate fatty acid desaturases genes were identified in the Aspergillus oryzae, Aspergillus flavus, Aspergillus fumigatus and Aspergillus nidulans genomes through database searches, which were classified into five different subfamilies based on phylogenetic analysis. Furthermore, a comprehensive analysis was performed to characterize conserved motifs and gene structures, which could provide an intuitive comprehension to learn the relationship between structure and functions of the fatty acid desaturases genes in different Aspergillus species. In addition, the expression pattern of 13 fatty acid desaturases genes of A. oryzae was tested in different growth stages and under salt stress treatment. The results revealed that the fatty acid desaturases genes in A. oryzae were highly expressed in adaptive phase growth and up-regulated under salt stress treatment. This study provided a better understanding of the evolution and functions of the fatty acid desaturases gene family in the four Aspergillus species, and would be useful for seeking methods to improve the production of unsaturated fatty acids and enhance efforts for the genetic improvement of strains to adapt to the complex surrounding environment.
Collapse
|
5
|
Bharudin I, Abu Bakar MF, Hashim NHF, Mat Isa MN, Alias H, Firdaus-Raih M, Md Illias R, Najimudin N, Mahadi NM, Abu Bakar FD, Abdul Murad AM. Unravelling the adaptation strategies employed by Glaciozyma antarctica PI12 on Antarctic sea ice. MARINE ENVIRONMENTAL RESEARCH 2018; 137:169-176. [PMID: 29598997 DOI: 10.1016/j.marenvres.2018.03.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/09/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
Glaciozyma antarctica PI12, is a psychrophilic yeast isolated from Antarctic sea. In this work, Expressed Sequence Tags (EST) from cells exposed to three different temperatures; 15 °C, 0 °C and -12 °C were generated to identify genes associated with cold adaptation. A total of 5376 clones from each library were randomly picked and sequenced. Comparative analyses from the resulting ESTs in each condition identified several groups of genes required for cold adaptation. Additionally, 319 unique transcripts that encoded uncharacterised functions were identified in the -12 °C library and are currently unique to G. antarctica. Gene expression analysis using RT-qPCR revealed two of the unknown genes to be up-regulated at -12 °C compared to 0 °C and 15 °C. These findings further contribute to the collective knowledge into G. antarctica cold adaptation and as a resource for understanding the ecological and physiological tolerance of psychrophilic microbes in general.
Collapse
Affiliation(s)
- Izwan Bharudin
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia.
| | | | - Noor Haza Fazlin Hashim
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Mohd Noor Mat Isa
- Malaysia Genome Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Halimah Alias
- Malaysia Genome Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Mohd Firdaus-Raih
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia; Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Rosli Md Illias
- Department of Biosciences Engineering, Faculty of Chemical & Natural Resources Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Nazalan Najimudin
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Nor Muhammad Mahadi
- Malaysia Genome Institute, Jalan Bangi Lama, 43000, Kajang, Selangor, Malaysia
| | - Farah Diba Abu Bakar
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Abdul Munir Abdul Murad
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
6
|
Tan L, Zhuo R, Li S, Ma F, Zhang X. Differential expression of desaturase genes and changes in fatty acid composition of Mortierella sp. AGED in response to environmental factors. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:1876-1884. [PMID: 27508521 DOI: 10.1002/jsfa.7990] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Some oleaginous fungi can produce large amounts of polyunsaturated fatty acids (PUFAs) which serve many physiological functions. Numerous desaturases are critical for the synthesis of PUFAs. This study aimed to investigate the regulation of lipid production and desaturase gene expression in Mortierella sp. AGED in response to different environmental factors, and the relationships between lipid production and desaturase gene expression. RESULTS The fatty acid composition and mRNA levels of desaturase genes were significantly changed under low temperatures. With the exception of Δ5-desaturase, the transcript levels of all desaturase genes increased at a temperature of 20 °C. Changes in content of lipid and PUFAs responding to low temperature were consistent with desaturase gene expression. Time course studies on gene expression showed that mRNA levels of four desaturase genes increased rapidly after transferring the cells to low temperature. Ethanol (1.5% v/v) increased the transcript levels of Δ9-, Δ6- and Δ5-desaturase genes significantly and of Δ12-desaturase gene slightly. Different metal ions such as Ca2+ , Zn2+ and Fe3+ could stimulate PUFA synthesis and up-regulate desaturase gene transcription, while Cu2+ inhibited desaturase gene expression and lipid accumulation. CONCLUSION This study should enable us to understand the regulatory mechanism of desaturase gene expression and lipid synthesis. It is helpful to improve PUFA productivity in Mortierella sp. AGED. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Li Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Rui Zhuo
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shue Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fuying Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
7
|
Alterations in growth and fatty acid profiles under stress conditions of Hansenula polymorpha defective in polyunsaturated fatty acid synthesis. Mol Biol Rep 2013; 40:4935-45. [PMID: 23645092 DOI: 10.1007/s11033-013-2594-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/29/2013] [Indexed: 10/26/2022]
Abstract
Using chemical mutagenesis, mutants of Hansenula polymorpha that were defective in fatty acid synthesis were selected based on their growth requirements on saturated fatty acid mixtures. One mutant (S7) was incapable of synthesizing polyunsaturated fatty acids (PUFA), linoleic and α-linolenic acids. A genetic analysis demonstrated that the S7 strain had a double lesion affecting fatty acid synthesis and Δ(12)-desaturation. A segregant with a defect in PUFA synthesis (H69-2C) displayed normal growth characteristics in the temperature range of 20-42 °C through a modulation of the cellular fatty acid composition. Compared with the parental strain, this yeast mutant had increased sensitivity at low and high temperatures (15 and 48 °C, respectively) with an increased tolerance to oxidative stress. The responses to ethanol stress were similar for the parental and PUFA-defective strains. Myristic acid was also determined to play an essential role in the cell growth of H. polymorpha. These findings suggest that both the type of cellular fatty acids and the composition of fatty acids might be involved in the stress responsive mechanisms in this industrially important yeast.
Collapse
|
8
|
Transcriptional regulation of desaturase genes in Pichia pastoris GS115. Lipids 2012; 47:1099-108. [PMID: 22961009 DOI: 10.1007/s11745-012-3712-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 08/06/2012] [Indexed: 10/27/2022]
Abstract
Here we investigated the regulation of Pichia pastoris desaturase genes by low temperature and exogenous fatty acids in the late-exponential phase at the transcriptional level. Time-course studies of gene expression showed that mRNA levels of four desaturase genes were rapidly and transiently enhanced by low temperature and suppressed by exogenous oleic acid. Stearic acid showed no obvious repression of mRNA levels of Fad12 and Fad15 and a slight increase in Fad9A and Fad9B mRNA levels. Using a promoter-reporter gene construct, we demonstrated that the pFAD15 promoter activity was induced by low temperature in a time-dependent manner and reduced in a dose- and time-dependent manner by unsaturated fatty acids. Also, there was no absolute correlation between mRNA abundance and production of corresponding fatty acids. Disruption of Spt23 resulted in a decrease in transcript levels of Fad9A and Fad9B, but had little effect on the other desaturase genes. Consistent with these observations, a decrease in the relative amount of oleic acid (OLA) and an increase in the relative content of linoleic acid and ALA with different degrees were clearly observed in the stationary phase cells of ΔSpt23 mutant. Further analysis showed that the effect of low-temperature activation and OLA inhibition on expression of Fad9A and Fad9B seemed to disappear after disruption of the Spt23 gene, which indicated that Spt23p is essential for the expression of two Δ9-desaturase genes internally and probably involved in the regulation of Δ9-desaturase genes transcription in response to external stimuli, and thereby plays a role in the synthesis of OLA.
Collapse
|